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1 Introduction

The main text refers to this technical appendix in several occasions. It describes the macroeconomic

model used in the paper and reports the relevant mathematical derivations, including first-order

conditions, log-linearization, and transitional dynamics. This appendix complements the main text

by providing additional technical derivations.

2 The Model

This section describes the dynamic general equilibrium model. It subsequently discusses the behavior

firms, individual households, aggregate households, and the government. The model is summarized

in Table A1.

2.1 Firms

The goods market is perfectly competitive. Adjustment costs to private capital formation are intro-

duced because of the exogenously given rate of interest.

2.1.1 Production Function

The production function transforms private capital, K(t), and labor, L(t), into homogeneous output,

Y (t), according to the following Constant Elasticity of Substitution (CES) specification:

Y (t) =
{

[AK(t)K(t)]
σ−1
σ + [AL(t)L(t)]

σ−1
σ

} σ
σ−1

, (1)
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where σ ≡ d ln(L/K)/d ln(YK/YL) > 0 is the substitution elasticity between labor and private

capital. The terms AK(t) and AL(t) capture capital-augmenting and labor-augmenting technical

change, respectively. The CES production function embeds the Leontief technology for σ = 0, the

Cobb-Douglas technology for σ = 1, and the linear technology for σ →∞. Private capital and labor

are said to be gross complements if σ < 1, and gross substitutes if σ > 1.

The stock of public capital, KG(t), enters the production function through the factor-augmentation

terms, AK and AL:

Ai(t) ≡ ρiKG(t)ηi , i = {K,L}, (2)

where ηi represents the elasticity of the factor-augmentation term and ρi > 0 is a scaling factor. If

ηK = ηL = η, public capital augments private inputs in the same proportion and is therefore said to

be factor-neutral. Private capital-augmenting public capital is captured by ηK > ηL = 0, whereas

labor-augmenting public capital is described by ηL > ηK = 0.

Using equation (1), one finds the following marginal productivity conditions for private inputs:

YK(t) ≡ ∂Y (t)

∂K(t)
= AK(t)(σ−1)/σ

(
Y (t)

K(t)

)1/σ

, (3)

YL(t) ≡ ∂Y (t)

∂L(t)
= AL(t)(σ−1)/σ

(
Y (t)

L(t)

)1/σ

, (4)

where subscripts denote partial derivatives. The marginal productivity of public capital is

YG(t) ≡ ∂Y (t)

∂KG(t)
= Y (t)

(
YK(t)K(t)

Y (t)

E′K(t)

EK(t)
+
YL(t)L(t)

Y (t)

E′L(t)

EL(t)

)
, (5)

which can be rewritten as:

θG(t) ≡ YG(t)KG(t)

Y (t)
= θK(t)ηK + θL(t)ηL > 0, (6)

where

θK(t) ≡ YK(t)K(t)

Y (t)
> 0, θL(t) ≡ YL(t)L(t)

Y (t)
> 0, θK(t) + θL(t) = 1.

Note that public capital is assumed to have a positive effect on private factor productivity. From

the above, we know that θK + θL + θG > θK + θL = 1. To ensure diminishing returns with respect

to broad capital—thus excluding endogenous growth—I impose the following conditions:
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• Factor-neutral case: η + θK < 1, so that η < 1− θK = θL

• Capital-augmenting case: θK(1 + ηK) < 1

No conditions are required for the labor-augmenting case, since ηK = 0 and θK < 1.

The ratio of marginal products of private factors of production is given by:

YK(t)

YL(t)
=

(
ρK
ρL

)σ−1
σ

KG(t)
(ηK−ηL)(σ−1)

σ

(
K(t)

L(t)

)− 1
σ

, (7)

If σ > 1 and ηK−ηL > 0, an increase in KG(t) increases the relative marginal product of K(t). Thus,

public capital is biased toward private capital. In the more empirically-plausible case of σ < 1 and

ηK − ηL > 0, however, an increase in KG(t) increases the marginal product of L(t). Public capital

is then biased toward labor.

2.1.2 First-Order Conditions

Following Uzawa (1969), we postulate a concave accumulation function, Φ(·), which links net capital

accumulation to gross investment (I(t)):

K̇(t) =

[
Φ

(
I(t)

K(t)

)
− δ
]
K(t), (8)

where δ is the rate of depreciation of private capital.

Firms maximize the net present value of their cash flow subject to the capital accumulation

constraint and the stock of public capital (which firms take as given). The current-value Hamiltonian

is:

HF (t) = Y (t)− w(t)L(t)− I(t) + q(t)

[
Φ

(
I(t)

K(t)

)
− δ
]
K(t), (9)

where the production function is given in (1) and q(t) is the (current-value) co-state variable (which

is also known as Tobin’s q). The prices of investment goods PI(t) and output PY (t) are normalized
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to unity. The first-order conditions are:

w(t) = AL(t)
σ−1
σ

(
Y (t)

L(t)

) 1
σ

, (10)

1 = q(t)Φ′
(
I(t)

K(t)

)
, (11)

q̇(t) = −q(t)
[
Φ

(
I(t)

K(t)

)
− I(t)

K(t)
Φ′
(
I(t)

K(t)

)
− (r + δ)

]
−AK(t)

σ−1
σ

(
Y (t)

K(t)

) 1
σ

. (12)

Equation (10) represents a standard labor demand function. Equation (11) pins down the optimal

investment level conditional on the existing stock of capital and its market value (i.e., Tobin’s q).

Finally, equation (12) describes the evolution of Tobin’s q. Note that the first term on its right-hand

side is the marginal product of capital.

2.2 Households

2.2.1 Individual Households

Lifetime utility at time t of a representative household born at time v ≤ t is given by:

Λ(v, t) =

∫ ∞
t

lnU(v, τ)e(α+β)(t−τ)dτ, (13)

subject to:

Ȧ(v, t) = (r + β)A(v, t) + w(t)L(v, t)− T (t)− C(v, t), (14)

U(v, t) ≡ C (v, t)ε [1− L (v, t)]1−ε , 0 < ε < 1, (15)

where w(t) is the (age-independent) real wage, C(v, t) is private consumption, L(v, t) is labor supply,1

T (t) are lump-sum taxes, α is the pure rate of time preference, and β is the instantaneous probability

of death. Private consumption is used as the numeraire and its price is set to unity.

Full consumption X (v, t) is defined as

X(v, t) ≡ P (t)U(v, t) ≡ w(t) [1− L(v, t)] + C(v, t) (16)

where P (t) is a ‘true’ price index (to be derived below) and U(v, t) is the subutility index given in

1Total time is normalized to unity. Hence, leisure is defined as 1 − L(v, t).
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(15). The household budget identity can now be written as

Ȧ(v, t) = (r + β)A(v, t) + w(t)− T (t)−X(v, t). (17)

The household’s problem is solved by means of two-stage budgeting. In the first stage, the household

decides on consumption and savings. The household’s current-value Hamiltonian is defined as

HH(v, t) ≡ lnU(v, t) + λ(v, t) [(r + β)A(v, t) + w(t)− T (t)− P (t)U(v, t)] , (18)

where U(t) is the control variable, A(t) denotes the state variable, and λ is the co-state variable.

The first-order conditions are:

1/U (v, t) = λ (v, t)P (t) , (19)

λ̇ (v, t)

λ (v, t)
= α− r. (20)

Combining (19)–(20) and noting (16) gives the household’s Euler equation for full consumption:

Ẋ (v, t)

X (v, t)
= r − α, (21)

which can be used in (21) to obtain the Euler equation for felicity:

U̇ (v, t)

U (v, t)
+
Ṗ (t)

P (t)
= r − α. (22)

Integrating the household budget identity (17) gives rise to the lifetime budget constraint for the

household:

A (v, t) +H(t) =

∫ ∞
t

X(v, τ)e(r+β)(t−τ)dτ, (23)

H (t) ≡
∫ ∞
t

[w(τ)− T (τ)] e(r+β)(t−τ)dτ, (24)

where the following no-Ponzi game (NPG) condition has been imposed:

lim
τ→∞

A(v, τ)e(r+β)(t−τ) = 0. (25)
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By substituting (16) and (19) into (23) and simplifying one obtains:

A(v, t) +H(t) =

∫ ∞
t

P (τ)U(v, τ)e(r+β)(t−τ)dτ

=

∫ ∞
t

[λ(v, τ)]−1 e(r+β)(t−τ)dτ. (26)

Using (20) allows us to write:

λ(v, τ) = λ(v, t)e(r−α)(t−τ). (27)

Substituting (27) into (26) gives

A(v, t) +H(t) =

∫ ∞
t

[
λ(v, t)e(r−α)(t−τ)

]−1
e(r+β)(t−τ)dτ

= 1/[λ(v, t)(α+ β)]

= X(v, t)/(α+ β), (28)

where (19) has been used. Obviously, in view of (16) and (28) it also holds that

P (t)U(v, t) = (α+ β) [A(v, t) +H(t)] . (29)

In the second stage, C(t) and 1 − L(t) are allocated so that U (·) is maximized subject to (16).

The first-order condition is

C(v, t)

1− L(v, t)
=

ε

1− ε
w(t), (30)

which is substituted into (16) to arrive at:

C(v, t) = εX(v, t), (31)

w(t) [1− L(v, t)] = (1− ε)X(v, t), (32)

By substituting (31) and (32) into the definition of U(t) (given in (15) above) we obtain the expression

of the price index:

P (t) ≡
(

1

ε

)ε( w(t)

1− ε

)1−ε
(33)
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2.2.2 Aggregation of the Financial Wealth Equation

The size of each cohort of age v at time t is a fraction βeβ(v−t) of the total population.2 The relation

between total or aggregate financial wealth and the wealth of each individual households is therefore:

A(t) =

∫ t

−∞
A(v, t)βeβ(v−t)dv. (34)

To derive an equation for the growth of financial wealth and take therefore the first derivative of this

equation with respect to time t (using Leibnitz’s rule):

Ȧ(t) =

∫ t

−∞
[−βA(v, t) + Ȧ(v, t)]βeβ(v−t)dv + βA(t, t)

= −βA(t) +

∫ t

−∞
Ȧ(v, t)βeβ(v−t)dv, (35)

where the fact that households are born without financial wealth (so that A(t, t) = 0) has been used

in going from the first to the second expression. Substituting (17) into (35) gives

Ȧ(t) = −βA(t) +

∫ t

−∞
[(r + β)A(v, τ) + w(τ)− T (τ)−X(v, τ)]βeβ(v−t)dv

= rA(t) + w(t)− T (t)−X(t). (36)

2.2.3 Aggregation of Felicity

Aggregate felicity is defined as:

U(t) =

∫ t

−∞
U(v, t)βeβ(v−t)dv. (37)

Differentiating with respect to time gives:

U̇(t) =

∫ t

−∞
[−βU(v, t) + U̇(v, t)]βeβ(v−t)dv + βU(t, t). (38)

2We assume large cohorts, so that frequencies and probabilities coincide by the law of large numbers.
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Using (22) and (29) in (38) gives

U̇(t) = −βU(t) +

∫ t

−∞

[
r − α− Ṗ (t)

P (t)

]
U(v, t)βeβ(v−t)dv + βU(t, t)

=

[
r − α− Ṗ (t)

P (t)

]
U(t)− β [U(t)− U(t, t)]

=

[
r − α− Ṗ (t)

P (t)

]
U(t)− β(α+ β)A(t)

P (t)
. (39)

Since X(t) ≡ P (t)U(t) (39) can also be written as

U̇(t)

U(t)
=

Ẋ(t)

X(t)
− Ṗ (t)

P (t)
=

[
r − α− ṖU (t)

P (t)

]
− β(α+ β)A(t)

P (t)U(t)

Ẋ(t)

X(t)
= r − α− β(α+ β)A(t)

X(t)
. (40)

This is equation (TA1.3) in Table A.1.

2.3 The Government

The government invests in public capital IG(t) and consumes goods CG(t). Total public spending

is financed by: (i) lump-sum taxes, T (t); and/or (ii) public debt, B(t). The government’s budget

constraint is:

Ḃ(t) = rB(t) + IG(t) + CG(t)− T (t). (41)

Imposing the no-Ponzi game condition limτ→∞B(τ)e−r(τ−t) = 0 gives the government’s intertempo-

ral budget constraint

B(t) =

∫ ∞
t

[T (τ)− IG(τ)− CG(τ)]e−r(τ−t)dτ. (42)

In order to remain solvent, the government adjusts lump-sum taxes in reaction to developments

in spending. This adjustment does not have to be instantaneous. Instead, the government is allowed

to use debt-financing so as to delay the tax change by k periods, after which taxes are permanently

raised to their new level.

Government capital accumulates according to a concave function similar to that for private capital
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accumulation:

K̇G(t) =

[
ΦG

(
IG(t)

KG(t)

)
− δG

]
KG(t), (43)

where δG is the rate of depreciation of public capital (δG ≤ δ).

3 Solving the Log-Linearized Model

This section derives the impact effect and transitional dynamics of a permanent public investment

shock using the log-linearized model.

3.1 Log-Linearization

The model is log-linearized around the initial steady state. The results are reported in Table A.2.

Notational conventions are:

x̃(t) ≡ dx(t)

x
, ˙̃x(t) ≡ dẋ(t)

x
=
ẋ(t)

x
, (44)

where x is the steady-state value of x(t). For a number of variables a slightly different notation is

used; asset-like variables (e.g., H, F , B, and A) are defined as:

x̃(t) ≡ rdx(t)

Y
, ˙̃x(t) ≡ rdẋ(t)

Y
, (45)

and lump-sum taxes are defined as

T̃ (t) ≡ dT (t)

Y
. (46)

We will make use of the Laplace transform technique (Judd, 1982), which allows us to analyze

time-varying fiscal shocks.3 The Laplace transformation of x(t) evaluated at s is given by

L{x, s} ≡
∫ ∞
0

x(t)e−stdt. (47)

Intuitively, L{x, s} represents the present value of x(t) using s as the discount rate.

3See Kreyszig (1993) for a good introduction on the Laplace transform technique.
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3.2 The Public Investment Shock

We consider a permanent and unanticipated increase in public investment occurring at time t = 0,

implying that ĨG(t) = ĨG for all t ≥ 0. Public consumption is assumed not to change: C̃G(t) = 0.

The time path of public capital can be written as:

K̃G(t) ≡


[
1− e−σGt

]
ĨG 0 < δG �∞

ĨG δG →∞
, (48)

where σG ≡
IGΦ′G(·)
KG

> 0 is the elasticity of the public capital installation function. The latter can

be derived using the Laplace transform method applied to the log-linearized version of (43):

sL{K̃G, s} = σG

[
L{ĨG, s} − L{K̃G, s}

]
, (49)

where we have used:

L{ ˙̃KG, s} = sL{K̃G(t), s} − K̃G(0), (50)

and the following definition:

A (σG, t) ≡ 1− e−σGt,

L{A(σG, t)} =
σG

s(s+ σG)
. (51)

Equation (48) has two interpretations: (i) the stock interpretation (i.e., 0 < δG � ∞); and (ii) the

flow interpretation (i.e., δG → ∞). The paper focuses on the stock interpretation. See Heijdra and

Meijdam (2002, p. 716) for an application of the flow interpretation.

Lump-sum taxes must adjust in response to the public investment shock, but can do so with a

delay of k periods:

T̃ (t) = T̃ u(t− k) (52)

where u(t − k) is an indicator variable assuming the value 0 if t < k, and 1 if t ≥ k. The tax

change, T̃ (t), is determined so as to satisfy (42), given the initial conditions and the intended paths

of investment spending. Noting that
∫∞
0 u(τ −k)e−rτdτ = e−kr/r, the time-k tax adjustment is thus
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given by

T̃ = ekrωIGĨG. (53)

3.3 The Static System

Equations (TA2.8)-(TA2.10) can be written in matrix notation as:


1
σ − 1

σ −1

1 −θL 0

0 1 −ωLL



Ỹ (t)

L̃ (t)

w̃ (t)

 =


1−σ
σ ηLK̃G(t)

K̃∗(t)

−ωLLX̃(t)

 , (54)

where K∗(t) ≡ K(t)θKKG(t)θG denotes‘broad capital’ as, so that K̃∗(t) is given by:

K̃∗(t) = θKK̃(t) + θGK̃G(t). (55)

Using (48), one finds

K̃∗(t) = θKK̃(t) + θG
[
1− e−σGt

]
ĨG. (56)

The solution of the system is:


Ỹ (t)

L̃ (t)

w̃ (t)

 = Ω


1−σ
σ ηLK̃G(t)

K̃∗ (t)

−ωLLX̃ (t)

 , (57)

where:

Ω ≡


1
σ − 1

σ −1

1 −θL 0

0 1 −ωLL


−1

=
σ

σ + ωLLθK


−θLωLL 1 + ωLL

σ θL

−ωLL ωLL
σ 1

−1 1
σ − θK

σ

 .
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Therefore, the solution can also be also written as
Ỹ (t)

L̃ (t)

w̃ (t)

 =


θLωLL

ωLL

1

 (σ − 1)ηL(1− e−σGt)ĨG
σ + ωLLθK

+


σ + ωLL

ωLL

1

 θKK̃ (t) + θG
(
1− e−σGt

)
ĨG

σ + ωLLθK
−


σθL

σ

−θK

 ωLLX̃(t)

σ + ωLLθK
.

(58)

For future reference, write the quasi-reduced form expression as


Ỹ (t)

L̃ (t)

w̃ (t)

 =


ξyk ξyx ξyg

ξlk ξlx ξlg

ξwk ξwx ξwg



K̃ (t)

X̃ (t)(
1− e−σGt

)
ĨG

 , (59)

where the ξij coefficients can be recovered from (58). The most interesting coefficients are those for

output:

ξyk ≡ θK(σ + ωLL)

σ + ωLLθK
, ξyx ≡ −

θLωLLσ

σ + ωLLθK
, ξyg ≡

θG(σ + ωLL)− (1− σ)ωLLθLηL
σ + ωLLθK

.

For employment, the coefficients are given by:

ξlk ≡
θKωLL

σ + ωLLθK
, ξlx ≡ −

σωLL
σ + ωLLθK

, ξlg ≡
ωLL[θG + ηL(σ − 1)]

σ + ωLLθK
.

Finally, for the wage rate the coefficients are:

ξwk ≡
θK

σ + ωLLθK
, ξwx ≡

ωLLθK
σ + ωLLθK

, ξwg ≡
θG + ηL(σ − 1)

σ + ωLLθK
.
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3.4 The Dynamic System

The dynamic system can now be written in terms of one matrix equation of the form:



˙̃K(t)

˙̃q(t)

˙̃X (t)

˙̃A(t)


= ∆



K̃(t)

q̃(t)

X̃ (t)

Ã(t)


−



0

γq (t)

0

γA (t)


, (60)

where ∆, with typical element δ̄ij , is given by:

∆ ≡



0 rωI
σAωA

0 0

rθK
σωA

(1− ξyk) r − rθK
σωA

ξyx 0

0 0 r − α − r−α
ωA

rωwξwk 0 r(ωwξwx − ωX) r


. (61)

The shock terms are defined as γq(t) and γA(t):

γq(t) ≡
rθK
σωA

[
ξyg + (σ − 1)ηK

]
(1− e−σGt)ĨG, (62)

γA(t) ≡ −r
[
ωwξwg(1− e−σGt)− ekrωIG

]
ĨG. (63)

For future reference, the shock terms are written in the following compact form:

γi (t) = πip + πite
−σGt, for i = q, A, (64)

with:

πqp ≡
rθK
σωA

[ξyg + (σ − 1)ηK ] ĨG,

πqt ≡ − rθK
σωA

[ξyg + (σ − 1)ηK ]ĨG,

πAp ≡ −r
(
ωwξwg − ekrωIG

)
ĨG,

πAt ≡ rωwξwg ĨG.

Note that equation (61) embeds two important special cases. First, exogenous labor supply

(i.e., ωLL = 0), yields δ̄23 = 0, implying that the [q̃(t), K̃(t)] system can be solved independent

of the [X̃(t), Ã(t)] system. Second, infinitely lived households (i.e., r = α) imply that the third
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row of (61) consists of zeros only. The knife-edge condition r = α yields a hysteretic steady state.

The four characteristic roots in this case are: h∗1 = 0, −h∗2 = (r −
√
r2 + 4δ12δ21)/2, r∗1 = r, and

r∗2 = (r +
√
r2 + 4δ12δ21)/2.

3.5 Stability Issues

Solving the system (60) gives rise to a characteristic polynomial of the fourth order:

P (s) ≡ |sI−∆| = φ (s)ψ (s)− δ̄12δ̄23δ̄34δ̄41 = 0, (65)

where I is the identity matrix and φ (s) and ψ (s) are:

φ (s) ≡
(
s− δ̄33

) (
s− δ̄22

)
− δ̄34δ̄43, (66)

ψ (s) ≡ s
(
s− δ̄22

)
− δ̄12δ̄21. (67)

P (s) can be written as

P (s) = s4 + a3s
3 + a2s

2 + a1s+ a0 = 0, (68)

where the a′is are defined as:

a3 ≡ −tr(∆) = −(2δ̄22 + δ̄33) < 0 (69)

a2 ≡ δ̄222 − δ̄12δ̄21 + 2δ̄22δ̄33 − δ̄34δ̄43 (70)

a1 ≡ δ̄12δ̄21(δ̄22 + δ̄33) + δ̄22
[
δ̄34δ̄43 − δ̄22δ̄33

]
(71)

a0 ≡ |∆| (72)

14



where the determinant of ∆ is equal to:

|∆| ≡ − (r − α)
r3ωIθK
σσAω2

A

∣∣∣∣∣∣∣∣∣∣
1− ξyk −ξyx 0

0 1 − 1
ωA

ωwξwk ωwξwx − ωX 1

∣∣∣∣∣∣∣∣∣∣
= − (r − α)

r3ωIθK
σσAω2

A

{
1− ξyk +

1

ωA
[(1− ξyk)(ωwξwx − ωX) + ωwξyxξwk]

}
= − (r − α)

r3ωIθK(1− ξyk)
σσAω3

A

[
ωA + ωwξwx − ωX + ωw

(
ξyxξwk
1− ξyk

)]
= (r − α)

r3ωIθKθL
σAω3

A(σ + ωLLθK)
(ωX − ωA) > 0, (73)

where use was made of 1− ξyk = θLσ
σ+ωLLθK

and
ξyxξwk
1−ξyk = −ξwx = − θKωLL

σ+ωLLθK
, in going from the third

to the last line.

The positive determinant may either indicate two positive roots and two negative roots or four

positive roots (in which case the system is unstable). The case of four negative roots—giving rise to

an indeterminate steady state—is excluded because of the positive trace of ∆ (i.e., tr(∆) > 0). The

model has a unique and locally saddle-path stable steady state, featuring four characteristic roots.

All roots are real. The two stable (negative) roots are denoted by −h∗1 < 0 and −h∗2 < 0; the two

unstable (positive) roots are denoted by r∗1 > 0 and r∗2 > 0.

4 Solving for the Comparative Dynamics

4.1 The Reduced-Form Model

By taking the Laplace transform of (60) and noting that K̃(0) = 0 and recognizing that Ã (0) 6= 0

due to unanticipated capital gains/losses (i.e. Ã (0) = ωAq̃ (0)) we obtain:

Λ(s)



L{K̃, s}

L{q̃, s}

L{X̃, s}

L{Ã, s}


=



0

q̃(0)− L{γq (t) , s}

X̃(0)

ωAq̃ (0)− L{γA (t) , s}


, (74)

where Λ(s) ≡ sI−∆. We know that:

Λ(s)−1 ≡ 1

(s+ h∗1)(s+ h∗2)(s− r∗1)(s− r∗2)
adj Λ(s), (75)
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where adj Λ(s) is the adjoint matrix of Λ(s). By pre-multiplying both sides of (74) by Λ(s)−1 and

rearranging we obtain the following expression in Laplace transforms:

(s+ h∗1)(s+ h∗2)



L{K̃, s}

L{q̃, s}

L{X̃, s}

L{Ã, s}


=

adj Λ(s)



0

q̃(0)− L{γq (t) , s}

X̃(0)

ωAq̃ (0)− L{γA (t) , s}


(s− r∗1)(s− r∗2)

. (76)

The adj Λ(s) matrix is equal to:

adj Λ(s) ≡



(
s− δ̄22

)
φ (s) δ̄12φ (s) δ̄12δ̄23

(
s− δ̄22

)
δ̄12δ̄23δ̄34

δ̄21φ (s) + δ̄23δ̄34δ̄41 sφ (s) δ̄23s
(
s− δ̄22

)
δ̄23δ̄34s

δ̄34δ̄41
(
s− δ̄22

)
δ̄12δ̄34δ̄41

(
s− δ̄22

)
ψ (s) δ̄34ψ (s)

δ̄41
(
s− δ̄22

) (
s− δ̄33

)
δ̄12δ̄41

(
s− δ̄33

)
δ̄43ψ (s) + δ̄12δ̄23δ̄41

(
s− δ̄33

)
ψ (s)


. (77)

The following useful results can be established.

Lemma 1. Define φ (s) and ψ (s) as in (66) and (67), respectively.

Define ζ (s) ≡
(
s− δ̄22

)
ψ (s) and θ (s) ≡

(
s− δ̄33

)
ψ (s). Then it follows that:

φ (s)− φ (x)

s− x
= s+ x− δ̄22 − δ̄33, (78)

sφ (s)− xφ (x)

s− x
= s2 + sx+ x2 −

(
δ̄22 + δ̄33

)
(s+ x) + δ̄22δ̄33 − δ̄34δ̄43, (79)

ψ (s)− ψ (x)

s− x
= s+ x− δ̄22, (80)

ζ (s)− ζ (x)

s− x
= s2 + sx+ x2 − 2δ̄22 (s+ x) + δ̄222 − δ̄12δ̄21, (81)

θ (s)− θ (x)

s− x
= s2 + sx+ x2 −

(
δ̄22 + δ̄33

)
(s+ x) + δ̄22δ̄33 − δ̄12δ̄21, (82)

which we label parts (i)–(v).

Proof : Part (i) can be written as:

φ (s)− φ (x) =
(
s− δ̄33

) (
s− δ̄22

)
−
(
x− δ̄33

) (
x− δ̄22

)
=

(
s2 − x2

)
−
(
δ̄22 + δ̄33

)
(s− x)

= (s− x)
[
s+ x−

(
δ̄22 + δ̄33

)]
,
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where we have used s2 − x2 = (s− x) (s+ x). The proof of part (iii) is similar. For part (ii), we

write:

sφ (s)− xφ (x) =
(
s3 − x3

)
−
(
δ̄22 + δ̄33

) (
s2 − x2

)
+
[
δ̄22δ̄33 − δ̄34δ̄43

]
(s− x)

= (s− x)
[
s2 + sx+ x2

]
−
(
δ̄22 + δ̄33

)
(s− x) (s+ x) +

[
δ̄22δ̄33 − δ̄34δ̄43

]
(s− x)

= (s− x)
[
s2 + sx+ x2 −

(
δ̄22 + δ̄33

)
(s+ x) + δ̄22δ̄33 − δ̄34δ̄43

]
,

where we have used s3 − x3 = (s− x)
[
s2 + sx+ x2

]
. Part (v) can be written as:

θ (s)− θ (x) =
(
s3 − x3

)
−
(
δ̄22 + δ̄33

) (
s2 − x2

)
+
[
δ̄22δ̄33 − δ̄12δ̄21

]
(s− x)

= (s− x)
[
s2 + sx+ x2 −

(
δ̄22 + δ̄33

)
(s+ x) +

[
δ̄22δ̄33 − δ̄12δ̄21

]]
.

The proof of part (iv) is similar (δ̄33 is replaced by δ̄22). �

We know that:

adj ∆ = −adj Λ(0)

=



δ̄22φ (0) −δ̄12φ (0) δ̄12δ̄22δ̄23 −δ̄12δ̄23δ̄34

−δ̄21φ (0)− δ̄23δ̄34δ̄41 0 0 0

δ̄22δ̄34δ̄41 −δ̄12δ̄34δ̄41 δ̄22ψ (0) −δ̄34ψ (0)

−δ̄22δ̄33δ̄41 δ̄12δ̄33δ̄41 −δ̄43ψ (0)− δ̄12δ̄23δ̄41 δ̄33ψ (0)


, (83)

which follows from using s = 0 in Λ(s) = sI−∆.

4.2 Jumps

There are two predetermined variables [K̃(t) and Ã(t)] and two jumping variables [q̃(t) and X̃(t)],

so that only two initial conditions need to be imposed. The system is conditionally stable (i.e., it

is a saddle point). Instability originates from the unstable roots.4 The jumps in X̃(0) and q̃ (0) are

such that the right-hand side of (76) is of the 0÷ 0 type for both unstable roots, r∗1 and r∗2.5 Using

the first row of adj Λ(s), for example, we get for s = r∗1 and s = r∗2:

[
φ (s) + δ̄23δ̄34ωA

]
q̃ (0) + δ̄23

(
s− δ̄22

)
X̃ (0) = φ (s)L{γq, s}+ δ̄23δ̄34L{γA, s}, (84)

4Note that the two stable roots determine the speed of transition.
5The denominator on the right hand side of (76) is zero. The only way to obtain bounded solutions for the four key

variables is that the numerator on the right hand side is also zero.
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where we have divided by δ12 on both sides of the equation. All rows of adj Λ(s) give the same

information (because the rank of adj Λ(s) equals 1, for s = r∗1, r
∗
2). In summary, for s = r∗1 and

s = r∗2 we have:

δ̄12
[
φ (s) + ωAδ̄23δ̄34

]
q̃ (0) + δ̄12δ̄23

(
s− δ̄22

)
X̃ (0) = δ̄12φ (s)L{γq, s}

+δ̄12δ̄23δ̄34L{γA, s}. (85)

Taking the second row of adj Λ(s):

[
φ (s) + ωAδ̄23δ̄34

]
q̃ (0) + δ̄23

(
s− δ̄22

)
X̃ (0) = φ (s)L{γq, s}

+δ̄23δ̄34L{γA, s}. (86)

The third row of adj Λ(s) yields:

δ̄34
[
δ̄12δ̄41 + ωAψ (s)

]
q̃ (0) +

(
s− δ̄22

)
ψ (s) X̃ (0) = δ̄12δ̄34δ̄41L{γq, s}

+δ̄34ψ (s)L{γA, s}, (87)

and the fourth row:

[
δ̄12δ̄41 + ωAψ (s)

] (
s− δ̄33

)
q̃ (0) +

[
δ̄43ψ (s) + δ̄12δ̄23δ̄41

]
X̃ (0) = δ̄12δ̄41

(
s− δ̄33

)
L{γq, s}

+
(
s− δ̄33

)
ψ (s)L{γA, s}. (88)

Taking the first row, we thus have two independent equations in two unknowns, that is, the

jumping variables X̃(0) and q̃ (0). Hence, we get:

 φ (r∗1) + δ̄23δ̄34ωA δ̄23
(
r∗1 − δ̄22

)
φ (r∗2) + δ̄23δ̄34ωA δ̄23

(
r∗2 − δ̄22

)

 q̃ (0)

X̃ (0)

 =

 φ (r∗1)L{γq, r∗1}+ δ̄23δ̄34L{γA, r∗1}

φ (r∗2)L{γq, r∗2}+ δ̄23δ̄34L{γA, r∗2}

 , (89)

or:

 q̃(0)

X̃(0)

 =

 φ (r∗1) + δ̄23δ̄34ωA δ̄23
(
r∗1 − δ̄22

)
φ (r∗2) + δ̄23δ̄34ωA δ̄23

(
r∗2 − δ̄22

)

−1  φ (r∗1)L{γq, r∗1}+ δ̄23δ̄34L{γA, r∗1}

φ (r∗2)L{γq, r∗2}+ δ̄23δ̄34L{γA, r∗2}

 . (90)
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4.3 Transitional Dynamics

4.3.1 Relevant Lemmas

Several results can be derived from the generic shock expression (64).

Lemma 2. Consider φ (s), ψ (s), and γi (t) as defined in (66), (67), and (64), respectively. Write

θ (s) ≡
(
s− δ̄33

)
ψ (s). Then the following results can be established:

L{γi, s} =
πip
s

+
πit

s+ σG
, (91)

L{γi, x} − L{γi, s}
s− x

=
πip
sx

+
πit

(x+ σG) (s+ σG)
, (92)(

s− δ̄33
)
L{γi, s} −

(
x− δ̄33

)
L{γi, x}

s− x
=

πipδ̄33
sx

+
πit
(
δ̄33 + σG

)
(x+ σG) (s+ σG)

, (93)

φ (x)L{γi, x} − φ (s)L{γi, s}
s− x

= −πip
[
1 +

δ̄34δ̄43 − δ̄22δ̄33
xs

]
(94)

+πit

[
φ (−σG)

(x+ σG) (s+ σG)
− 1

]
,

ψ (x)L{γi, x} − ψ (s)L{γi, s}
s− x

= −πip
[
1 +

δ̄12δ̄21
xs

]
+πit

[
ψ (−σG)

(x+ σG) (s+ σG)
− 1

]
, (95)

θ (x)L{γi, x} − θ (s)L{γi, s}
s− x

=

[
−s− x+ δ̄22 + δ̄33 +

δ̄12δ̄21δ̄33
xs

]
πip

+

[
− s− x+ δ̄22 + δ̄33 + σG

−
(
σG + δ̄33

)
ψ (−σG)

(x+ σG) (s+ σG)

]
πit. (96)

Proof : Parts (i)–(ii) are obvious. For part (iii) we write:

(
x− δ̄33

)
L{γi, x} −

(
s− δ̄33

)
L{γi, s} =

πitx

x+ σG
− πits

s+ σG
− δ̄33 [L{γi, x} − L{γi, s}]

= πit

(
x

x+ σG
− s

s+ σG

)
− δ̄33 (s− x)

[
πip
sx

+
πit

(x+ σG) (s+ σG)

]
= πit

x (s+ σG)− s (x+ σG)

(x+ σG) (s+ σG)
− δ̄33 (s− x)

[
πip
sx

+
πit

(x+ σG) (s+ σG)

]
= − (s− x)

(
πitσG

(x+ σG) (s+ σG)
+ δ̄33

[
πip
sx

+
πit

(x+ σG) (s+ σG)

])
= − (s− x)

(
πipδ̄33
sx

+
πit
(
δ̄33 + σG

)
(x+ σG) (s+ σG)

)
.
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For part (iv), we write φ (s)L{γi, s} as:

φ (s)L{γi, s} =
πip
s

[
s2 −

(
δ̄22 + δ̄33

)
s+

(
δ̄22δ̄33 − δ̄34δ̄43

)]
+

πit
s+ σG

[
(s+ σG)2 −

(
δ̄22 + δ̄33

)
(s+ σG) +

(
δ̄22δ̄33 − δ̄34δ̄43

)
+σG

(
δ̄22 + δ̄33 + σG − 2 (s+ σG)

) ]
= πip

[
s−

(
δ̄22 + δ̄33

)
+
(
δ̄22δ̄33 − δ̄34δ̄43

) 1

s

]
+πit

[
(s+ σG)−

(
δ̄22 + δ̄33 + 2σG

)
+
φ (−σG)

s+ σG

]
,

where φ (−σG) is given by:

φ (−σG) ≡ σ2G +
(
δ̄22 + δ̄33

)
σG + δ̄22δ̄33 − δ̄34δ̄43. (97)

Hence, it follows that:

φ (x)L{γi, x} − φ (s)L{γi, s} = πip

[
x− s+

(
δ̄22δ̄33 − δ̄34δ̄43

)(1

x
− 1

s

)]
+πit

[
x− s+ φ (−σG)

(
1

x+ σG
− 1

s+ σG

)]
= (s− x)πip

[
−1 +

δ̄22δ̄33 − δ̄34δ̄43
xs

]
+ (s− x)πit

[
φ (−σG)

(x+ σG) (s+ σG)
− 1

]
.

The proof of part (v) is similar and ψ (−σG) is given by:

ψ (−σG) ≡ σ2G + δ̄22σG − δ̄12δ̄21. (98)

To prove part (vi) we write θ (s)L{γi, s} as:

θ (s)L{γi, s} = πip

[
s2 −

(
δ̄22 + δ̄33

)
s+

(
δ̄22δ̄33 − δ̄12δ̄21

)
+
δ̄12δ̄21δ̄33

s

]
+πit

[
s2 − δ̄22s− δ̄12δ̄21 −

(
δ̄33 + σG

) s2 − δ̄22s− δ̄12δ̄21
s+ σG

]
.
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We know that:

s2 − x2 = (s− x) (s+ x) ,

1

s+ σG
− 1

x+ σG
= − (s− x)

1

(x+ σG) (s+ σG)
s

s+ σG
− x

x+ σG
= (s− x)

σG
(x+ σG) (s+ σG)

,

s2

s+ σG
− x2

x+ σG
=

x2 + (s− x) (s+ x)

s+ σG
− x2

x+ σG

= (s− x)

[
1 +

x− σG
s+ σG

− x2

(x+ σG) (s+ σG)

]
= (s− x)

[
1−

σ2G
(x+ σG) (s+ σG)

]
.

By using these results we obtain:

θ (x)L{γi, x} − θ (s)L{γi, s} = πip (s− x)

[
− (s+ x) + δ̄22 + δ̄33 +

δ̄12δ̄21δ̄33
xs

]
+πit (s− x)

[
− (s+ x) + δ̄22 + δ̄33 + σG

−
(
δ̄33 + σG

) ψ (−σG)

(x+ σG) (s+ σG)

]
.

This establishes the result. �

Below, we will need some inverse Laplace transforms. The first transform we need the inverse of

is:

1

(s+ h∗1)(s+ h∗2)
=

1

h∗2 − h∗1

(
1

s+ h∗1
− 1

s+ h∗2

)
. (99)

The inverse of the Laplace transform is then a stable transition term of the form:

L−1
{

1

(s+ h∗1)(s+ h∗2)

}
=

1

h∗2 − h∗1

(
e−h

∗
1t − e−h∗2t

)
,

as summarized for convenience in the following definition:

Lemma 3. The temporary transition term T1 (h∗1, h
∗
2, t) is given by:

T1 (h∗1, h
∗
2, t) ≡

e−h
∗
1t − e−h∗2t

h∗2 − h∗1
,

L{T1(h∗1, h
∗
2, t)} =

1

(s+ h∗1)(s+ h∗2)
.

Properties: (i) T1 (h∗1, h
∗
2, 0) = 0; and (ii) limt→∞T1 (h∗1, h

∗
2, t) = 0.
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The second transform we need the inverse of is:

L−1
{

s

(s+ h∗1)(s+ h∗2)

}
= L−1

{
1

h∗2 − h∗1

(
s

s+ h∗1
− s

s+ h∗2

)}
=

1

h∗2 − h∗1

(
−h∗1e−h

∗
1t + h∗2e

−h∗2t
)
,

which we define in the following lemma:

Lemma 4. The temporary transition term T2 (h∗1, h
∗
2, t) is:

T2 (h∗1, h
∗
2, t) ≡

h∗2e
−h∗2t − h∗1e−h

∗
1t

h∗2 − h∗1
=
dT1 (h∗1, h

∗
2, t)

dt
,

L{T2(h∗1, h
∗
2, t)} =

s

(s+ h∗1)(s+ h∗2)
.

Properties: (i) T2 (h∗1, h
∗
2, 0) = 1; and (ii) limt→∞T2 (h∗1, h

∗
2, t) = 0.

The third inverse we need is:

L−1
{

1

(s+ h∗1)(s+ h∗2)(s+ σG)

}
= L−1

{
1

h∗2 − h∗1

[
1

(s+ h∗1) (s+ σG)
− 1

(s+ h∗2) (s+ σG)

]}
= L−1

{
1

h∗2 − h∗1

[
1

σG − h∗1

(
1

s+ h∗1
− 1

s+ σG

)
− 1

σG − h∗2

(
1

s+ h∗2
− 1

s+ σG

)]}
=

1

h∗2 − h∗1

[
1

σG − h∗1

(
e−h

∗
1t − e−σGt

)
− 1

σG − h∗2

(
e−h

∗
2t − e−σGt

)]
, (100)

which we summarize in the following definition:

Lemma 5. The temporary transition term T3 (h∗1, h
∗
2, σG, t) is defined as:

T3 (h∗1, h
∗
2, σG, t) ≡

1

h∗2 − h∗1

[
e−h

∗
1t − e−σGt

σG − h∗1
− e−h

∗
2t − e−σGt

σG − h∗2

]
=

1

h∗2 − h∗1
[T1 (h∗1, σG, t)−T1 (h∗2, σG, t)],

L{T3(h∗1, h
∗
2, σG, t)} =

1

(s+ h∗1)(s+ h∗2)(s+ σG)
.

Properties: (i) T3 (h∗1, h
∗
2, σG, 0) = 0; and (ii) limt→∞T3 (h∗1, h

∗
2, σG, t) = 0.
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Finally, we need the following inverse:

L−1
{

1

(s+ h∗1)(s+ h∗2)s

}
= L−1

{
1

h∗2 − h∗1

[
1

(s+ h∗1) s
− 1

(s+ h∗2) s

]}
= L−1

{
1

h∗2 − h∗1

[
− 1

h∗1

(
1

s+ h∗1
− 1

s

)
+

1

h∗2

(
1

s+ h∗2
− 1

s

)]}
=

1

h∗2 − h∗1

[
1

h∗1

(
1− e−h∗1t

)
− 1

h∗2

(
1− e−h∗2t

)]
, (101)

where we note that (101) is just a special case of (100) with σG = 0. This gives rise to the adjustment

term described in the following lemma:

Lemma 6. The adjustment term A (h∗1, h
∗
2, t) is:

A (h∗1, h
∗
2, t) ≡

1

h∗2 − h∗1

[
1− e−h∗1t

h∗1
− 1− e−h∗2t

h∗2

]
=

1

h∗2 − h∗1
[T1 (h∗1, 0, t)−T1 (h∗2, 0, t)]

= T3 (h∗1, h
∗
2, 0, t) ,

L{A(h∗1, h
∗
2, t)} =

1

(s+ h∗1)(s+ h∗2)s
.

Properties: (i) A (h∗1, h
∗
2, 0) = 0; and (ii) limt→∞A (h∗1, h

∗
2, t) = 1

h∗1h
∗
2
.

We are now fully equipped to obtain the transition paths for all the variables in the dynamic

system.

4.3.2 Private Capital Stock

The first row of (76) can be written as (s+ h∗1)(s+ h∗2)L{K̃, s} = Γk, where Γk is equal to:

Γk = δ̄12

[
φ (s) + δ̄23δ̄34ωA

]
q̃ (0) + δ̄23

(
s− δ̄22

)
X̃ (0)− φ (s)L{γq, s} − δ̄23δ̄34L{γA, s}

(s− r∗1)(s− r∗2)
. (102)

By writing

1

(s− r∗1)(s− r∗2)
=

1

r∗1 − r∗2

[
1

s− r∗1
− 1

s− r∗2

]
, (103)
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we can rewrite the above expression to yield:

Γk =
δ̄12

r∗1 − r∗2

[[
φ (s) + δ̄23δ̄34ωA

]
q̃ (0) + δ̄23

(
s− δ̄22

)
X̃ (0)− φ (s)L{γq, s} − δ̄23δ̄34L{γA, s}

s− r∗1

−
[
φ (s) + δ̄23δ̄34ωA

]
q̃ (0) + δ̄23

(
s− δ̄22

)
X̃ (0)− φ (s)L{γq, s} − δ̄23δ̄34L{γA, s}

s− r∗2

]
. (104)

Using (85) for the two roots yields:

[φ(s)− φ(r∗1)] q̃(0) + δ̄23(s− r∗1)X̃(0) + φ(r∗1)L{γq, r∗1} − φ(s)L{γq, s}+ δ̄23δ̄34 [L{γA, r∗1} − L{γA, s}] ,

[φ(s)− φ(r∗2)] q̃(0) + δ̄23(s− r∗2)X̃(0) + φ(r∗2)L{γq, r∗2} − φ(s)L{γq, s}+ δ̄23δ̄34 [L{γA, r∗2} − L{γA, s}] ,

where the general form of (85) (which is not equal to zero) is subtracted from (85) with the respective

root plugged in (yielding an expression equal to zero). We thus have subtracted zero from both

expressions.

Plugging these expressions into (104)

Γk =
δ̄12

r∗1 − r∗2

[
[φ (s)− φ (r∗1)] q̃ (0) + δ̄23 (s− r∗1) X̃ (0) + δ̄23δ̄34 [L{γA, r∗1} − L{γA, s}]

s− r∗1

+
φ (r∗1)L{γq, r∗1} − φ (s)L{γq, s}

s− r∗1
− φ (r∗2)L{γq, r∗2} − φ (s)L{γq, s}

s− r∗2

− [φ (s)− φ (r∗2)] q̃ (0) + δ̄23 (s− r∗2) X̃ (0) + δ̄23δ̄34 [L{γA, r∗2} − L{γA, s}]
s− r∗2

]
. (105)

By using Lemma 1(i) in (105) we obtain:

φ (s)− φ (r∗1)

s− r∗1
= s+ r∗1 − δ̄22 − δ̄33,

φ (s)− φ (r∗2)

s− r∗2
= s+ r∗2 − δ̄22 − δ̄33, (106)

which yields:

φ (s)− φ (r∗1)

s− r∗1
− φ (s)− φ (r∗2)

s− r∗2
= r∗1 − r∗2, (107)

so that:

Γk = δ̄12q̃ (0) +
δ̄12

r∗1 − r∗2

(
φ (r∗1)L{γq, r∗1} − φ (s)L{γq, s}

s− r∗1
− φ (r∗2)L{γq, r∗2} − φ (s)L{γq, s}

s− r∗2

)
+
δ̄12δ̄23δ̄34
r∗1 − r∗2

(
L{γA, r∗1} − L{γA, s}

s− r∗1
− L{γA, r

∗
2} − L{γA, s}
s− r∗2

)
. (108)
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By using Lemma 2(ii) and (iv) in (108) we can rewrite Γk as follows:

Γk = δ̄12q̃ (0)

+
δ̄12

r∗1 − r∗2

[
− πqp

(
1 +

δ̄34δ̄43 − δ̄22δ̄33
r∗1s

)
+ πqt

(
φ (−σG)

(r∗1 + σG) (s+ σG)
− 1

)
+πqp

(
1 +

δ̄34δ̄43 − δ̄22δ̄33
r∗2s

)
− πqt

(
φ (−σG)

(r∗2 + σG) (s+ σG)
− 1

)]
+
δ̄12δ̄23δ̄34
r∗1 − r∗2

[
πAp
sr∗1

+
πAt

(r∗1 + σG) (s+ σG)
−
πAp
sr∗2
− πAt

(r∗2 + σG) (s+ σG)

]
.

After simplifying we obtain:

Γk = δ̄12q̃ (0) + δ̄12

[
πqp

δ̄34δ̄43 − δ̄22δ̄33
r∗1r
∗
2s

− πqt
φ (−σG)

(r∗1 + σG) (r∗2 + σG) (s+ σG)

]
−δ̄12δ̄23δ̄34

[
πAp
r∗1r
∗
2s

+
πAt

(r∗1 + σG) (r∗2 + σG) (s+ σG)

]
.

It follows that:

(s+ h∗1)(s+ h∗2)L{K̃, s} = δ̄12q̃ (0) + δ̄12
πqp
(
δ̄34δ̄43 − δ̄22δ̄33

)
− πApδ̄23δ̄34

r∗1r
∗
2s

−δ̄12
πqtφ (−σG) + πAtδ̄23δ̄34

(r∗1 + σG) (r∗2 + σG) (s+ σG)
. (109)

Hence, it follows that the path for the private capital stock is given by:

K̃ (t) = δ̄12q̃ (0)T1 (h∗1, h
∗
2, t) + δ̄12

πqp
(
δ̄34δ̄43 − δ̄22δ̄33

)
− πApδ̄23δ̄34

r∗1r
∗
2

A(h∗1, h
∗
2, t)

−δ̄12
πqtφ (−σG) + πAtδ̄23δ̄34

(r∗1 + σG) (r∗2 + σG)
T3(h∗1, h

∗
2, t). (110)

4.3.3 Tobin’s q

By using (86) we can write the second row of (76) as (s+ h∗1)(s+ h∗2)L{q̃, s} = Γq, where Γq is equal

to:

Γq =
1

r∗1 − r∗2

[(
sφ (s)− r∗1φ (r∗1)

s− r∗1
− sφ (s)− r∗2φ (r∗2)

s− r∗2

)
q̃ (0) + δ23 (r∗1 − r∗2) X̃ (0)

+

(
r∗1φ (r∗1)L{γq, r∗1} − sφ (s)L{γq, s}

s− r∗1
− r∗2φ (r∗2)L{γq, r∗2} − sφ (s)L{γq, s}

s− r∗2

)
+δ23δ34

(
r∗1L{γA, r∗1} − sL{γA, s}

s− r∗1
− r∗2L{γA, r∗2} − sL{γA, s}

s− r∗2

)]
. (111)
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By using Lemma 1(ii), Lemma 2(iii), and 2(vi) (evaluated for δ̄33 = 0) we can simplify this expression

to:

Γq =
(
s+ r∗1 + r∗2 − δ̄22 − δ̄33

)
q̃ (0) + δ̄23X̃ (0)− (πqp + πqt)

+
πqtσGψ (−σG)

(r∗1 + σG) (r∗2 + σG) (s+ σG)
+ δ̄23δ̄34

σGπAt
(r∗1 + σG) (r∗2 + σG) (s+ σG)

. (112)

It follows that L{q̃, s} is equal to:

L{q̃, s} =
s+ r∗1 + r∗2 − δ̄22 − δ̄33

(s+ h∗1)(s+ h∗2)
q̃ (0) +

δ̄23X̃ (0)− (πqp + πqt)

(s+ h∗1)(s+ h∗2)

+
δ̄23δ̄34σGπAt + πqtσGψ (−σG)

(r∗1 + σG) (r∗2 + σG)

1

(s+ σG) (s+ h∗1)(s+ h∗2)
. (113)

Hence, the path for q̃ (t) is given by:

q̃ (t) =
[(
r∗1 + r∗2 − δ̄22 − δ̄33

)
q̃ (0) + δ̄23X̃(0)− (πqp + πqt)

]
T1 (h∗1, h

∗
2, t)

q̃ (0)T2 (h∗1, h
∗
2, t) + σG

δ̄23δ̄34πAt + πqtψ (−σG)

(r∗1 + σG) (r∗2 + σG)
T3 (h∗1, h

∗
2, σG, t) , (114)

where we have used Lemma 3, 4, and 5 to invert the Laplace transform. Note that there is never a

permanent effect on q.

4.3.4 Private Consumption

Using (87), we can write the third row of (76) as (s+h∗1)(s+h∗2)L{X̃, s} = Γx, where Γx is equal to:

Γx =
1

r∗1 − r∗2

[
δ̄34ωA

(
ψ (s)− ψ (r∗1)

s− r∗1
− ψ (s)− ψ (r∗2)

s− r∗2

)
q̃ (0)

+

(
ζ (s)− ζ (r∗1)

s− r∗1
− ζ (s)− ζ (r∗2)

s− r∗2

)
X̃ (0)

+ δ̄12δ̄34δ̄41

(
L{γq, r∗1} − L{γq, s}

s− r∗1
− L{γq, r

∗
2} − L{γq, s}
s− r∗2

)
+ δ̄34

(
ψ (r∗1)L{γA, r∗1} − ψ (s)L{γA, s}

s− r∗1
− ψ (r∗2)L{γA, r∗2} − ψ (s)L{γA, s}

s− r∗1

)]
,

(115)
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where ζ (s) ≡
(
s− δ̄22

)
ψ (s). By using Lemma 1(iii), 1(iv), 2(ii), and 2(v) we can simplify (115) to:

Γx = δ̄34ωAq̃ (0) +
(
s+ r∗1 + r∗2 − 2δ̄22

)
X̃(0)

−δ̄12δ̄34δ̄41
[
πqp
r∗1r
∗
2s

+
πqt

(r∗1 + σG) (r∗2 + σG) (s+ σG)

]
+δ̄34

[
πApδ̄12δ̄21
r∗1r
∗
2s

− πAtψ (−σG)

(r∗1 + σG) (r∗2 + σG) (s+ σG)

]
. (116)

Hence, the Laplace transform for private consumption is:

(s+ h∗1)(s+ h∗2)L{X̃, s} = δ̄34ωAq̃ (0) +
[
s+ r∗1 + r∗2 − 2δ̄22

]
X̃ (0)

+δ̄12δ̄34
δ̄21πAp − δ̄41πqp

r∗1r
∗
2

1

s

−δ̄34
δ̄12δ̄41πqt + πAtψ (−σG)

(r∗1 + σG) (r∗2 + σG)

1

s+ σG
. (117)

Gathering the results together we find the path for consumption:

X̃ (t) =
[
δ̄34ωAq̃(0) +

(
r∗1 + r∗2 − 2δ̄22

)
X̃(0)

]
T1(h

∗
1, h
∗
2, t) + X̃(0)T2 (h∗1, h

∗
2, t)

−δ̄34
δ̄12δ̄41πqt + πAtψ (−σG)

(r∗1 + σG) (r∗2 + σG)
T3 (h∗1, h

∗
2, σG, t)

+δ̄12δ̄34
δ̄21πAp − δ̄41πqp

r∗1r
∗
2

A (h∗1, h
∗
2, t) . (118)

4.3.5 Total Assets

Using (88), we can write the fourth row of (76) as (s+h∗1)(s+h∗2)L{Ã, s} = Γa,where Γa is equal to:

Γa =
1

r∗1 − r∗2

[
ωA

(
θ (s)− θ (r∗1)

s− r∗1
− θ (s)− θ (r∗2)

s− r∗2

)
q̃ (0)

+δ̄43

(
ψ (s)− ψ (r∗1)

s− r∗1
− ψ (s)− ψ (r∗2)

s− r∗2

)
X̃ (0)

+δ̄12δ̄41

((
r∗1 − δ̄33

)
L{γq, r∗1} −

(
s− δ̄33

)
L{γq, s}

s− r∗1
−
(
r∗2 − δ̄33

)
L{γq, r∗2} −

(
s− δ̄33

)
L{γq, s}

s− r∗2

)

+

(
θ (r∗1)L{γA, r∗1} − θ (s)L{γA, s}

s− r∗1
− θ (r∗2)L{γA, r∗2} − θ (s)L{γA, s}

s− r∗2

)]
, (119)
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where θ (s) ≡
(
s− δ̄33

)
ψ (s). By using Lemma 1(iii), 1(v), 2(iii), and 2(vi) we can simplify (119) to:

Γa = ωA
(
s+ r∗1 + r∗2 − δ̄22 − δ̄33

)
q̃ (0) + δ̄43X̃ (0)

+δ̄12δ̄41

(
πqpδ̄33
r∗1r
∗
2s

+
πqt
(
δ̄33 + σG

)
(r∗1 + σG) (r∗2 + σG) (s+ σG)

)

−
(

1 +
δ̄33δ̄12δ̄21
r∗1r
∗
2

1

s

)
πAp.

−

(
1−

(
σG + δ̄33

)
ψ (−σG)

(r∗1 + σG) (r∗2 + σG)

1

s+ σG

)
πAt. (120)

It follows from (120) that:

L{Ã, s} =
ωA
(
r∗1 + r∗2 − δ̄22 − δ̄33

)
q̃ (0) + δ̄43X̃ (0)− (πAp + πAt)

(s+ h∗1)(s+ h∗2)

+ωAq̃ (0)
s

(s+ h∗1)(s+ h∗2)
+ δ̄12δ̄33

δ̄41πqp − δ̄21πAp
r∗1r
∗
2

1

s(s+ h∗1)(s+ h∗2)

+
(
σG + δ̄33

) δ̄12δ̄41πqt + ψ (−σG)πAt
(r∗1 + σG) (r∗2 + σG)

1

(s+ σG) (s+ h∗1)(s+ h∗2)
. (121)

By inverting the Laplace transform we obtain:

Ã (t) =
[
ωA
(
r∗1 + r∗2 − δ̄22 − δ̄33

)
q̃ (0) + δ̄43X̃(0)− (πAp + πAt)

]
T1 (h∗1, h

∗
2, t)

+ωAq̃(0)T2 (h∗1, h
∗
2, t) + δ̄12δ̄33

δ̄41πqp − δ̄21πAp
r∗1r
∗
2

A (h∗1, h
∗
2, t)

+
(
σG + δ̄33

) δ̄12δ̄41πqt + ψ (−σG)πAt
(r∗1 + σG) (r∗2 + σG)

T3 (h∗1, h
∗
2, σG, t) . (122)
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Table A1: Summary of Model

(a) Dynamic Equations:

K̇(t) =

[
Φ

(
I(t)

K(t)

)
− δ
]
K(t) (TA1.1)

q̇(t) = q(t)

[
r + δ − Φ

(
I(t)

K(t)

)]
+

I(t)

K(t)
− (AK(t))(σ−1)/σ

(
Y (t)

K(t)

)1/σ

(TA1.2)

Ẋ (t) = (r − α)X(t)− β(α+ β)A (t) (TA1.3)

Ȧ(t) = rA(t) + w (t)− T (t)−X(t) (TA1.4)

Ḃ(t) = rB(t) + IG(t) + CG(t)− T (t) (TA1.5)

K̇G(t) =

[
ΦG

(
IG(t)

KG(t)

)
− δG

]
KG(t) (TA1.6)

(b) Static Equations:

1 = q(t)Φ′
(
I(t)

K(t)

)
(TA1.7)

w(t) = (AL(t))(σ−1)/σ
(
Y (t)

L(t)

)1/σ

(TA1.8)

Y (t) =
[
[AK(t)K(t)]

σ−1
σ + [AL(t)L(t)]

σ−1
σ

] σ
σ−1

(TA1.9)

w (t)L(t) = w(t)− (1− ε)X (t) (TA1.10)

C(t) = εX(t) (TA1.11)

F (t) = A(t)− q(t)K(t)−B(t) (TA1.12)

(c) Definitions:

P (t) ≡
(

1

ε

)ε( w(t)

1− ε

)1−ε
(TA1.13)

Aj(t) ≡ ρjKG(t)ηj , j = {K,L} (TA1.14)

29



Table A2: Summary of the Log-Linearized Model

(a) Dynamic Equations:

˙̃K(t) =
rωI
ωA

[Ĩ(t)− K̃(t)] (TA2.1)

˙̃q(t) = rq̃(t)− rθK
σωA

[Ỹ (t)− K̃(t) + (σ − 1)ηKK̃G(t)] (TA2.2)

˙̃X(t) = (r − α)

[
X̃(t)− Ã(t)

ωA

]
(TA2.3)

˙̃A(t) = r
[
Ã(t) + ωww̃ (t)− T̃ (t)− ωXX̃(t)

]
(TA2.4)

˙̃B(t) = r
[
B̃(t) + ωIGĨG(t) + ωCGC̃G(t)− T̃ (t)

]
, (TA2.5)

˙̃KG(t) = σG[ĨG − K̃G(t)] (TA2.6)

(b) Static Equations:

q̃(t) = σA[Ĩ(t)− K̃(t)] (TA2.7)

w̃(t) =
1

σ

[
Ỹ (t)− L̃(t) + (σ − 1) ηLK̃G(t)

]
(TA2.8)

Ỹ (t) = θKK̃(t) + θLL̃(t) + θGK̃G(t), (TA2.9)

L̃(t) = ωLL[w̃(t)− X̃(t)] (TA2.10)

C̃(t) = X̃(t) (TA2.11)

F̃ (t) = Ã(t)− ωA[q̃(t) + K̃(t)]− B̃(t) (TA2.12)

(c) Definitions:

P̃ (t) = (1− ε)w̃(t) (TA2.13)
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