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Abstract: The requirement for energy sustainability drives the development of renewable energy
technologies and gas-fired power generation. The increasing installation of gas-fired units significantly
intensifies the interdependency between the electricity system and natural gas system. The joint
scheduling of electricity and natural gas systems has become an attractive option for improving
energy efficiency. This paper proposes a robust day-ahead scheduling model for electricity and
natural gas system, which minimizes the total cost including fuel cost, spinning reserve cost and
cost of operational risk while ensuring the feasibility for all scenarios within the uncertainty set.
Different from the conventional robust optimization with predefined uncertainty set, a new approach
with risk-averse adjustable uncertainty set is proposed in this paper to mitigate the conservatism.
Furthermore, the Wasserstein–Moment metric is applied to construct ambiguity sets for computing
operational risk. The proposed scheduling model is solved by the column-and-constraint generation
method. The effectiveness of the proposed approach is tested on a 6-bus test system and a
118-bus system.

Keywords: integrated energy system; robust optimization; adjustable uncertainty set; distributionally
robust optimization

1. Introduction

The climate change and global warming concerns coupled with high oil prices and government
support are driving increasing integration of variable renewable energies into the power system [1].
Renewable energies have many advantages including reducing environmental pollution, bringing
economic benefits, improving energy efficiency, and enhancing life quality [2].

The ongoing shale gas revolution is expected to slash nature gas prices and attract investment
into gas-fired power generation. Take California’s generation mix as an example, natural gas provided
approximately 53 percent of total installed capacity which is the largest source of energy to meet the
load [3]. The increasing installation of gas-fired units significantly intensifies the interdependency
between the electricity system and natural gas system. On one hand, gas-fired units can offer flexible
dispatch and quick ramping capability [4]. On the other hand, the gas outages or gas shortage damage
the reliability of power system as gas-fired units go off-line [5].

The joint scheduling of electricity and natural gas infrastructures has become an attractive option
for improving the energy efficiency of the whole system [6]. In recent years, there have been many
works dedicated to the joint optimal scheduling of the integrated energy system. Some studies are
summarized as follows:
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(1) Gas Flow Modeling: In order to ensure the computational tractability, the Weymouth equation
is widely adopted to describe the relationship between gas flow and gas pressure under the steady-state
assumption. Liu et al. propose a security-based methodology for the solution of short-term SCUC
with considering the impact of the natural gas transmission system by using natural gas transmission
subproblem to check the feasibility as well as the security [7]. In reference [8], authors develop a novel
gas flow model such that line pack, i.e., the stored gas in the pipeline, is taken into account. That paper
contributes with an extended incremental method that linearizes the nonlinear term in the Weymouth
equation. However, such method introduces a large number of additional variables/constraints,
posing a high computational burden to the solver. In paper [9], the Weymouth equation is convexified
via a second order cone relaxation method, but the exactness of the relaxation cannot be guaranteed.
In references [10,11], natural gas transmission is simplified by linear constraints, making the complex
gas transmission problem tractable.

(2) Uncertainty Modeling: The increasing integration of variable renewable energy (VRE) into the
power system brings uncertainties to the operation, which may result in load shedding, grid instability
and potentially, cascading outages. In the scope of this paper, the VREs’ power output is the only
source of uncertainties. How to manage the VREs’ uncertainties is a hot issue in the research field
of joint scheduling. Alabdulwahab et al. build a scenario-based stochastic scheduling model for the
electricity and natural gas systems [12]. A decomposition method is designed to check the feasibility
of gas transmission problem in all the scenarios. In reference [13], the operation of a GB integrated gas
and electricity network considering the wind power uncertainty is investigated using three operational
methods: deterministic, two-stage stochastic programming, and multistage stochastic programming.
Based on the interval optimization, Bai et al. propose a joint scheduling model with considering an
optimal demand response strategy [14]. With resorting to the robust optimization method, He et al.
propose a robust co-optimization scheduling model to study the coordinated optimal operation of
the integrated energy systems [15]. That paper is tackled via an alternating direction method of
multipliers (ADMM) by iteratively solving a power system subproblem. In this way, the privacy of
data is protected.

In the existing literature focusing on joint scheduling, stochastic programming and robust
optimization are two popular tools for addressing uncertainties. Stochastic programming assumes that
the distribution governing the uncertainty data is known or can be estimated in advance. In contrast,
robust optimization assumes that the probabilistic information is not available, and only the upper
and lower bounds of uncertainty variables are determined [16]. Therefore, robust optimization may
lead to an over-conservative decision. Recently, a novel optimization tool, named ’distributionally
robust optimization’, is proposed to bridge the gap between stochastic programming and robust
optimization. It constructs an ambiguity set containing the possible distributions of random variables.
Then, it optimizes the expected cost under the worst-case distribution within the ambiguity set.
In references [17,18], authors establish the moment-based ambiguity set where the moment information
of possible distributions is consistent with that of the empirical distribution. A statistical distance-based
metric– Wasserstein metric is employed in paper [19–21] to construct the ambiguity set.

This paper proposes a robust day-ahead scheduling model for electricity and natural gas system,
which minimizes the total cost including fuel cost, spinning reserve cost and cost of operational risk
while ensuring the feasibility for all scenarios within the uncertainty set. The proposed model is
a two-stage robust optimization model. The base-case plan (base-case power output of units and
preserved spinning reserve capacity) and the parameters of adjustable uncertainty set are determined
in the first stage, while carrying out redispatch in the second stage after the realizations of uncertainties
are revealed. Follow the study in [10], a simplification model is utilized to model the gas transmission
with considering the line pack. The proposed model adopts an adjustable uncertainty set approach
proposed in [22]. However, to hedge against the ambiguity of distribution, this paper proposes a
risk-averse adjustable uncertainty set approach that computes the operational risk under the worst-case
distribution by a distributionally robust method. Different from our previous work [23], this paper
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builds the ambiguity set via a Wasserstein–Moment metric [24,25]. Comparative studies are carried out
to compute operational risk among the Wasserstein–Moment metric, Wasserstein metric, and Moment
metric. In addition, this paper aims to coordinate different energy infrastructures but not the power
system modeled in [23]. Our study has the following major contributions:

(1) We co-optimize energy and reserve for day-ahead scheduling in electricity and natural gas
system. The gas transmission problem is simplified for achieving computational tractability.

(2) A risk-averse adjustable uncertainty set approach is proposed to mitigate the conservatism
of robust optimization. To overcome distribution ambiguity, we construct the ambiguity set using
a Wasserstein–Moment metric. Then, operational risk is the expected value under the worst-case
distribution within such ambiguity set.

This paper is organized as follows: Section 2 presents the proposed methodology that includes
the risk-averse adjustable uncertainty set approach and the robust day-ahead scheduling model for
electricity and natural gas system; Numerical results are provided in Section 3.

2. Methodology

The flowchart of the proposed method is shown in Figure 1. First, we collect the historical data of
forecasting errors. Then, based on the Wasserstein–Moment Metric, DRO models are constructed to
compute the operational risk. By tuning the bounds of adjustable uncertainty set, we can form the
operational risk curve for each VRE plant. Secondly, we build the robust day-ahead scheduling model
for electricity and natural gas systems using the risk-averse adjustable uncertainty set approach. Such
a model can be solved via the column-and-constraint generation method.

Start

Solve master problem

Solve subproblem

Converged ?

Stop

Feed back constraints
and variables

Yes

No

C&CG method

Risk-averse adjustable

uncertainty set approach

Collect historical data of
forecasting error

Robust Day-Ahead

Scheduling model
Build scheduling model

Form operational risk curve
for each VRE plant

Construct DRO model
to compute operational loss

Figure 1. Flowchart of the proposed method.

2.1. Risk-Averse Adjustable Uncertainty Set Approach

As the forecasting system has been an effective tool to predict the power output of VRE plant j,
the forecasting error is the random variable which is denoted as ξ j. Suppose that we have a historical
dataset Ξ for ξ j with sample size N, i.e., Ξ = {ξ̂ j,1, ...ξ̂ j,N}. Let µ̂j and σ̂j represent the sample mean and
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the sample standard deviation of ξ j, respectively. We can construct an adjustable uncertainty set Vj(δj):

Vj(δj) = [µ̂j − δjσ̂j, µ̂j + δjσ̂j] (1)

where δj is a variable used to tune the scope of Vj(δj). According to the definition of robust optimization,
for all the scenarios within the Vj(δj), the redispatch feasibility should be ensured. In other words, any
scenario falling outside the Vj(δj) may cause the operational loss ([22,23]). In statistical decision theory,
the risk function is defined as the expected value of a given loss function as a function of the decisions
in the face of uncertainty. Following such definition, when fixing the decision δj as δ̂j, the operational
risk is defined as an expected value of the operational loss under the empirical distribution P̂N , shown
as follow:

R∗j = EP̂N
{max(ρ(ξ j − µ̂j − δ̂jσ̂j), τ(µ̂j − δ̂jσ̂j − ξ j), 0)} (2)

where ρ and τ are the wind power curtailment price and load shedding price, respectively. Nonetheless,
it may result in a suboptimal solution, in particular in the case when limited historical data
are available. To solve this problem, we construct an ambiguity set B to contain the possible
distribution with calculating the operational risk under the worst-case distribution in such ambiguity
set. The corresponding operational risk R̂j is:

R̂j = sup
P∈B

E{max(ρ(ξ j − µ̂j − δ̂jσ̂j), τ(µ̂j − δ̂jσ̂j − ξ j), 0)} (3)

This paper introduces a Wasserstein–Moment metric ([24,25]) to construct an ambiguity set Bε(P̂N)

where P̂N represents the empirical distribution formed by Ξ.

Bε(P̂N)={P∈Φ; dW(P, P̂N)6ε,EP[(ξ̃ j−µ̂j)(ξ̃ j−µ̂j)6γσ̂2
j ]} (4)

where dW() is the function to compute the Wasserstein distance between two distributions; Φ denotes
the set containing all the possible distributions of ω̃; γ is a parameter to control conservatism, which
can be obtained by the cross-validation method [17]. In this paper, the parameter ε is chosen as
follow [20]:

ε(N) = S
√

2log(1/(1− β))/N (5)

where S represents the diameter of the support of random variable; the parameter β is set as 0.9,
implying that the ambiguity set is able to cover the true distribution with the probability of 90%.
According to Theorem 1, the operational risk w.r.t. Bε(P̂N) can be obtained by solving a semi-definite
linear program.

Theorem 1. Suppose that random variable ξ̃ j has a convex support Ω = {DDDξ̃ j 6 ggg} where DDD and ggg are column
vectors. The worst expectation of operational risk (3) is equivalent to:

min
λ>0,η>0,$(1)n >0,$(2)n >0,$(3)n >0,κκκ(1)n >000,κκκ(2)n >000,κκκ(3)n >000

1
N

N

∑
n=1

θn + λε + ηγσ̂2 (6)

s.t. WWWn < 0,YYYn < 0, ZZZn < 0, ∀n (7)

WWWn =

[
η (−ρ + $

(1)
n + DDDTκκκ

(1)
n )/2− ηµ̂

(−ρ + $
(1)
n + κκκ

(1)T
n DDD)/2− ηµ̂ θn + ρ(µ̂j + δ̂jσ̂j)− $

(1)
n ξ̂ j,n + ηµ̂2 − κκκ

(1)T
n ggg

]
, ∀n (8)

YYYn =

[
η (τ + $

(2)
n + DDDTκκκ

(2)
n )/2− ηµ̂

(τ + $
(2)
n + κκκ

(2)T
n DDD)/2− ηµ̂ θn + τ(−µ̂j + δ̂jσ̂j)− $

(2)
n ξ̂ j,n + ηµ̂2 − κκκ

(2)T
n ggg

]
, ∀n (9)
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ZZZn =

[
η ($

(3)
n + DDDTκκκ

(3)
n )/2− ηµ̂

($
(3)
n + κκκ

(3)T
n DDD)/2− ηµ̂ θn − $

(3)
n ξ̂ j,n + ηµ̂2 − κκκ

(3)T
n ggg

]
, ∀n (10)

− λ 6 $
(1)
n 6 λ,−λ 6 $

(2)
n 6 λ, ,−λ 6 $

(3)
n 6 λ, ∀n (11)

The proof can be derived from a lemma provided in the appendix of our prior work [25]. If we
parameterize the adjustable variable δ as a linear interpolation of a sequence of fixed values, δ̂j,1,
δ̂j,2,...,δ̂j,Na . Accordingly, by using Theorem 1, we obtain a sequence of possible operational risk,
R̂j,1, R̂j,2,...R̂j,Na . Despite the fact that Rj is a nonlinear function of δj, it can be approximated by the
piecewise linear function shown as follows:

Rj = R̂j,1 +
na−1

∑
m=1

(R̂j,m+1 − R̂j,m)ζ j,m (12)

δj = δ̂j,1 +
na−1

∑
m=1

(δ̂j,m+1 − δ̂j,m)ζ j,m (13)

0 6 ζ j,m 6 1, ∀m (14)

ζ j,m+1 6 νj,m, νj,m 6 ζ j,m, m = 1, 2, ...na − 2 (15)

where ζm and νm are auxiliary continuous variable and binary variable w.r.t. the mth interval of
piecewise linear curve. Constraint (15) ensures that there will be at most one index m where we have
0 < ζ j,m < 1. Any given point δ̂j,m 6 δj 6 δj,m+1 can be uniquely represented by (12), as a linear
combination of two consecutive breakpoints weighted by the associated variables ζ j,m. The nonlinear
function is then approximated by the model as convex combination of the function values evaluated at
the breakpoints weighted by the associated variables ζ j,m. Hereinafter, for simplicity, model (12)–(15)
is written to the general formulation:

Rj = Fj(δj) (16)

Through (16), we can plot an operational risk curve which describes the Rj as the function of
δj. Obviously, increasing δj enlarges the scope of the adjustable uncertainty set, resulting in a lower
operational risk. That is, Rj is a non-increasing function of δj.

2.2. Robust Day-Ahead Scheduling Model for Electricity and Natural Gas System

The proposed model aims to minimize the total cost including fuel cost, spinning reserve cost
and cost of operational risk while satisfying the operating constraints. Since the operational risk is
explicitly added in the objective function, the decision-maker achieves the optimal decision by making
a tradeoff between economics and reliability. Denote Gg to represent the set of gas-fired units. Let Gng

be the set of non-gas thermal units. W represents the set of VRE plant. Gw denotes the set of gas wells.
The objective function is written as below:

min{
T

∑
t=1

( ∑
i∈Gng

(cit + cirit + cirit) + ∑
i∈Gg

(cirit + cirit) + ∑
k∈Gw

Ckgw
kt + ∑

j∈W
Rjt)} (17)

where cit is the fuel cost of unit i at time t; Ck is the gas price for gas well k; ri and ri are the downward
spinning reserve and upward spinning reserve, respectively; ci and ci are the spinning reserve price;
Rjt is the operational risk w.r.t. VRE plant j at time t, which is calculated as discussed in Section 2.

2.2.1. First-Stage Constraints

In the first stage, the decision-maker optimizes the decision related to the base-case dispatch plan.
The constraints are given as follows:
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(1) Fuel cost of non-gas thermal unit i at time t.
The fuel cost curve is approximated by the piecewise linear function.

cit > ac
is pit + bc

isuit, i ∈ Gng, i ∈ Gg, ∀t, ∀s (18)

where ac
is and bc

is are the slope and intercept of the s-th segment; pit is the base-case power output of
unit i; uit is the binary variable representing the state of unit i.

(2) Power balance constraints.

∑
i∈Gg ,Gng

pit + ∑
j∈W

pw
jt = ∑

b∈B
pd

bt, ∀t (19)

where pw
jt is the forecasted power output of VRE plant j; pd

bt is the forecasted power of load at bus b;
B is the set of buses.

(3) Power output limits:

pit + rit 6 piuit, p
i
uit 6 pit − rit, i ∈ Gng, i ∈ Gg, ∀t (20)

where p
i

and pi are the lower limit and upper limit of power output of unit i, respectively.
(4) Spinning reserve limits:

0 6 rit 6 Ri, 0 6 rit 6 Ri, i ∈ Gng, i ∈ Gg, ∀t (21)

where Ri and Ri are the lower limit and the upper limit of spinning reserve of unit i, respectively.
(5) Transmission line capacity contraints

f
l
6 ∑

i∈Gng ,Gg

πli pit + ∑
j∈W

πl j pw
jt + ∑

b∈B
πlb pd

bt 6 f l , ∀l, ∀t (22)

where πli, πl j, and πlb are the power transfer distribution factors from unit i, VRE plant j, and load at
bus b to line l, respectively. f

l
and f l are capacity limits of line l.

(6) Gas consumption of gas-fired units.
For gas-fired unit i, its gas consumption gc

it depends on power output pit. In order to develop
the piecewise linear approximation of such functional relationship, let us divide the axis pit over the
range of function to nb-1 segments using m = 1,2,...nb breakpoints x̂1

i , x̂2
i ,... x̂nb

i . Each mth interval is
associated with a continuous variable pitm and a binary variable νitm.

gc
it =

nb−1

∑
m=1

(ag
im pitm + bg

imνitm) (23)

x̂m
i νitm 6 pitm 6 x̂m+1

i νitm (24)

nb−1

∑
m=1

pitm = pit (25)

nb−1

∑
m=1

νitm = uit (26)

where ag
im and bg

im denote the slope and intercept of the m-th segment. Constraint (26) ensures that
only one binary variable νitm can take the value 1, and thus only one segment is active. Constraint (24)
and (25) enforce that pitm is equal to pit if mth segment is active, otherwise pitm = 0.
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(7) Gas nodal balance constraint.

∑
i∈ϕd(bg)

gc
it + gd

bgt = ∑
w∈ϕw(bg)

gw
kt + ∑

lg∈χ(bg)

Gbg lgt, ∀bg, ∀t (27)

where gd
bgt is the gas load at node bg; χ(bg) represents the set of pipelines connected with gas node bg;

ϕd(bg) denotes the set of gas-fired units plugged at node bg; ϕw(bg) is the set of gas well at node bg;
Gbg lgt is the gas flow injecting into node bg from pipeline lg. We note that Gbg lgt is positive when gas
flow runs from pipeline lg to bg, otherwise it is a negative value.

(8) Line pack temporal constraints.
Line pack refers to the quantity of natural gas stored in the pipeline. Line pack can be used to

smooth the real-time gas demand variation and maintain gas pressure stability.

LPlgt − LPlgt−1 + GO(lg)lgt + GD(lg)lgt = 0, ∀lg, ∀t (28)

where O(lg) denotes the origin node of pipeline lg; D(lg) denotes the destination node of pipeline lg;
LPlgt is the linepack of pipeline lg at time t.

(9) Line pack/gas supply/outgoing gas flow limits constraints.

LPlg 6 LPlgt 6 LPlg , ∀lg, ∀t (29)

gw
k
6 gw

kt 6 gw
k , ∀k, ∀t (30)

GO(lg)lg 6 GO(lg)lgt 6 GO(lg)lg , GD(lg)lg 6 GD(lg)lgt 6 GD(lg)lg , ∀lg, ∀t (31)

where the upper bound and lower bound of a variable is written with an overline and an underline.
(10) Initial line pack constraints.

LPlg0 = LPlgT = L̂Plg , ∀lg (32)

Constraints (32) enforce the initial line pack is equal to the final line pack to facilitate the daily operation.
(11) Constraints associated with operational risk, i.e., constraints (16).

2.2.2. Second-Stage Constraints

After VREs’ power outputs are realized, system operators carry out corrective actions e.g.,
redispatching and load shedding. According to the definition of robust optimization, any scenario
within the adjustable uncertainty set will not violate the operating constraints.

(1) Real-time released spinning reserve.
The real-time adjustment of generators should be within its spinning reserve preserved in the

first stage.
0 6 p+it 6 rit, 0 6 p−it 6 rit, i ∈ Gng, i ∈ Gg, ∀t (33)

where p+it and p−it are the upward corrective power and downward corrective power, respectively.
(2) Real-time power balance.

∑
i∈Gg ,Gng

(pit + p+it − p−it ) + ∑
j∈W

(pw
jt + ξ jt) = ∑

b∈B
pd

bt, ∀ξ jt ∈ Vjt(δjt), ∀t (34)

where Vjt(δjt) represents the adjustable uncertainty set w.r.t. VRE plant j at time t.
(3) Real-time transmission line capacity.

f
l
6 ∑

i∈Gng ,Gg

πli(pit + p+it − p−it ) + ∑
j∈W

πl j(pw
jt + ξ jt) + ∑

b∈B
πlb pd

bt 6 f l , ∀ξ jt ∈ Vjt(δjt), ∀l, ∀t (35)
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(4) Real-time gas consumption of gas-fired unit i
For gas-fired unit i, the real-time gas consumption is assumed to be a linear function of the

real-time power output at the active segment (νitm = 1).

ag
im(pit + p+it − p−it ) + bg

imuit − (1− νitm)M 6 g̃w
kt 6 ag

im(pit + p+it − p−it ) + bg
imuit + (1− νitm)M, i ∈ Gg, ∀t, ∀m (36)

where M is a sufficient large constant; g̃w
kt is the real-time gas consumption. We mention that decision

{pit, uit, νitm} are obtained in the first stage. It can be seen from constraint (36) that for the active
segment (νitm = 1), we have

g̃w
kt = ag

im(pit + p+it − p−it ) + bg
imuit (37)

while constraint (36) is relaxed for other inactive segments.
In the second stage, there are constraints associated with the real-time operating of the gas system,

which is similar to the constraints shown in (27)–(32). For simplicity, we do not present them here.
The proposed joint scheduling model is written into the compact form:

min
xxx∈XXX,yyy,RRR,δδδ

{cccTxxx + 111TRRR} (38)

s.t.Rjt = Fjt(δjt), ∀j, ∀t (39)

BBByyy 6 bbb− AAAxxx−DDDξξξ, ∀ξξξ ∈ V (40)

V = {µ̂̂µ̂µ− δδδ ◦ σ̂̂σ̂σ 6 ξξξ 6 µ̂̂µ̂µ + δδδ ◦ σ̂̂σ̂σ} (41)

where xxx is the vector of variables in the first stage; yyy is the vector of variables in the second stage; XXX
is the feasible region formed by the constraints in the first stage; RRR is the vector of the operational
risks {Rjt}; ξξξ is the vector of random variables; δδδ is the vector of the parameters {δjt}; û̂ûu and σ̂̂σ̂σ are
vectors of sample means {µ̂j} and sample standard deviations {σ̂j}; V is the union of uncertainty sets
{Vjt}; ’◦’ denotes the Hadamard product. Matrices AAA, BBB and DDD, and bbb represent the parameters in the
second-stage constraints. Constraints (40) correspond to the second-stage constraints.

2.3. Solution Methodology

The proposed joint scheduling model can be solved by column and constraints generation
algorithm (C&CG) which has been proved to be an efficient solution methodology for two-stage
robust optimization model [26]. Next, we briefly discuss the solution methodology. Interested readers
can refer to our previous work [23] for detailed information.

Given the fixed first-stage decision {x̂xx, R̂RR, δ̂δδ}, the C&CG subproblem aims to identify the
worse-case scenario by solving the following model:

max
ξξξ

min
yyy,sss
{111Tsss} (42)

s.t.BBByyy 6 bbb− AAAx̂xx−DDDξξξ + sss (43)

µ̂̂µ̂µ− δ̂δδ ◦ σ̂̂σ̂σ 6 ξξξ 6 µ̂̂µ̂µ + δ̂δδ ◦ σ̂̂σ̂σ (44)

sss > 000 (45)

where sss is a vector of relaxation variables. With introducing the uncertainty budget Γ and H to mitigate
the conservatism of robust optimization, the above model is reformulated to the following model by
dual theory:

max
κκκ,zzz+ ,zzz−

−κκκT [bbb− AAAx̂xx−DDD(µ̂̂µ̂µ + δ̂δδ ◦ σ̂̂σ̂σ ◦ zzz+ − δ̂δδ ◦ σ̂̂σ̂σ ◦ zzz−)] (46)

000 6 κκκ 6 111 (47)
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BBBTκκκ = 000 (48)

zzz+ + zzz− 6 111 (49)

∑
j∈W

(z+jt + z−jt ) 6 Γ, ∀t (50)

T

∑
t=1

(z+jt + z−jt ) 6 H, ∀j (51)

where binary column vectors zzz+ = {z+jt } and zzz− = {z−jt } are indicators of the bounds of ξξξ; κκκ is the
vector of dual variables; Γ is the spatial budget; H is the temporal budget. When the subproblem
is solved in the kth iteration, denoting the optimal solution of zzz+ and zzz+ as ẑzz+ and ẑzz−, respectively,
a set of extra variables yyyk, and additional constraints are generated as shown in (21) and added to the
master problem.

BBByyyk 6 bbb− AAAxxx−DDD(µ̂̂µ̂µ + δδδ ◦ σ̂̂σ̂σ ◦ ẑzz+ − δδδ ◦ σ̂̂σ̂σ ◦ ẑzz−) (52)

Suppose that K iterations have been proceeded, the C&CG master problem is given as follows:

min
xxx∈XXX,yyy,RRR,δδδ

{cccTxxx + 111TRRR} (53)

s.t.Rjt = Fjt(δjt), ∀j, ∀t (54)

BBByyyk 6 bbb− AAAxxx−DDD(µ̂̂µ̂µ + δδδ ◦ σ̂̂σ̂σ ◦ ẑzz+ − δδδ ◦ σ̂̂σ̂σ ◦ ẑzz−), k = 1, 2, ...K (55)

The above iterative process will continue until the optimal value of subproblem is 0, which means
that all the scenarios within the adjustable uncertainty set are feasible.

3. Numerical Results

Numerical tests on the integrated energy system including a 6-bus power system and a 6-node
natural gas system is carried out as an illustrative example. A larger system containing an IEEE 118-bus
power system and a 10-node natural gas system are used to verify the computational efficiency of
the proposed method. The semi-definite linear programs are solved with MOSEK, and mixed integer
linear programming models are solved with GUROBI. All the tests are performed on a PC, which has
8GB memory and i7-4790 CPU.

3.1. Six-Bus Power System with a 6-Node Natural Gas System

We use the test system in [15] with a trivial modification. The topologies are shown in Figure 2.
The 6-bus power system includes non-gas thermal units G2–G4, gas-fired units G1 and G5, a wind
farm connecting to bus 4, seven transmission lines, and three loads. Fuel price of G2–G4 is 5 $/MBtu.
The 6-node gas system comprises two gas wells, five pipelines, and four gas loads. The wind power
curtailment prices and load shedding prices are assumed to vary with time periods, which are plotted
in Figure 3. The total power loads and total gas loads are also illustrated in Figure 3. Data for this
integrated energy system are provided in [27]. Budget Γ and H are set as 1 and 24, respectively.
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Figure 2. (a) 6-bus power system; (b) 6-node natural gas system.
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Figure 3. (a) Load shedding prices/wind power curtailment prices; (b) Power loads/Gas loads.

A wind farm is connected to the power system at bus 4 with a capacity of 240 MW. The forecasted
power output is plotted in Figure 4. Following the setting in [22], the forecasting error of wind
generation is assumed to follow a Gaussian distribution where the mean value is 0 and the standard
deviation is:

σjt = 0.1 · pw
jt · (1 + e(T−t)) (56)

where pw
jt is the forecasted power output of VRE plant j. We make the assumption on the ’true’

distribution to sample data for constructing ambiguity sets. In this way, instead of the ’true’ distribution,
the sampled data are available for the decision-making and thus the proposed approach essentially
does not rely on the specified distributions.
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Figure 4. Forecasted wind power output.

The simulation procedure is given as follows: (1) Sample N = 5000 data from the assumed ’true’
Gaussian distribution for constructing ambiguity sets; (2) The typical points on the operational risk
curve are determined by solving (6)–(11); (3) Build the optimization model and solve it; (4) By keeping
the base-case plan fixed, calculate the expected total cost under the ’true’ distribution to test the
out-of-sample performance of the decision.

In order to investigate the conservatism of Wasserstein–Moment-metric (WM-metric),
we introduce moment-metric (M-metric) [17] and Wasserstein-metric (W-metric) [23]. All tests are
based on the same sample set for fair comparison. Monte Carlo Simulation (MCS) with 106 samples is
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employed to provide the benchmark for comparison. Then, based on several metrics, the operational
risk curves at hour 1 and hour 24 are plotted in the Figure 5.

From Figure 5, it can be seen that WM-metric is the most aggressive one among the studied
metrics. The reason is that both of statistical distance and moment information are taken into account,
reducing the ambiguity of random variables. In general, the more probabilistic information is used to
construct the ambiguity set, the worst-case distribution will be less conservative.
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Figure 5. operational risk curves: (a) t = 1; (b) t = 24.

Based on the above operational risk curves, the following four cases are used to investigate the
performance of WM-metric in making dispatch decision:

Case 1: Conventional two-stage robust optimization model where the parameters of predefined
uncertainty sets are selected as in [28] (95% confidence intervals are adopted);

Case 2: Proposed scheduling model with WM-metric;
Case 3: Proposed scheduling model with W-metric;
Case 4: Proposed scheduling model with M-metric;
The unit commitment decision is illustrated in Figure 6. It is observed that Cases 2–4 result

in the same decision while Case 1 commits more unit in hour 1, 2, 3 and 23. It indicates that the
conventional two-stage robust model with unadjustable uncertainty set leads to a more conservative
decision compared with the proposed model. Cases 2–4 yield different spinning reserve solutions.
Figure 7 shows the total upward spinning reserve for each hour. Case 2 preserves significantly less
spinning reserve than other cases due to its less conservative estimation of operational risk. The
downward spinning reserve in these cases is not shown here because we come to similar conclusions.
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Figure 6. Unit commitment decision for Cases 1–4.
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Figure 7. Upward spinning reserve for Cases 1–4.

The results of costs are shown in Table 1. We compare two types of total costs. The first type
is the estimated total cost which is the sum of the production cost (fuel cost and spinning reserve
cost) and operational risk cost. Actually, the first type cost is the objective value of (17). By fixing
the base-case dispatch plan, we solve the re-dispatch problem with 105 samples generated from the
assumed distribution, and record the expected risk cost including load shedding cost and wind power
curtailment cost. The second type total cost, named simulated total cost, is equal to the sum of the
production cost and expected risk cost.

Table 1. Results of costs (k$).

Case Production Cost Estimated Total Cost Simulated Total Cost
Operational Risk Cost Total Cost Expected Loss Cost Total Cost

Case 1 589.7 \ 589.7 0.2 589.9
Case 2 581.0 6.6 587.6 2.5 583.5
Case 3 589.3 1.5 590.8 0.3 589.6
Case 4 588.4 2.3 590.7 0.5 588.9

From Table 1, it can be seen that Case 2 achieves the lowest production cost as well as the total
cost. The reason is that the spinning reserve scheduled in Case 2 is less than that in other cases as
shown in Figure 7. Compared with other cases, the production cost is reduced in Case 2 at the price
of increasing the risk cost. However, Case 2 compromises reliability due to the lowest total cost. It
is suggested that using WM-metric is able to mitigate the conservatism of the risk-averse adjustable
uncertainty set approach so that Case 2 makes the best tradeoff between economics and reliability
among all the cases.

Next, we investigate the effect of gas shortage on the unit commitment. We assume that some
contingencies restrict the capacity of the pipeline directed from node 1 to node 2 so that gas supply
cannot satisfy the demand of the gas-fired unit at node 1. As a result, this gas-fired unit cannot be
committed but replaced by costly non-gas thermal units. Under such assumption, the unit commitment
decision is presented in Figure 8 . Cases 2–4 lead to the same feasible decision while Case 1 is not
feasible, implying that the adjustable uncertainty set approach can be a promising alternative method
in particular cases when the conventional robust methods cannot provide a feasible solution.
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Figure 8. Unit commitment decision for gas shortage example.

Table 2 summarizes the costs for each case. Case 2 also achieves the lowest total cost as in Table 1.
From the comparison between Tables 1 and 2, we can find that the total costs are greatly increased
because of the shutdown of cost-efficient unit 1. It indicates that the gas shortage severely reduces the
operation efficiency of the integrated enery system.

Table 2. Results of costs for gas shortage example (k$).

Case Production Cost Estimated Total Cost Simulated Total Cost
Operational Risk Cost Total Cost Expected Loss Cost Total Cost

Case 1 (infeasible) \ \ \ \ \
Case 2 891.0 13.1 904.1 8.1 899.1
Case 3 889.9 20.4 910.3 9.2 899.1
Case 4 892.9 17.9 910.8 6.7 899.6

3.2. IEEE 118-Bus Power System with a 10-Node Natural Gas System

We use this system to test the computational performance of the proposed method. The modified
IEEE-118 bus power system consists of 46 non-gas thermal units, eight gas-fired units, six wind farms,
186 branches, and 91 loads. We simplify the gas system in [15] by reducing storage facilities and
compressors. The modified gas system includes ten gas nodes, three gas wells, ten pipelines, and 12
gas loads. Six wind farms are connected to the system at buses 12, 17, 49, 59, 80, and 92 with a capacity
of 200 MW for each bus. Uncertainty budget Γ is set as 3 to reduce conservatism, which means that
there are at most three wind farms simultaneously experience fluctuations. The four cases studied in
the previous subsection are carried out, the results are listed in Table 3. Like the results in the 6-bus test
system, the scheduling model with WM-metric is less conservative than other models and achieves a
better balance between reliability and economics.

Table 3. Results of costs in a larger system (k$).

Case Production Cost Estimated Total Cost Simulated Total Cost
Operational Risk Cost Total Cost Expected Loss Cost Total Cost

Case 1 10,262.4 \ 10,262.4 1.1 10,263.5
Case 2 10,248.1 13.1 10,261.2 5.2 10,253.3
Case 3 10,254.5 9.9 10,264.4 3.1 10,257.6
Case 4 10,257.2 7.4 10,264.6 2.8 10,260.0

We obtain the operational risk curves in the preparation stage. These problems are highly
parallelizable among different time periods and wind farms, and therefore, we can speed up the
computation via solving these problems in a parallel manner. Owing to the parallel manner, time
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costs are listed in Table 4. For all the cases, the time costs spent on solving scheduling models are
comparable. Nonetheless, Case 2 spends more time forming operational risk curves than other cases
because it is inefficient to tackle semi-definite programming constraints.

Table 4. Computational efficiency.

Case Time of Preparation (s) Time of C & CG (s)

Case 1 \ 91.2
Case 2 921 125.1
Case 3 54 114.4
Case 4 10.9 102.9

4. Conclusions

This paper proposes a robust day-ahead scheduling model for electricity and natural gas systems,
which minimizes the total cost including fuel cost, spinning reserve cost and cost of operational risk
while ensuring the feasibility for all scenarios within the uncertainty set. From the numerical results,
we conclude that:

(1) The proposed scheduling model can coordinate different energy infrastructures to improve the
energy efficiency of the electricity and natural gas system. The gas shortage has a significant
adverse impact on the economic efficiency.

(2) The risk-averse adjustable uncertainty set approach can be a promising alternative method in
particular cases when the conventional robust methods cannot provide a feasible solution.

(3) Compared with the other two metrics, WM-metric helps to reduce the conservatism of risk-averse
adjustable uncertainty set approach.

(4) The proposed scheduling model can be solved efficiently via the C&CG algorithm.

The proposed method can be used by the system operator to execute day-ahead joint scheduling
(or market clearing) of the electricity and natural gas systems. The performance of the proposed
method highly depends on the data quality because available data are used to construct ambiguity sets
for computing operational risk. In this regard, the data cleaning and the outliers detection method can
be utilized to improve data quality. The proposed method does not specify the type of VRE plant, but
deals with the random forecasting error. Therefore, it also can be applied to the system that includes
other renewable units such as solar PV and biomass units, etc.
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