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1 Introduction

The main text refers to this technical appendix in several occasions. It describes the macroeconomic
model used in the paper and reports the relevant mathematical derivations, including first-order
conditions, log-linearization, and transitional dynamics. This appendix complements the main text

by providing additional technical derivations.

2 The Model

This section describes the dynamic general equilibrium model. It subsequently discusses the behavior
firms, individual households, aggregate households, and the government. The model is summarized
in Table Al.

2.1 Firms

The goods market is perfectly competitive. Adjustment costs to private capital formation are intro-

duced because of the exogenously given rate of interest.

2.1.1 Production Function

The production function transforms private capital, K(t), and labor, L(t), into homogeneous output,

Y'(t), according to the following Constant Elasticity of Substitution (CES) specification:

Y1) = {[A(OK O] + (AL )7 (1)
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where 0 = dIn(L/K)/dIn(Yx/Yr) > 0 is the substitution elasticity between labor and private
capital. The terms Ag(t) and A (t) capture capital-augmenting and labor-augmenting technical
change, respectively. The CES production function embeds the Leontief technology for ¢ = 0, the
Cobb-Douglas technology for ¢ = 1, and the linear technology for ¢ — co. Private capital and labor
are said to be gross complements if o < 1, and gross substitutes if o > 1.

The stock of public capital, K¢(t), enters the production function through the factor-augmentation

terms, A and Aj:

Ai(t) = piKa(t)™,  i={K, L, 2)

where 7); represents the elasticity of the factor-augmentation term and p; > 0 is a scaling factor. If
nk = nr = n, public capital augments private inputs in the same proportion and is therefore said to
be factor-neutral. Private capital-augmenting public capital is captured by nx > nr = 0, whereas
labor-augmenting public capital is described by n;, > nxg = 0.

Using equation (1), one finds the following marginal productivity conditions for private inputs:

1/o

Vi) = Gk = axe e (20) ®)
1/o

o = S = e (T0) ()

where subscripts denote partial derivatives. The marginal productivity of public capital is

iy o (B0  050)
which can be rewritten as:

ba(t) = O — oty + 0100 > 0. ©)
where

O(t) = Y’(g)(f){(t) S0,  0.(t) = YL%)(” S0, Ox(t)+0L(t) = 1.

Note that public capital is assumed to have a positive effect on private factor productivity. From
the above, we know that 0x + 0 + 0 > 0k + 0;, = 1. To ensure diminishing returns with respect

to broad capital—thus excluding endogenous growth—I impose the following conditions:



e Factor-neutral case: 7+ 0x < 1,sothat n <1 —0g =0r
e Capital-augmenting case: 0x(1+nx) <1
No conditions are required for the labor-augmenting case, since nx = 0 and 0x < 1.
The ratio of marginal products of private factors of production is given by:
o—1 1

2 () ()

PL

If o > 1 and nxg —nz > 0, an increase in K (t) increases the relative marginal product of K (¢). Thus,
public capital is biased toward private capital. In the more empirically-plausible case of 0 < 1 and
nx — nr > 0, however, an increase in K¢(t) increases the marginal product of L(t). Public capital

is then biased toward labor.

2.1.2 First-Order Conditions

Following Uzawa (1969), we postulate a concave accumulation function, ®(-), which links net capital

accumulation to gross investment (I(¢)):

- I(t)

Kit)=|®(|—=] -6 K(), 8
- (1) o
where 0 is the rate of depreciation of private capital.

Firms maximize the net present value of their cash flow subject to the capital accumulation
constraint and the stock of public capital (which firms take as given). The current-value Hamiltonian

is:

1(t)

He(t) = Y (t) — w()L(t) — I(t) + q(t) [cb (m) - 5] (1), )

where the production function is given in (1) and ¢(¢) is the (current-value) co-state variable (which

is also known as Tobin’s ¢). The prices of investment goods P;(t) and output Py (t) are normalized



to unity. The first-order conditions are:
wt) = Ap(h)% (“”) (10)
1 = q(t)® (K(t)> (11)
0 = 0o (1)Ko (1) a2 oo

Equation (10) represents a standard labor demand function. Equation (11) pins down the optimal

investment level conditional on the existing stock of capital and its market value (i.e., Tobin’s q).
Finally, equation (12) describes the evolution of Tobin’s q. Note that the first term on its right-hand
side is the marginal product of capital.

2.2 Households

2.2.1 Individual Households

Lifetime utility at time ¢ of a representative household born at time v <t is given by:

A(v,t) = / h InU (v, 7)eletAE) dr (13)
subject to:

Aw,t) = (r+B)A(v,t) +w(t)L(v,t) — T(t) — C(v, 1), (14)

U, t) = C,t)°1—LvH"°, 0<e<l, (15)

where w(t) is the (age-independent) real wage, C(v, t) is private consumption, L(v, t) is labor supply,*
T(t) are lump-sum taxes, « is the pure rate of time preference, and 3 is the instantaneous probability
of death. Private consumption is used as the numeraire and its price is set to unity.

Full consumption X (v,t) is defined as

X(v,t) = P(t)U(v,t) =w(t) [1 — L(v,t)] + C(v,t) (16)

where P(t) is a ‘true’ price index (to be derived below) and U(v,t) is the subutility index given in

!Total time is normalized to unity. Hence, leisure is defined as 1 — L(wv, t).



(15). The household budget identity can now be written as

A(v,t) = (r+ B)A(v, t) + w(t) = T(t) — X (v,t). (17)

The household’s problem is solved by means of two-stage budgeting. In the first stage, the household

decides on consumption and savings. The household’s current-value Hamiltonian is defined as

HA (v, 1) =InU(v,t) + Mv, t) [(r + 8) A(v,t) + w(t) — T(t) — P(t)U (v, t)], (18)

where U(t) is the control variable, A(t) denotes the state variable, and A is the co-state variable.

The first-order conditions are:

1)U (v,t) = X(v,t)P(t), (19)
A(v,t) B
Nod) a—r. (20)

t
t =7Tr— OZ, (21)

which can be used in (21) to obtain the Euler equation for felicity:

Uv,t) P(t)
Uw,) "Pe) " (22)

Integrating the household budget identity (17) gives rise to the lifetime budget constraint for the
household:

Aw )+ H(t) = / X (v, 7)er A=) gz, (23)
t

H(t)

/ [w(r) — T ()] " A=) g, (24)

t

where the following no-Ponzi game (NPG) condition has been imposed:

lim A(v, 7)) — g (25)

T—00



By substituting (16) and (19) into (23) and simplifying one obtains:

A, t)+ H(t) = / P(T)U (v, 7)em A=) gr
t

_ / (v, 7)] L e HOET) g7 (26)
t

Using (20) allows us to write:
Mo, 7) = Av, )= =), (27)

Substituting (27) into (26) gives

Afv,t) + H(t) = /too [A(v,t)e(rfa)(tfr)]_l B (=) g
= 1/[Aw,t)(a+ )]

= X(v,t)/(a+B), (28)

where (19) has been used. Obviously, in view of (16) and (28) it also holds that
P(t)U(v,t) = (o + B) [A(v, 1) + H(t)] . (29)

In the second stage, C(t) and 1 — L(t) are allocated so that U (-) is maximized subject to (16).

The first-order condition is

C(v,t) ¢
1—L(v,t) 1-— sw(t)’ (30)

which is substituted into (16) to arrive at:

Clo,t) = eX(v,t), (31)

wt)[L - L(v,t)] = (1-e)X(v,1), (32)

By substituting (31) and (32) into the definition of U(t) (given in (15) above) we obtain the expression

of the price index:




2.2.2 Aggregation of the Financial Wealth Equation

The size of each cohort of age v at time ¢ is a fraction 3e?(*—%) of the total population.? The relation

between total or aggregate financial wealth and the wealth of each individual households is therefore:
t
Al) = / A, )3P0 gy, (34)

—00

To derive an equation for the growth of financial wealth and take therefore the first derivative of this

equation with respect to time ¢ (using Leibnitz’s rule):

At) = / t [—BA(v,t) + A(v, )8’ dv + BA(L, t)

—00

t .
— 5A(t)+/_ A, t)Be® D, (35)

where the fact that households are born without financial wealth (so that A(¢,¢) = 0) has been used

in going from the first to the second expression. Substituting (17) into (35) gives

t

Aty = —BA(t) —|—/ [(r+ B)A(v, 7) + w(r) — T(7) — X (v,7)] B Do

—00

= rA®) +w(t) = T(t) — X(b). (36)

2.2.3 Aggregation of Felicity

Aggregate felicity is defined as:

t
U(t) = / U(v,t)8e’ V=D dv. (37)
—0o0
Differentiating with respect to time gives:

Ut) = / t [—BU (v, t) + U(v,1)]8e?Ddv + U (¢, 1). (38)

—00

2We assume large cohorts, so that frequencies and probabilities coincide by the law of large numbers.



Using (22) and (29) in (38) gives

O(t) = —BU) + / N P ];((2 U0, £)850 D dv + BU (¢, 1)
P(t)
[r o= gy | VO -8 [U(t) — U(t,t)]
_ P(t) Bla+ B)A(t)
[ BRRNZ0] R 20 .
Since X (t) = P(t)U(t) (39) can also be written as

U _ X P() _ [ . _Be®] e+ pa
U(t) X(t) P P(t) P)U(?)
X _ Bla+ B)A(1)
X0 - T T xm (40)

This is equation (TA1.3) in Table A.1.

2.3 The Government

The government invests in public capital I;(t) and consumes goods Cg(t). Total public spending
is financed by: (i) lump-sum taxes, T'(t); and/or (ii) public debt, B(t). The government’s budget

constraint is:
B(t) = rB(t) + Ia(t) + Ca(t) — T(¢). (41)

Imposing the no-Ponzi game condition lim, ;s B(7)e ("= = 0 gives the government’s intertempo-

ral budget constraint

B(t) = / “[(r) - Ia(r) - Co(r)le V. (42)

In order to remain solvent, the government adjusts lump-sum taxes in reaction to developments
in spending. This adjustment does not have to be instantaneous. Instead, the government is allowed
to use debt-financing so as to delay the tax change by k periods, after which taxes are permanently
raised to their new level.

Government capital accumulates according to a concave function similar to that for private capital



accumulation:

Kq(t) = [‘PG <I1;G(;(;2)> - 56‘] Ka(t), (43)

where ¢ is the rate of depreciation of public capital (6g < 9).

3 Solving the Log-Linearized Model

This section derives the impact effect and transitional dynamics of a permanent public investment

shock using the log-linearized model.

3.1 Log-Linearization

The model is log-linearized around the initial steady state. The results are reported in Table A.2.

Notational conventions are:

sy = 20 sy 2 @Ol (44)

where z is the steady-state value of x(¢). For a number of variables a slightly different notation is

used; asset-like variables (e.g., H, F, B, and A) are defined as:

__ rdz(t) 2o rdi(t)
B =", =", (45)
and lump-sum taxes are defined as
- dT'(t)
() = —=. 4
=" (46)

We will make use of the Laplace transform technique (Judd, 1982), which allows us to analyze

time-varying fiscal shocks.> The Laplace transformation of z(t) evaluated at s is given by

L{x,s} = /000 x(t)e stdt. (47)

Intuitively, £{x, s} represents the present value of x(t) using s as the discount rate.

3See Kreyszig (1993) for a good introduction on the Laplace transform technique.



3.2 The Public Investment Shock

We consider a permanent and unanticipated increase in public investment occurring at time ¢ = 0,
implying that I (t) = Ig for all t+ > 0. Public consumption is assumed not to change: Cg(t) = 0.

The time path of public capital can be written as:

. 1—e 96t I 0 < da < 0
Kg(t) = [ ] : (48)
IG 5G — o0
1694(")

where og = > 0 is the elasticity of the public capital installation function. The latter can

Ke
be derived using the Laplace transform method applied to the log-linearized version of (43):

sC{Ke, s} = oc |£{ie, s} — £{Ke, s}} : (49)
where we have used:
L{Kq, s} = sL{Ka(t), s} — K (0), (50)

and the following definition:

A(og,t) = 1—e 96"
L{A(0c 1)} = ﬁ (51)

Equation (48) has two interpretations: (i) the stock interpretation (i.e., 0 < dg < o0); and (ii) the
flow interpretation (i.e., ¢ — o0). The paper focuses on the stock interpretation. See Heijdra and
Meijdam (2002, p. 716) for an application of the flow interpretation.

Lump-sum taxes must adjust in response to the public investment shock, but can do so with a

delay of k periods:
T(t) = Tu(t—k) (52)

where u(t — k) is an indicator variable assuming the value 0 if ¢ < k, and 1 if £ > k. The tax
change, T'(t), is determined so as to satisfy (42), given the initial conditions and the intended paths

of investment spending. Noting that fooo u(T —k)e""dr = e ¥ /r, the time-k tax adjustment is thus

10



given by

T =M wlie.

3.3 The Static System

Equations (TA2.8)-(TA2.10) can be written in matrix notation as:

1 Y ()
1 —QL 0 E(t) =
0 1 —wrp w (t)

where K*(t) = K (t)’% Kq(t)?¢ denotes‘broad capital’ as, so that K*(t) is given by:

R*(t) = 0k K (1) + 0 Ko (1).

Using (48), one finds

K*(t) = 0 K(t) + 0 [1 — e 77" I

The solution of the system is:

Y (t) Lo Ko(t)

ﬁ)(t) —wLLX (t)
where:
—1
1 1
= == —1 —Orwrr, 1—&—% 0r,
Q = — = _ wLL
1 0L 0 U+WLL9K WL o 1
0 1 —wrLp —1 1 —fx

=0n Ka(t)

—wLLX(t)

11

(53)

(54)

(55)



Therefore, the solution can also be also written as

Y (1) Orwrr o
- B (o0 —D)np(l —e%¢H) I
L (1) = wLL o+ oriln
w (t) 1
o+wrr ~ ~ ol .
O K (t) + Oc (1 — 6_0Gt) Ig wLLX(t)
+ WLL - o _.
o+wrfx o+ wrfx
1 —0p
(58)
For future reference, write the quasi-reduced form expression as
i/ (t) éyk ‘Syx gyg R (t)
L) | =| & &= &y X (t) ; (59)
w (t) Swk  Swz  Swg (1 - G_UGt) I~G

where the &;; coefficients can be recovered from (58). The most interesting coefficients are those for

output:

fylc

OWILIL
_77
o+ wrrfx

= KELL_ g, =

Finally, for the wage rate the coeflicients are:

wrrok

Ok
o+wrrfi’

o+ wrrlk’

gwk‘ = gw:c

glg =

fu)g =

12

Qg(O' +wLL) — (1 — O')WLLQLT]L
o+ wrrfk '

_ wrrlfe +np(o —1)]
o+ wrrlx '

_ GG —|—’I7L(O‘ — 1)
o+wrfrx



3.4 The Dynamic System

The dynamic system can now be written in terms of one matrix equation of the form:

K(t) K(t) 0

i | _ | || e .
X () X () 0o |

A | LA | [ ]

where A, with typical element 5Z~j, is given by:

0 L 0 0
0 0
A= ;,.;7}; (1 - éyk) r _;UJIZ {yx 0 (61)
0 0 r—a e
i Twwé-wk 0 T(ngwz - WX) r i
The shock terms are defined as v,4(t) and ya(t):
— TGK —oGgt\T
Y(t) = —=[&g+ (0 — k] (1 —e 7" Ig, (62)
owA
alt) = v [“’wfwg(l — o6t — ekrwé} Ia. (63)

For future reference, the shock terms are written in the following compact form:

vi (t) = mip + e °Gt, fori=gq, A, (64)
with:
7’9]( ~
= — -1 I
Tap TwA [gyg + (o k| g,
7“0[( =
= —— -1 I
Tqt WA [Eyg + (0 nklla,
TAp = —T <ww£wg — ekrwé) Ig,
TAr = Twwfwgfg.

Note that equation (61) embeds two important special cases. First, exogenous labor supply
(i.e., wrr = 0), yields dp3 = 0, implying that the [G(t), K(t)] system can be solved independent

of the [X(t), A(t)] system. Second, infinitely lived households (i.e., = a) imply that the third

13



row of (61) consists of zeros only. The knife-edge condition r = « yields a hysteretic steady state.

The four characteristic roots in this case are: hi = 0, —h5 = (r — V/r? + 4012021)/2, r{ = r, and
7’; = (T + 72 + 4512521)/2.

3.5 Stability Issues

Solving the system (60) gives rise to a characteristic polynomial of the fourth order:

P(s) = |sI— Al = ¢ (s) 1 (s) — 612023034041 = 0,

where I is the identity matrix and ¢ (s) and ¢ (s) are:

= (s—033) (s — d22) — 034043,

= S (S — 522) — 512521.

P(s) can be written as

P(s) = s+ ags® + ags® + a1s +ag =0,

where the a;s are defined as:

as

a2

ai

ag

—tr(A) = —(2022 + 833) < 0

62y — 812021 + 2020033 — 034043

012021 (022 + 033) + 022 (034043 — 22033]

Al

14

(66)

(67)

(68)



where the determinant of A is equal to:

1- gyk _fyz 0
Al = —(r—a) 1
= — I\ =« N
UJAW?4 0 1 wA
ngwk wwé-wa: —wx 1
3w 1
= - (T - a) UO’AWE‘ {1 - Eyk + @ [(1 - gyk)(wwé‘wx - WX) + wwgyxfwk]}
3wl (1 —
_ —(’I“—Oz) I K( - fyk) |:WA+Ww£wz—WX+UJw<£ym£wk>:|
00 AW 1— &y
3wl
= - — >0, 73
(T a) UALUZ(U + wLLQK) (WX WA) ( )
where use was made of 1 — §,, = U+2LL‘£9K and Ef‘jgw: =&z = —%, in going from the third
Yy

to the last line.

The positive determinant may either indicate two positive roots and two negative roots or four
positive roots (in which case the system is unstable). The case of four negative roots—giving rise to
an indeterminate steady state—is excluded because of the positive trace of A (i.e., tr(A) > 0). The
model has a unique and locally saddle-path stable steady state, featuring four characteristic roots.
All roots are real. The two stable (negative) roots are denoted by —h] < 0 and —h% < 0; the two

unstable (positive) roots are denoted by r} > 0 and 5 > 0.

4 Solving for the Comparative Dynamics

4.1 The Reduced-Form Model

By taking the Laplace transform of (60) and noting that K (0) = 0 and recognizing that A (0) # 0

due to unanticipated capital gains/losses (i.e. A (0) =waq(0)) we obtain:

i L{K,s} ] 0
wo | £@0 | i0-coi0.0 | .
L{X, s} X(0)
i £{Avs} ] i wAq (0) - ﬁ{’VA (t) ’5} ]

where A(s) = sI — A. We know that:

DR ! adj A(s
M) = e T s =) = gy A (75)

15



where adj A(s) is the adjoint matrix of A(s). By pre-multiplying both sides of (74) by A(s)~! and
rearranging we obtain the following expression in Laplace transforms:

0
G(0) — L t),s
| O£
L{K, s} X(0)
£{q,s waq (0) = L{ya (t), s}
(s +h1)(s + h3) {~ bl o)1 - (76)
L{X,s} s —ri)(s —73)
I L{A, s} |
The adj A(s) matrix is equal to:
(S - 522) ¢ (s) 512¢ (s) 012023 (S - 522) 612023034
adi A(s) = 5217¢ (78) + 523?34541 7$¢i (8} J235 (:9 — b22) 75235348 (77)
034041 (s — 022) 012034041 (5 —022) ¥ (s) 0347 (s)
i 041 (s — 022) (s — 033)  O12041 (5 — 033) a3t (s) + 612023041 (s — 033) 1) (s) ]
The following useful results can be established.
Lemma 1. Define ¢ (s) and ¢ (s) as in (66) and (67), respectively.
Define ( (s) = (s — d22) ¥ (s) and 0 (s) = (s — d33) ¢ (s). Then it follows that:
0(s) —o(@) _ s+ — bop — 033, (78)
s—x
5¢ (Si : i(b (z) = 4 sr+a®— (822 + 833) (S + Z’) + 522533 — 534843, (79)
s—x
C(Si : i(x) = g + sx + % — 2522 (8 + I’) + 5_52 — 512521, (81)
0(s)—0 - = s 3 3z
(Si — x(l‘) = 82 + sx + $2 — (522 + (533) (8 + l‘) + 522(533 — 512(521, (82)

which we label parts (i)—(v).

Proof: Part (i) can be written as:

P(s)—¢(x) = (s—ds3) (s—022) — (z—ds3) (x — 02)
= (32 — x2) — (522 + 533) (8 — 1‘)

= (s—x)[s+z— (622 + 33)],

16



where we have used 52 — 22 = (s — ) (s + x). The proof of part (iii) is similar. For part (ii), we

write:

so(s)—xp(x) = (53 - CL’S) — (522 + 533) (32 — :E2) + [522533 - 534543} (s —x)
= (S — .’L‘) [82 + sr + $2] - (322 + 533) (S — .CU) (S + .’L‘) + [522533 — 534543] (S — .’L‘)

= (s—ux) [82 + sz + 2 — (522 + 833) (s+x)+ 929033 — 534543] ,
where we have used s® — 2% = (s — z) [s* + sz + 2?]. Part (v) can be written as:

0(s)—0(x) = (83 — 333) — (622 + d33) (52 — SUQ) + [622033 — 012021] (5 — @)

= (s—a) "+ sz + 2" — (622 + I33) (s + x) + [022033 — S12021]] -

The proof of part (iv) is similar (33 is replaced by 622). O

We know that:

adj A = —adj A(0)

i d22¢ (0) —612¢ (0) 812022023 —612023034 ]
_ —621¢ (0) — 023034041 0 0 0 | (53)
022034041 —012034041 d22% (0) —d349 (0)
I —622033041 012033041 —0431) (0) — 012023041 0339 (0)

which follows from using s = 0 in A(s) = sI — A.

4.2 Jumps

There are two predetermined variables [K (t) and A(t)] and two jumping variables [§(t) and X (t)],
so that only two initial conditions need to be imposed. The system is conditionally stable (i.e., it
is a saddle point). Instability originates from the unstable roots.* The jumps in X (0) and § (0) are
such that the right-hand side of (76) is of the 0 + 0 type for both unstable roots, r} and r3.> Using

the first row of adj A(s), for example, we get for s = r} and s = r3:

(6 (5) + 023034w4] G (0) + G253 (s — d22) X (0) = ¢ (s) L{7g, 5} + 023034L{ 74, 5}, (84)

4Note that the two stable roots determine the speed of transition.
5The denominator on the right hand side of (76) is zero. The only way to obtain bounded solutions for the four key
variables is that the numerator on the right hand side is also zero.

17



where we have divided by d12 on both sides of the equation. All rows of adjA(s) give the same
information (because the rank of adjA(s) equals 1, for s = r},r3). In summary, for s = r} and

s = r5 we have:

012 [ (8) + wada3034] G (0) + 612023 (5 — d22) X (0) = 126 (5) L{vg, s}

+012023034L{ 74, 5}- (85)
Taking the second row of adj A(s):

[0 (5) + wad23d3a] G (0) + d23 (s — d22) X (0) = ¢ (s) L{g, 5}

+023034L{4, s} (86)
The third row of adj A(s) yields:

034 [612041 + wat) (8)] G(0) + (s — d22) ¥ (5) X (0) = 812034041 L{ g, 5}

+034 (8) L{74, s}, (87)

and the fourth row:

(612641 + warh (s)] (s — d33) G (0) + [Sazt) (s) + 012623041] X (0) = 612041 (5 — I33) L{7g, 8}

+ (s — 533) Y (s) L{ya,s} (88)

Taking the first row, we thus have two independent equations in two unknowns, that is, the

jumping variables X (0) and ¢ (0). Hence, we get:

¢ (17) + 02303awa 023 (1} — d22) q() | _ | o(ri) Ll i} + 023034 L{va, 77}  (39)
¢ (r3) + 62303awa o3 (15 — d22) X (0) ¢ (r3) L{vq: 75} + 023034 L{va, 75}
or:
— _ _ -1 —
q(0) _ ¢ (r}) + 02303awa 023 (1} — da2) & (1) L{vg, T} + 623034 L{va, 7T} (9%0)
X(0) ¢ (r3) + 023031004 023 (15 — 022) ¢ (r3) L{7q: 13} + 023034L{7a, 75}
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4.3 Transitional Dynamics

4.3.1 Relevant Lemmas

Several results can be derived from the generic shock expression (64).

Lemma 2. Consider ¢ (s), ¥ (s), and 7; (t) as defined in (66), (67), and (64), respectively. Write

0(s) =
L{vi,s} =
L{vi,z} — L{vi, s}

(S — 533) E{’yi, S} — (37 - 533) ['{’Yia :C}

S —X

¢ (x) L{vi,x} — ¢ (s

) L4, s}

§—x

Y (@) L{vi,x} — P (s

) £{i, s}

S —X

0 (x) L{vi, x} — 0 (s

) £{i, s}

S§—x

(s —d33) ¥ (s). Then the following results can be established:

Tip Tt

S s+og’

Tt
(z+o0g)(s+og)
Tit (533 + UG)
(x + U(;) (S +Ug)’
- [1 n 53454396—8522533]

Tip
s

Tip033
ST

¢(—0g)
(x4 o0¢)(s+ o) B 1] ’
612621
_ 1] 7

i B
512521533
xS

+7Tit |:

s

Y (—oq)
(z+og)(s+oq)

+7Tit|:
[—S—x+522+533+ ip
+|:—S—x+522+533+ag

(oG +633) ¥ (o)
(z+og)(s+oq)

Tt

Proof: Parts (i)—(ii) are obvious. For part (iii) we write:

(iL' — 833) E{’}/Z', .CI?}

= 7Tit<

X

(8 — 533) E{’yi, S} =

S

Tt
r+og s+og

TitS

Tt

— 533 [E{”yi, l’} - ﬁ{%‘? 3}]

r+oag

sS+oqg
z(s+og)—s(x+oq)

)—533(8—33) [%Jr

ST

(x+o0c) (3'+ UGJ

= Tt

= —(3—

= —(s—u) (Wip533 +

(z +og)(s+oq)

Tito0Qq

— 033 (s — 1) [mp—k

ST

Tt

z) ((w Y oc) (s +oc)

_ T
+ 033 [Zp +
ST

it (533 + O’G)

ST

(z+0c) (5+0G)> '
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(r+o0g)(s+0q)

(z+og)(s+oq)

)

(91)
(92)
(93)

(94)

(95)



For part (iv), we write ¢ (s) £{;, s} as:

6 (s) L{v, s} = T2 [s2— (Byp + 033) 5+ (322038 — D34ds3)]

S
Tt

st og [(3 + UG)2 — (522 + 533) (s+oa)+ (522533 - 534543)
+oa (022 + 033 + 06 — 2 (s + 0a)) |
- - - - = 1
= Tp [S — (022 + 033) + (022033 — 034043) J

Qb(_UG)} ’

4+ [(S +og) — (522 + 033 + 20@) + s+ oc

where ¢ (—o¢) is given by:
¢ (—0¢) = 0g + (622 + 033) 0 + 022033 — 034643
Hence, it follows that:

o) Ll a) — 6(8) L) = 7 [x ot (Buns — Baadis) <i _ 1)}

s
1 1
+7r5¢ I:.Z'—S"i_(b(_aG) (LIZ+UG B S+O'G>:|
s
¢ (-0c) _1}
(x+o0c)(s+o0a) .

— (s—a) Ty [—1+

+ (S — $> Tt |:
The proof of part (v) is similar and ¢ (—o¢) is given by:
¥ (—0a) = 08 + 62206 — 012021

To prove part (vi) we write 0 (s) L{~;, s} as:

5 1y < 7 7 5126910;
0(s) L{niysh = mp [32 — (022 + 033) 5 + (022033 — 012021) + 122133]

§% — 0228 — 012021
s+ og '

+ it {52 — 0225 — 012021 — (533 + UG)
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We know that:

s*—ax° = (s—z)(s+x),
1 1 1
S P y parmposy

s+oqg x+o¢g

s x B oG
s+oqg z+og (Six)(a:+ac)(8+0'c)’
52 z? P4 (s—a)(s+m) z?
s+aG_a:+0G N s+oqg _:1:+0G
= (s—x)[l—l—x_gg— 2 }
s+og (v+og)(s+o0q)

R I et

By using these results we obtain:
_ N S 012021033
0 (x) L{vi,x} —0(s) L{vi,s} = mip(s—x)|—(s+x)+ da2 + 33 + e

+mit (s — x) {—(S+w)+522+533+0(;

Y (—og) ]
(x+oc)(s+0c) |

— (533 + O'G)

This establishes the result. [
Below, we will need some inverse Laplace transforms. The first transform we need the inverse of

is:

1 1 < 11 > (99)
(s+hi)(s+hs)  hy—hi \s+ht s+hi)’

The inverse of the Laplace transform is then a stable transition term of the form:

1 ]. * *
-1 _ (efhlt _ 67h2t> :
e "R
as summarized for convenience in the following definition:

Lemma 3. The temporary transition term T1 (h7, h3,t) is given by:

e—hit _ g—hit

Ty (h1, h3,1) = T
2 1
1
T1(h], hi,t = .
‘C{ 1( 1>702 )} (S+h>{)(8+h§)

Properties: (i) T1 (h},h5,0) = 0; and (i) lim oo T1 (b7, h3,t) = 0.
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The second transform we need the inverse of is:

“HNemmerm) - (S )
(s + hi)(s + h) hy —hi \s+ht s+ hs

1 * —h* * —h*
= m <—h1€ hlt + h2€ h2t> y

which we define in the following lemma:

Lemma 4. The temporary transition term To (hY, h3,t) is:

T ( * 7k t) _ hse_hzt _hTe_hTt dTl( T?h;t)
2 15142, = * * = )
It dt
S

(s+ hi)(s+h3)

‘C{TZ( thzvt)}

Properties: (i) Ta (h},h5,0) = 1; and (i) lim oo T2 (], h3,t) = 0.

The third inverse we need is:

Nermermeree) =< i lermeree - ermereal )
(s+hi)(s+hd)(s+og)) hs—hi [ (s+hi)(s+oa) (s+hd)(s+oc)
_ ! 1 1 1 B 1 B 1 1 _ 1
hs —hi log—hi \s+h] s+og og—hi \s+hy s+og
1 1 “htt —out 1 —hit _ _—oct
_ _ _ _ 100
h;—h}‘[ag—h*l‘<e o emet) ag—h;<e )] (100)

which we summarize in the following definition:

Lemma 5. The temporary transition term Tsg (hi, h3,0q,t) is defined as:

1 e~ Mt _ g—oat e~ hit _ g—ogt

Ts (h7, h5 t) = —
e T Tl R 76 — }

1 . N
= h* o h* [Tl ( 17UG7t) - Tl (h‘270G7t)]7
2 1
1
LA{Ts(h b, 00,1)) = :
N S A Ce  ce B ey

Properties: (i) Tg (h},h%,06,0) =0; and (i) limy_,oo T3 (b7, h3,0q,t) = 0.
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Finally, we need the following inverse:

£ { (s+ h’f)zs + hé)s} —£ { h i hi {(8 +1h’{) s (s +1h5) J }

eyttt oyt /ot 1
- hy—hi | hi\s+ht s) my\s+hi s
1 [1 1 .
— (1 e Mt} - (1 — e hat 101
hg — bt [hf( ¢ ) h;( c )} (101)

where we note that (101) is just a special case of (100) with o = 0. This gives rise to the adjustment

term described in the following lemma:

Lemma 6. The adjustment term A (hi, h3,t) is:

1 [l—e Mt 1—ehat
A (h], h3,t) = — - - — p
b h27h1 hl h2
1
= [Ty (h],0,) — Ty (k3,0
h;_hT[ 1(1707) 1(2707 )]
= T3( thgaovt)v
1
L{A(hT, hi,t = .
{ (17 2 )} (8+h>{)(s+h;)s

Properties: (i) A (hi, h3,0) =0; and (i) limy_,oo A (hF, RS, 1) = ﬁ

We are now fully equipped to obtain the transition paths for all the variables in the dynamic

system.

4.3.2 Private Capital Stock

The first row of (76) can be written as (s 4 h%)(s + h3)L{K,s} = ', where T} is equal to:

= [#(8) + 02303004] G (0) + d25 (s — 322) X (0) — ¢ () L{g, 8} — 623034 L{Va, 3}'

I'n=9 102
L= =) —13) o)
By writing
1 1 1 1
— — 103
G 3) TT—@L—TT —J (103)
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we can rewrite the above expression to yield:

512 [[#(s) + d2303404] G (0) + 625 (s — 322) X (0) — ¢ () L{g, 8} — 623034L{va, 8}

* * *
T —To s—Tn

[0 (5) + 023034004] G (0) + d23 (5 — d22) X (0) — ¢ (8) L{7g, 8} — 23034L{va, 5}

*

I', =

. (104)
Using (85) for the two roots yields:

[6(s) — &(r)] G(0) + S23(s — 1) X (0) + ¢(r}) L{vg, 1} — &(5)L{vg, 8} + 023034 [L{va, 1} — L{ya, s},

[#(5) = @(r3)] 4(0) + d23(5 — 13) X (0) + $(r3) L{vg, 75} — S(5)L{g, 8} + 23034 [C{va, 5} — L{va. 8},

where the general form of (85) (which is not equal to zero) is subtracted from (85) with the respective
root plugged in (yielding an expression equal to zero). We thus have subtracted zero from both
expressions.

Plugging these expressions into (104)

I, — d12 [[#(s) — ¢ (r))]G(0) + d23 (s — 15) X (0) + 623034 [L{ya, 7]} — L{7a,5}]

ri—r5 s =77
_’_(;5 (T{) ‘C{’an TT} — ¢ (S) ‘C{’yt]’ 8} o ¢ (TS) ‘C{’an T;} - ¢ (S) ‘C{’yl]’ 8}
s—r] 5=
[6(s) = 6 (r5)] G (0) + 83 (s — r3) X (0) + 334 [L{va, 75} — L{74,5}] (105)
s—r3 '
By using Lemma 1(i) in (105) we obtain:
¢ (s) — ¢*(TT) = s+717— 0y — b33,
s—r}
M = s+ 7“; — 522 — 533, (106)
s—r}
which yields:
¢ (5) — d)*(TT) _ d) (5) — ¢*(T§) — ri« _ T‘;, (107)

§—T §—Ty

so that:

T = 012¢(0)+

012 (<z5(7“1‘) L{vg:ri} = ¢ () L{vg s}~ 0 (r5) L{vg, 15} — ¢ (5) E{qus})

* * *
T —To s—Tr S —Ty

+512523534 (ﬂ%ﬂ"ﬂ — L{va, st L{ya,r3} — L{ya, 8}>

* * * *
TN —Ty sS—Tq S — Ty

(108)
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By using Lemma 2(ii) and (iv) in (108) we can rewrite I';, as follows:

Iy = 0124(0)
512 834043 — 022033 ¢ (—oc)
_ 14 22729 Teeod —1
+7’f—7’§[ ’“”’( T )”‘”((rﬁm) (s +0c)
834043 — 522533> < ¢ (—oc) > ]
1 4 034043 = 022033 ) 1
”‘“’( T s Tt \ (5 + o) (s + 0G)
012023034 [WAp TAt _Tap TAt ]
ri—ry Lsri (1 +og)(s+og) srs  (r5+oc)(s+oc)]

After simplifying we obtain:

034043 — 022033 ¢ (—0q) ]
* .k - 7th * *
riTy$ (11 +o0c) (r3 +oc) (s +0c)

- - - TA TAt
— 8120930 P4 '
12023034 I:TTTES (TT + O-G) (r; -+ O'G) (S + O'G):|

Iy = 0612G(0) + 012 [qu

It follows that:

034043 — 022033) — TApO23034
riTys

Tatd (—0G) + T ard23034

(s 4 B (st WL{R s} = 5197 (0) + o™t

—019 . . . 109
(Tl +0¢) (T2+UG) (s+oq) (109)
Hence, it follows that the path for the private capital stock is given by:

- = - N - Tgp (034043 — 622033) — Tap023034 B

K(t) = 512q(0)T1( 17h2at)+512 qp( rrrE ) ? A( 1ah27t)

172
. — 5236
_5127th¢( 0G) + mard23 Hpg (bt B 1), (110)

(rf +0a) (r; + 0c)
4.3.3 Tobin’s g

By using (86) we can write the second row of (76) as (s + h})(s+ h3)L{q, s} =Ty, where Iy is equal

to:

Fq _ TT i T; |: (S¢ (8)8__7;:{{¢ (TT) - qu (S)S__’:%;b (7’;)) q(o) + 523 (TT - 7’;) X (0)

+ <TT¢ (r1) L{vg, 1} — ¢ () L{7q, 5} _ r5¢ (r3) L{vg, 3} — 56 (s) L{7q; 8})

* *
s§—T §—Ty

riL{ya,ri} —sL{va,s} r3L{va,r5} — sL{va,s}
s—rt s—1rh '

+023034 < (111)
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By using Lemma 1(ii), Lemma 2(iii), and 2(vi) (evaluated for d33 = 0) we can simplify this expression

to:

Fq = (8 + T‘I + 7‘3 — 522 — 533) (1(0) + SggX (0) — (7qu + 7th)
thUG%D (—UG) T 5 OGT At
0930 . 112
i T 00) (1 T 00) (s 05) BN T T og) (15 + 00) (5 1 00) (112)

It follows that £{q, s} is equal to:

s+ 11+ 15 — dog — 033 023X (0) — (mgp + 7qt)

L{i, s} = 0
{:s} GGt 1O T s+
6930340GT AL + Tgoa¥ (—oa) 1 (113)
(r1 + o) (15 +0c) (s +0G)(s+hi)(s+h3)
Hence, the path for ¢ (t) is given by:
Q) = [(rf 475 — 82— 83) 4 (0) + 825K (0) — (mgp + )| T (B}, B, 1)
5 1% 0930347 + —0 1%
3(0) T3 (0], 13 1) + 0 20HTA N T (G g e s, 1), (114)

(T‘T + Gg) (?“5< + Ug)
where we have used Lemma 3, 4, and 5 to invert the Laplace transform. Note that there is never a
permanent effect on q.

4.3.4 Private Consumption

Using (87), we can write the third row of (76) as (s +h?)(s + h3)L{X, s} = I'y, where T, is equal to:

r, = o 1 " [53400/1 <¢ <Si : :’ﬁk(ri) ¥ (32 : :i(”;)) 3 (0)
172 ¥ 3
NN CCENGIRCEHC ) P
s—r] s—rh
+ 512534541 <£{7%T18}__T*£{7(I73} . £{7q77“28}__r*£{7q,8}>
1 2
b (IZJ(TT)E{’YA,TT} —*w (s) L{va, s} ¥ (r3) L{va, 53} —*zp (s)ﬁ{’yA,s}> ]7
s—n s—rj

(115)
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where ¢ (s) = (s — d22) ¥ (s). By using Lemma 1(iii), 1(iv), 2(ii), and 2(v) we can simplify (115) to:

Fx = 534qu (0) + (S + T’T + T; — 2522) X(O)

- iy Tqt
—012034041 | 2 + ;
12034041 [rfrgs (rf +og)(rs +og) (s +o0q)

VB [wAp512521 TatY (—oG) } ' (116)

rirss (rf+oq)(rs +oag) (s+0q)

Hence, the Laplace transform for private consumption is:

(s+h})(s+h5)L{X,s} = d34waG(0) + [s 4+ + 715 — 252) X (0)

< = 001Tap — 0aTgy 1
+012034 — -
rirs s

_5— 45125417th + 77At¢ (_UG) 1
N +0e) (5 +oa) s+oc

(117)
Gathering the results together we find the path for consumption:

X(t) = [03awagd(0) + (rf + 15 — 205) X(O)} Ti(hi, b5, t) + X(0)To (hi, b3, t)
5 51200 g + Tt (—oG)
(r{ +06) (r; + o)

_ _ 4 -9
190y A — TR A (% B3 1) (118)
Ty

T3 ( Ta h;a UGut)

4.3.5 Total Assets

Using (88), we can write the fourth row of (76) as (s 4 h})(s+ h3)L{A, s} = T'y,where I, is equal to:

W [WA <0<si - z*(m B 0(32 - i(@)) i 0)
1 2 1 2
+hy (V2B REZ8ED) 5
1 2
6126 <(7"T — ds) L4011} — (5 = ds3) L{vgr s} (75 — dss) L{70, 75} = (5 = I3) £{0, 8})
12041 * *
s =1 §—Ty
. (0 (i) £0a,rih = 0() Elvass} _ 008) Lracrs} = 0(5) ﬁ{%s}> } (119)
s—r] §—=Ty
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where § (s) = (s — d33) ¥ (s). By using Lemma 1(iii), 1(v), 2(iii), and 2(vi) we can simplify (119) to

'y, = wa (8 +7r] + 7‘; — 099 — 533) G(0)+ 5435( (0)

533 Tqt (533 + O'G)
46126, 1L +
e ( rirss | (rf +06) (13 + 06) (s + 06)

(14 533512521}
S
¥ (=

B (1 B (UG + 533) 1 ) . (120)

(ri +oc)(r §+Gc)s+ac

It follows from (120) that:

wa (rf + 15 — 02 — d33) G (0) + 013X (0) — (map + Tar)

L{A s} =

(s + hi) (s + h3) )
a0 7 +_h’f_)s(s Ty o 5417rqprf_r§217mp s(s+ hS(s +h3)
o B e e G G T 12y
By inverting the Laplace transform we obtain:
Al = [wA (1t + 15 — 22 — 033) 4 (0) + 343X (0) — (map + mar)| Ta (B, k3, t)
Fend(0)Ta (15, )+ Badia ™17 BT A (11
+ (0 + 633) 512541% v (=06) Tat g (W3, B3, 06,t) . (122)

(TT + Ug) (7’; + Ug)
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Table Al: Summary of Model

(a) Dynamic Equations:

= [ (&) o

w(t) = (Ag() V7 (gfg)w

Y = [Ax@K@O)F + (AL ]
WO L) = w(t) = (1-)X ()

Ct) = eX(t)

F(t) = A() - aK() - B()

e

=

Il
N
m | =
~_
™
7/ N\
S
| =
~
m\/
~
—_
&

b
.
—~

.
SN—

Il
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(TA1.1)

(TA1.2)
(TAL.3)
(TA1.4)
(TAL.5)

(TA1.6)

(TAL.7)

(TA1.8)

(TA1.9)
(TA1.10)
(TA1.11)

(TA1.12)

(TA1.13)

(TA1.14)



Table A2: Summary of the Log-Linearized Model

(a) Dynamic Equations:

TWr [~

K() = I~ ()
i) = i) - ZEF @) - KO + (0 - DicRo (o)
Xt) = (r—a)|X(t) - ji(j)

At) = r [A(t) +wptd (t) = T(t) —wx X (t)}
Blt) = r[B(0) +wbio(t) + wGCalt) ~ T(1)]

Ko(t) = oglle — Ka(t)]

(b) Static Equations:

(c¢) Definitions:

Pit) = (1-e)a()
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(TA2.1)

(TA2.2)

(TA2.3)

(TA2.4)
(TA2.5)

(TA2.6)

(TA2.7)
(TA2.8)
(TA2.9)
(TA2.10)
(TA2.11)

(TA2.12)

(TA2.13)



References

HELDRA, B. J. AND L. MEDAM (2002): “Public Investment and Intergenerational Distribution,”

Journal of Economic Dynamics and Control, 26, 7T07-735.

Jupp, K. L. (1982): “An Alternative to Steady-State Comparisons in Perfect Foresight Models,”
Economics Letters, 10, 55-59.

KRrEYSzIG, E. (1993): Advanced Engineering Mathematics, New York: John Wiley and Sons.

Uzawa, H. (1969): “Time Preference and the Penrose Effect in a Two-Class Model of Economic

Growth,” Journal of Political Economy, 77, 628—-652.

31



