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Abstract: In this paper, we present and discuss the preliminary tools we devised for the automatic
recognition of burnt areas and burn severity developed in the framework of the EU-funded
SERV_FORFIRE project. The project is focused on the set up of operational services for fire monitoring
and mitigation specifically devised for decision-makers and planning authorities. The main objectives
of SERV_FORFIRE are: (i) to create a bridge between observations, model development, operational
products, information translation and user uptake; and (ii) to contribute to creating an international
collaborative community made up of researchers and decision-makers and planning authorities.
For the purpose of this study, investigations into a fire burnt area were conducted in the south of
Italy from a fire that occurred on 10 August 2017, affecting both the protected natural site of Pignola
(Potenza, South of Italy) and agricultural lands. Sentinel 2 data were processed to identify and map
different burnt areas and burn severity levels. Local Index for Statistical Analyses LISA were used to
overcome the limits of fixed threshold values and to devise an automatic approach that is easier to
re-apply to diverse ecosystems and geographic regions. The validation was assessed using 15 random
plots selected from in situ analyses performed extensively in the investigated burnt area. The field
survey showed a success rate of around 95%, whereas the commission and omission errors were
around 3% of and 2%, respectively. Overall, our findings indicate that the use of Sentinel 2 data
allows the development of standardized burn severity maps to evaluate fire effects and address
post-fire management activities that support planning, decision-making, and mitigation strategies.
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1. Introduction

Rural and urban development remains a key priority area in the growth process oriented
at sustainable economic development to improve quality of life and preserve the environment.
Today it is well recognized that to establish a sustainable future, the protection and preservation
of natural resources and the landscape is a basic need, especially in rural development addressed at
integrated management, which takes into account the economic, social and environmental dimensions
of sustainable development [1]. This approach is particularly important for small towns, which can
play a crucial role and represent a key component of national and regional urban systems across the
world, being that more than one-fifth of the world’s urban population lives in centers with up to
50,000 inhabitants.

The links and interactions between ‘rural’ and ‘urban’ are an increasingly important component
of livelihoods and production systems and the promotion of a better management of urban–rural
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interactions is mandatory in order to: (i) support and encourage sustainable resource management;
(ii) develop better practices in agriculture and forest management; and (iii) preserve our natural
resources for future generations. For these reasons, forest fires are today recognized as a global
ecological and social problem with expected potential increasing trends also due to land abandonment
and climate change. Fires are one of the most important causes of land degradation, as they induce
significant alterations not only in the vegetation cover but also in the fauna, soil, and atmosphere,
producing high direct and indirect losses, including economic losses.

Fire affects vegetation, landscape and the environment in the short- as well as the long-term.
Short-term, fires induce patch homogenization and create positive feedback to future fire susceptibility,
fuel loading, fire spreading and intensity, and facilitate alien plant invasions. Long-term, fires lead
to permanent changes in the composition of the vegetation community, cause a reduction in forests
and a loss of biodiversity, and impact vegetation dynamics. Moreover, fires induce soil degradation,
and the alteration of landscape patterns and ecosystem functioning, thus speeding up desertification
processes. Therefore, it is necessary to protect communities, infrastructure and natural resources from
fire damage through sustainable preventive landscape management, which should include policy,
cultural, technical, social, financial, organizational, economic and market aspects [2].

Prevention activities coupled with the use of reliable monitoring systems are the relevant strategies to
limit fire and post-fire damage. After fire, the ability to promptly map burnt areas is of primary importance
for the adequate management of damaged areas and to limit additional post-fire damages and danger.

Earth observation (EO) techniques can provide: (i) operational tools that support environmental
protection; and (ii) key information necessary to guide post-fire management activities and support
decisions to mitigate the impact of fire, mitigate fire-induced risk (such as increases in erosion processes,
proneness to landslides) and facilitate post-fire recovery. In this paper, we provide the preliminary
tools that we devised to obtain automatic recognition of burnt areas and burn severity, as developed in
the framework of the SERV_FORFIRE project [3]. The main objectives of this project are: (i) to create
a bridge between observations, model development, operational products, information translation
and user uptake; and (ii) to contribute to creating an international collaborative community of climate
information providers, experts in remote sensing, soil and vegetation, risk management and mitigation,
along with users, decision-makers and planning authorities in order to:

• strengthen the science–policy–society nexus using a participatory approach, by improving already
operational or experimentally tested climate services in Europe, tailoring relevant information
for decision and policy-makers through a participative and circular approach, capacity building
user-centric tools, specific training programs, dissemination activities; and

• increase the efficiency of decision- and policy-makers responses, to improve the preparedness
level of our societies and to limit the high economic cost of the impact of climate variability on fire
and post-fire risks, developing methods and specific procedures within the framework of fire and
post-fire risk management in Europe at climatic time scales (from seasonal to longer time scales).

SERV_FORFIRE will act as a bridge between the users and the science and devise solution-oriented
models and adaptable innovative schemes for fire and post-fire risk management and mitigation in
order to preserve the fragile resources and environments of areas vulnerable to fire and recently
exposed to post-fire disturbance, which has been further enhanced due to climate change. Therefore,
the expected impact of the SERV_FORFIRE project on the societal challenges addressed will be, among
others, the following:

X Contribute to European good governance and management of fire and post-fire risk to preserve
natural vegetation and improve forest management problems, versus climate change and
environmental impacts, and minimizing losses mainly focusing on fire in the wildland–urban
interface and related to citizen health.

X Environmentally protect both nature (flora, fauna, soil, atmosphere, landscape, ecosystems, etc.)
and citizens and also provide assistance to stakeholders.
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1. Train stakeholders to facilitate fire management as well as to identify and adopt suitable
adaptation and mitigation strategies.

2. Improve the public perception of the European management capability of fire emergency crises.

2. Materials and Methods

2.1. Study Area

The analysis was performed at a test site close to the town of Potenza (Basilicata region) in southern
Italy, as shown in Figure 1. The Basilicata region has 131 municipalities, scattered over an area of about
9992 km2 with approximately 587,517 inhabitants and, therefore, is one of the most sparsely populated
regions of Italy. The two provinces Potenza and Matera (each with around 70,000 inhabitants) are the biggest
urban areas.

Figure 1. Location of the study area.

For the purpose of our analysis, we considered a fire event that occurred close to Potenza on
10 August 2017, affecting both agricultural land and a protected natural area (on the Natura2000 list)
that covers approximately 175 hectares.

The protected area is characterized by woodland made up mainly of Fagus sylvatica,
Ilex aquifolium and Arum cylindraceum, with the presence of Quercus cerris and a new implantation
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of Abies alba and shrubland. Particularly relevant is the presence of Acer cappadocicum subsp.
lobelii, Acer opalussubsp. obtusatum, Arum cylindraceum, Euphorbia coralloides, Lathyrus digitatus,
Lathyrus jordanii, and Malus fiorentina Galanthus nivalis Ruscus aculeatus.

Several ornithic communities have been recorded, in particular the subendemic species of the
Dendrocopos medium and doves such as Milvus milvus. The presence of Ficedula albicollis is
particularly important as it is considered to have been dramatically reduced in Italy due to the use of
insecticides and fertilizer, as mentioned in Annex I to Directive 79/409/Environment and European
Commission (EEC) and Directive 2009/147/EC and International Union for Conservation of Nature
(IUCN) 2010 list, which attests the high natural value of the area.

Among the amphibians present in the area, we note the Salamandrina terdigitata, monotype,
endemic entity of the Italian Apennine, listed as a vulnerable species on the IUCN, (Annexes II and
IV of Directive 92/43 EEC, Annex II of the Berne Convention and the red list of Italian amphibians)
and the Italic included in Annex IV to Directive 92/43 EEC and Annex III to the Berne Convention.
Although not in immediate danger, it is a highly specialized species that suffers detriment as a result of
the loss of water quality and is therefore an excellent bio-indicator. Among the reptiles, the presence of
Elaphe quatuorlineata is quite relevant as it is particularly rare in Italy and is in regression throughout
the whole European territory, (included in Annexes II and IV of Directive 92/43 EEC and in Annex II
to the Berne Convention).

Figure 2 shows the study area from both satellite pictures (Sentinel 2 [3] acquired after the fire
occurrence) and photographs (at the top and bottom of Figure 2, respectively).

Figure 2. Upper: Photographs from the study area as it was on 11 August 2017. Lower: red green blue
(RGB) spectral channel composition of Sentinel 2, the purple area in the red circle is the site affected by
fire on 10 August 2017.

2.2. Method

The remote sensing of burned areas has traditionally been based on optical data and carried out
using vegetation indices (see for example [4–17]) that are a spectral combination of diverse bands,
devised to emphasize the spectral changes caused by fire on vegetation in the short- and long-term.
The vegetation indices operate by contrasting intense chlorophyll pigment absorption in the red (RED
in Equation (1)) against the high reflectance of leaf mesophyll in the most commonly used spectral
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channels for vegetation monitoring at near infrared (NIR in Equation (1)) and shortwave (SWIR in
Equation (2)). The simplest form of vegetation index is simply a ratio between two digital values
from these two spectral bands. The most widely used index is the well-known normalized difference
vegetation index (NDVI), computed using Equation (1):

NDVI = [NIR − RED]/[NIR + RED] (1)

The normalization of the NDVI reduces the effects of the variations caused by atmospheric
contamination. High vegetation index values identify pixels covered by substantial proportions of
healthy vegetation. The NDVI is indicative of plant photosynthetic activity and has been found
to be related to the green leaf area index and the fraction of photosynthetically active radiation
absorbed by vegetation. Therefore, variations in the NDVI values become indicative of variations in
vegetation composition and dynamics. More recently, the normalized burn ratio (NBR) computed as
the normalized difference between the NIR and SWIR bands (Equation (2) showed) has been considered
particularly effective in estimating fire effects on vegetation, as, for example, experienced in [17].

NBR = (NIR − SWIR)/(NIR + SWIR) (2)

The NBR is particularly sensitive to changes in the amount of live green vegetation, moisture content,
and soil conditions that occur after fire. For the purpose of our analysis, we used the delta NBR (∆NBR)
computed as the difference between the NBR maps obtained before and after the fire (Equation (3)).

∆NBR= NBRprefire − NBRpostfire (3)

The ∆NBR is expected to perform better at capturing fire patterns especially if it is jointly used
with statistical indicators, as in [17].

Therefore, in this study, the ∆NBR was used as it is expected to perform better than NBR in
capturing the spatial complexity of fire-induced features and patterns (see [11]). It is expected that the
∆NBR maps should highlight burnt areas, characterize burn severity levels, and provide indications
of the changes induced by fire in terms of biomass loss, carbon release, and smoke production.
Table 1 shows the different ranges of ∆NBR values suggested by the United States Geological Survey
(USGS) to categorize burn severity.

Table 1. The ∆NBR burn severity categories, according to the USGS categorization.

∆NBR Burn Severity

<−0.25 High post-fire regrowth
−0.25–−0.1 Low post-fire regrowth
−0.1–+0.1 Unburned
0.1–0.27 Low-severity burn

0.27–0.44 Moderate–low severity burn
0.44–0.66 Moderate–high severity burn

>0.66 High-severity burn

Nevertheless, it must be highlighted that the use of fixed threshold values is generally not suitable
for fragmented landscapes (as in the case of our study area) and are inadequate for vegetation types
and geographic regions different to those for which they were devised. Fixed threshold values cannot
adequately inform us about the effects of fire on plants that vary significantly within the same fire
perimeter due to the fuel types and distribution (in the study site, both protected woodland and
agricultural areas were present), fire behavior, fire residence time, and heat rate, which altogether
affect the level of damage that the plants suffer. To overcome this drawback, one of the most effective
approaches, specifically designed to map burned areas (as in [17]), is based on the use of statistical
analysis computed using Getis and Ord to enhance fire severity levels.
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In this paper, the most common statistical analyses Moran, Getis–Ord and Geary were applied
to ∆NBR in order to compare and assess their performance. There were many indicators of spatial
autocorrelation generally denoted as: global indicators and local indicators, the latter are more suitable
to identify second-order effects. Global statistics inform us (by a single value) about the magnitude
of autocorrelation for the whole region under investigation. The local statistics inform us about
local clusters and rely on the distance information captured in the distance matrix. These indicators
measure if and how much the dataset is auto-correlated on the basis of the distance used to define the
neighborhood of a given region. For digital images, global indicators provide one value for the whole
image to indicate the magnitude of the spatial association, whereas the local indicators provide a new
image with an autocorrelation value for each pixel. Therefore, local indicators are able to identify
discrete spatial patterns that may not otherwise be apparent from global statistics. The output of local
indicators is an image that provides, for each calculated index, a measure of autocorrelation around
that pixel.

The Moran’s index I (Moran 1948) is defined in Equation (4) and is actually one of the principal
global indicators of autocorrelation:

I =
N ∑i ∑j wij

(
Xi −

_
X
)(

Xj −
_
X
)

(∑i ∑j wij)∑i (Xi −
_
X)

2 (4)

where N is the total pixel number, Xi and Xj are the intensity in points i and j (with i 6= j), X is the
average value, wij is an element of the weight matrix.

I ∈ [−1; 1]; if I ∈ [−1; 0) there is a negative autocorrelation; if I ∈ (0; 1] there is
positive autocorrelation.

Theoretically, if I converges to 0 there is null autocorrelation, in most of the cases, instead of 0,
the value used to affirm the presence of null autocorrelation is given by Equation (5):

E(I) = − 1
N − 1

(5)

where N is the number of events in the whole distribution.
The second global indicator of spatial autocorrelation is Geary’s C (Geary 1954), expressed

by Formula (6):

C =
(N − 1)∑i ∑j wij(Xi − Xj)

2

2wij(∑i (Xi −
_
X)

2 (6)

where symbols have the same meaning as in Equation (1).
C ∈ [0; 2]; if C ∈ [0; 1) there is positive autocorrelation; if C(0; 2] there is negative autocorrelation;

if C ∈ converges to 1 there is null autocorrelation.
The most common local indicators of spatial autocorrelation see [18], denoted as LISA, are: local

Moran’s I (Anselin 1995), local Geary’s C (Cliff and Ord 1981), and Getis–Ord local Gi (Getis and Ord
1992; Illian et al. 2008). The local Moran’s I index is defined according to Equation (7).

Ii =

(
Xi −

_
X
)

SX2

N

∑
j=1

(
wij

(
Xj −

_
X
))

(7)

Local Geary’s C Index is defined according to Equation (8).

C =
n− 1

n
∑

i=1
(Xi −

_
X)

2

n
∑

i=1

n
∑

j=1
wij(Xi − Xj)

2

2
n
∑

i=1

n
∑

j=1
wij

(8)
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Getis and Ord’s Gi is defined according to Equation (9).

Gi(d) =

n
∑

i=1
wi(d) xi − xi

n
∑

i=1
wi(d)

S(i)

√√√√ [
(N−1)

n
∑

i=1
wi(d)−

(
n
∑

i=1
wi(d)

)2
]

N−2

(9)

Such geo-statistical analysis tools are available in several open source tools (R for example) as well as
in commercial software, ranging from Geographic Information System (GIS) to image processing software.

For digital images, the global indicators provide one value for the whole image to indicate the
magnitude of the spatial association, whereas the local indicators provide a new image with a value of the
autocorrelation for each pixel. Therefore, local indicators are able to identify discrete spatial patterns that
may not be apparent from global statistics. These indicators show a different concept of spatial association:

(1) Local Moran’s I: a high value of the index means positive correlation both for high values and for
low values of intensity;

(2) Local Geary’s C: detects areas of dissimilarity between events;
(3) Getis and Ord’s Gi: a high value of the index means positive correlation for high values of

intensity, while a low value of the index means positive correlation for low values of intensity.

In this paper, we qualitatively compared the ∆NBR maps and the classification from the different
LISA indices obtained using unsupervised classification, in order to categorize the burn severity levels
without using fixed thresholds. A number of unsupervised classification algorithms are commonly
used in remote sensing, including K-means clustering, and the iterative self-organizing data analysis
technique (ISODATA). These are quite similar, even if ISODATA is considered more flexible compared
to the K-means method, but requires the empirical selection of many more parameters. For this reason,
in this study we used the K-means algorithm. The Flow chart of data processing is shown in Figure 3.

Figure 3. Flow chart of data processing (made using ENVI software) for Sentinel 2 data downloaded
free of charge from the ESA web site, as available in pre-processed format (from the calibration to the
atmospheric correction, see [3]).

3. Results

For the purpose of our investigation, we first analyzed a satellite-based ∆NBR map obtained from
the difference between the pre- and post-fire index (from Sentinel 2 images acquired on 6 August 2018
and on 18 August 2018, respectively). The results from the satellite-based analyses were compared
with an in situ survey conducted immediately after the fire occurrence. Figure 4 shows the ∆NBR and
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two profiles showing the spatial variation of the ∆NBR index values along the two plots indicated
by the red lines on the right side of Figure 4. To make the interpretation of the ∆NBR values easier,
the reader is referred to Table 1 and Figure 5b, which shows the diverse ∆NBR burn severity classes
according to the USGS categorization.

Figure 4. ∆NBR maps obtained from the difference between the pre- and post-fire index (from Sentinel
2 images acquired on 6 August 2018 and 18 August 2018, respectively). On the right, the graphs show
the ∆NBR values for the transects indicated in red by the arrows.

Figure 5. ∆NBR (a) and its categorization (b) based on fixed thresholds from USGS (see Table 1).

The joint analysis of Figure 4 and the two plots (related to the transects in the red lines) clearly
highlights that the effects of fire on plants vary significantly inside the fire perimeter due to the specific
characteristics of the fire-affected area, the vegetation cover in term of type and status, and the fire
behavior itself. Nevertheless, the joint analysis of Table 1 and Figures 4 and 5 clearly show that
according to the USGS categorization the whole area was generally at moderate–high and high burn
severity. In fact, the ∆NBR values in the range 0.44 to 0.66 are related to moderate–high burn severity
and values bigger than 0.66 indicate a higher burn severity. Moreover, the cyan areas in Figure 5 are
characterized by values between 0.1 to 0.27, which according to the USGS categorization should refer
to a low-severity burn. This is not accurate and suggests the need to improve the classification, leaving
out the erroneous areas not affected by fire but classified as low-severity.
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In order to assess whether it is possible to: (i) improve the USGS categorization; (ii) automatically
discriminate fire-affected from unaffected areas; and (iii) categorize the different burn severity levels,
an unsupervised classification based on K-means was applied to ∆NBR and to the outputs of LISA,
Getis and Ord’s Gi, Geary and Moran obtained from ∆NBR (see Figure 6).

Figure 6. Results of the K-means classifications applied (searching for 10 classes) to: ∆NBR (a);
Getis–Ord Gi (b); Geary (c), and Moran (d). Small circles in (a) indicate the locations of field surveys
conducted for the evaluation process. To facilitate the interpretation in (a–d), the big circles indicate
fire-affected areas; the black rectangular boxes in (a–c) show the misclassification; whereas in (d) the
Moran classification well discriminated the areas unaffected by fire marked in red and cyan from the
zoomed in fire-affected area, which enhances the diverse fire severity degrees.

A comparison of the images in Figure 6 shows that the classification of the ∆NBR map (see
Figure 6a) does not provide any discrimination among the diverse ∆NBR values and still provides
commission errors classifying fire-affected areas as burnt areas (Figure 6a).

Following [17], significant improvements were expected from the classification of the LISA indicators
shown in Figure 6b–d. The outputs from the classification of the Getis–Ord Gi, Geary (see Figure 6b,c) were
not able to capture the burn severity and were also affected by commission errors. Moran (see Figure 6d)
was able to better discriminate fire-affected from unaffected areas and to reliably characterize burn severity.

Moran was able to provide a reliable identification of burn severity linked with the vegetation
cover types. For example (see Figure 6), the purple class is related to agricultural lands that are less
vegetated than other areas, whereas the orange class is actually linked to natural vegetated areas
that were much more affected by fire in terms of burn severity. Therefore, the agricultural lands
were classified as lower (green areas) and very low (purple areas) burn severity, whereas the higher
values generally occurred in woodlands and were classified as moderate burn severity according to
the outputs from classification step. Therefore, our methodology coupled with field surveys enabled
us to better characterize the burn severity degree that was overestimated by the USGS categorization.
Overall, the Moran statistics of the ∆NBR were able (i) to well capture the differences in land cover
of the study area characterized by high fragmentation and heterogeneity; and in turn (ii) to reliably
characterize burn severity, as it is a function of the physical and ecological characteristics of the
fire-affected area. The obtained results were successfully validated using field surveys that well fit
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with the satellite-based burn severity categorization (see Figure 7). This was assessed using 15 plots
randomly selected from the in situ analysis extensively performed in the study area. The field survey
showed a high rate of success of around 95% and a low percentage of both of commission errors and of
omission errors (around 3% and 2%, respectively). These were mainly found in areas characterized by
mixed land cover and land use types, i.e., pixels partially made up of agricultural areas and woodland,
and/or fire-affected and unaffected pixels.

Figure 7. Upper right: Google Earth image with the polygon showing the area affected by fire and the
diverse surface conditions from woodland to agricultural areas. Upper left: K-means of the Moran
∆NBR maps and burn severity categorizations for (i) fire-affected (from moderate to very low as shown
in the pictures from left to right); and (ii) fire-unaffected areas with changed and unchanged areas
(classes). Lower: pictures from the in situ analysis conducted from 10–18 August 2017. The classes
identified for the fire-unaffected areas were not significant because the only change (in land use and
land cover) occurred in the period of observation (less than two weeks from 6–18 August) was related
to the fire occurrence.

4. Discussion

In this paper, we presented and discussed a methodology developed in order to automatically
map burned areas and burn severity, developed in the framework of the project SERV_FORFIRE
“Integrated services and approaches for assessing the effects of climate change and extreme events
for fire and post fire risk prevention”. (Project SERV_FORFIRE is part of the European Research Area
for Climate Services ERA4CS, and European Research Area- NETwork ERA-NET initiated by JPI
Climate). The approach devised herein was based on the joint use of: (i) satellite Sentinel 2 data, from
which the spectral indices ∆NBR were computed to enhance fire-affected areas; (ii) statistical analysis
based on LISA indices (Moran’s I, Geary’s C, and the Getis–Ord Local Gi index); and (iii) automatic
unsupervised classification. The LISA and unsupervised classification steps were included in order
to overcome the limits of using fixed threshold values that provide the misclassification of both the
burnt area and the burn severity degree. The methodology we devised, coupled with the field survey,
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enabled us to better characterize the burn severity degrees that were overestimated by the USGS
categorization (see Figures 5 and 7).

The main improvement obtained from LISA was the fact that: (i) Moran was able to provide
a reliable identification of burn severity linked with the vegetation cover types; and (ii) it enabled the
automatic classification of the fire severity in a more general manner as it is based on the statistical
analysis of the spatial distribution of the ∆NBR. As a whole, the approach herein proposed enabled
the automatic categorization of different burn severity levels without using fixed threshold values,
and therefore it can be more easily re-applied to diverse ecosystems and geographic regions.

The methodology we proposed is “stand alone” and does not require the use of land use or land
cover maps. Our findings indicated that the use of Sentinel 2 data does allow us to develop standardized
burn-severity maps to evaluate fire effects and address post-fire management activities and post-fire
restoration strategies according to the magnitude of the damage and the condition of the affected site.

The use of LISA enabled us to capture the diverse burn severity levels without the need to have
a land use land cover map, which is often not available at the same spatial resolution as Sentinel 2,
but with lower details (as for example in [19–21]) on thermal information [22].

Managers need to be aware of the impacts that fire can have on soil systems, and how these impacts can
lead to undesired changes in site productivity, sustainability, biological diversity, and watershed hydrological
response. For this reason, reliable and qualified information on fire-affected areas and burn severity (and
expected changes) is crucial to mitigate post-fire damage and optimize strategies related to post-fire damage
management. Fire represents one of the main disturbances to Mediterranean ecosystems, causing profound
transformations at different temporal and spatial scales, including vegetation cover, landscape, ecosystems,
soils, etc. In order to limit fire damage, fire agencies need to have effective decision support tools able
to provide timely information. In this context, remote sensing techniques can provide very important
information and tools supporting fire risk monitoring and mitigation.

Today a lot of active and passive satellite and aerial sensors provide useful data for the diverse
phases of fire monitoring from risk estimation to the identification of mitigation strategies. The full
exploitation of the data provided by diverse sensors can easily be integrated with all the available
information (in the digital and non-digital format) within a GIS environment to also facilitate the
elaboration, exploitation and publication of heterogeneous data sources in operational contexts.

Today it is well recognized that for a sustainable future the protection and preservation of natural
resources and landscapes can be usefully supported by satellite data, in particular those provided by
the Sentinel missions. The methodology herein proposed, developed for Sentinel 2 data, is expected
to also provide improvements for other applications such as, for example, land use and land cover
classification, as in [23], especially that addressing the monitoring of rural and urban development in
order to assess: (i) the growth processes and effects of urban policies on the development of urban
areas [24]; (ii) the spatial/temporal analysis of the urban–rural gradient structure [25]; (iii) urban
fragmentation at the regional scale [26]; and (iv) trends of land use/land cover [27] and their potential
impact on natural resources and the environment.
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