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Abstract: The livestock sector can be a major contributor to the mitigation of greenhouse gas (GHG)
emissions. Within the sector, beef production produces the largest proportion of the livestock
sector’s direct emissions. The objective of this study was to assess the on-farm GHG emissions in
semi-arid rangelands in Argentina and to identify the relationship between emissions and current
farm management practices. A survey recorded detailed information on farm management and
characteristics. Assessments of GHG emissions were based on the Intergovernmental Panel on
Climate Change (IPCC) Tier 2 protocols. The relationship between farm management and GHG
emissions were identified using general linear models. Cluster analysis was used to identify groups of
farms that differed from others in emissions and farm characteristics. Emissions per product sold were
low on farms that had improved livestock care management, rotational grazing, received technical
advice, and had high animal and land productivities. Emissions per hectare of farmland were low
on farms that had low stocking rates, a low number of grazing paddocks, little or no land dedicated
to improved pastures and forage crops, and low land productivity. Our results suggest that the
implementation of realistic, relatively easy-to-adopt farming management practices has considerable
potential for mitigating the GHG emissions in the semi-arid rangelands of central Argentina.

Keywords: livestock care management; rotational/continuous grazing; technical advice; stocking
rate; functional units

1. Introduction

Livestock production is an important source of greenhouse gas (GHG) emissions worldwide.
The livestock sector contributes 14.5% of global GHG emissions [1]. Since the human population is
expected to increase from 7.2 to 9.6 billion by 2050 [2], together with the improvement of standard
of living, there is an increasing demand for livestock products [3], which are expected to double by
the mid-21st century [4]. The livestock sector will have to be a major contributor in the mitigation of
GHG emissions and in the improvement of global food security [5]. Within the sector, beef production
contributes the majority of emissions, producing 41% of the livestock sector’s direct emissions [6].
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Methane (CH4) and nitrous oxide (N2O) are the largest contributors to global livestock emissions in
CO2 equivalent (CO2e) per year [1]. In countries where pastoral agriculture is the dominant sector,
CH4 and N2O emissions contribute up to 50% of the total GHG emissions [7]. Due to the negative
relation between the efficiency of production and GHG emissions per output produced, the greatest
mitigation potential lies in ruminant systems that operate with a low productivity (e.g., in South Asia,
Latin America, the Caribbean, and Africa) [1].

Argentina is a major world beef producer. It is the sixth largest beef producer in the world [8]
and the ninth largest beef exporter [9]. The meat chain generates around 4% of the total jobs in the
country [9]. Argentina and four other Latin American main beef exporters plan to increase meat
production in response to the forecasted growth in international markets [10]. Of the 156.94 Mt CO2e
emitted by the Argentinean sector relating to ‘Agriculture, Forestry and other land uses’, livestock
directly accounts for 54 Mt CO2e, produced by enteric fermentation (of which beef accounts for 83%);
20.26 MtCO2e are produced by manure deposition on pastures (76% from beef); and 2.14 MtCO2e are
produced by manure management (83% from beef) [11]. Thus, methane emitted by enteric fermentation
is especially important. In 2008, methane emissions from domestic ruminants in Argentina was the sixth
highest in the world, and the per capita rate was one of the highest [12]. Rearte and Pordomingo [10]
indicated there are ample opportunities to reduce methane emissions per unit of product in Argentina
and other temperate regions of Latin America, such as Uruguay.

The GHG emissions of a product can be expressed as kg of CO2e per kg of product, or it can be
expressed as kg of CO2e per unit of area (ha) of the production system, depending on the perspective
(that of the consumer vs. that of the producer) [13–15] and product perspective vs. an IPCC inventory
perspective [16,17]. From a ‘product perspective’, Casey and Holden [16] suggested that it is necessary
to choose a functional unit (FU, kg of product vs. land area) of the function that the system delivers.
However, for studies that intend to inform national GHG inventory reports, an FU coupled with land
area is necessary [16,17]. Finally, environmental impacts per unit of product are more closely linked
with the assessment of global issues, such as climate change [15,18], while assessing an environmental
impact per hectare of land is considered a more local or regional issue, such as soil erosion, water
eutrophication, or acidification [18]. Some studies have shown that the use of different FUs can produce
contradictory results in assessing GHG emissions [13,14,16], illustrating the potential trade-off between
carbon efficiencies per unit of product and per unit of land. Nevertheless, several studies suggest that
the mitigation of emissions per unit of product and per unit of land area can be reconciled [14,16].
Casey and Holden [16], Halberg et al. [18] and Veysset et al. [19] suggested that product-based and
land area-based indicators should be used to characterize the environmental impacts caused by
food production.

Many studies have assessed mitigation strategies for reducing GHG emission intensity in
terms of emissions per unit of animal product in several ruminant livestock farming systems
worldwide, which have been reviewed extensively [1,5,20–27]. The mitigation strategies that reduce
emission intensity by increasing herd productivity through improved animal husbandry practices
(e.g., animal feeding, genetics, health, fertility, and the overall management of the animal operations)
can be important in low–input ruminant systems [12,22] and have a greater mitigation potential in
development than they do in developed economies [22].

In Argentina, >70% of the beef is produced in pasture-based grazing systems [10], mostly in
extensive conditions [12]. As the opportunity for soybeans and cereal grains became structural to
Argentinean agriculture, livestock businesses were displaced towards less productive, marginal
lands [10,28]. Eight percent of beef production is in the semi-arid Central Region (18% of the
country) [29]. Rangeland native grasslands are the main source of feed for cow-calf livestock systems,
which constitute an important economic sector in the region [30]. Rangelands are the world’s most
common land type [31], and they provide the livelihoods for many vulnerable communities throughout
the world [32]. Their relevance is linked to their multifunctional nature and provision of ecosystem
services [33]. Extensively managed livestock production is the most sustainable and common form
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of agriculture on rangelands [33]. Global demand for livestock products will increase the pressure
on rangelands, which are experiencing high degradation and losses in biodiversity worldwide [34],
especially in arid and semi-arid grasslands in developing countries [33].

Identifying the relationship between GHG emissions, farm management and system productivity
can help livestock producers improve operations, where productivity can be improved considerably
by implementing simple management practices [35]. Furthermore, in the transition to sustainable
livestock production, assessments of mitigation measures that have been tailored to the location
and livestock production system in use are needed [5,14]. Our study assessed commercial farms
that were representative of the extensive beef systems, based on natural rangelands in the San Luis
Province, which is typical of the semi-arid Central Region of Argentina [28]. Beef cattle stocks have
increased in San Luis because of the displacement of livestock into semi-arid marginal areas [36] and
incipient intensification has been reported [28]. The main objective was to assess GHG emissions from
representative farms in order to identify realistic farming practices that will favor low GHG emissions.
Specifically, we (i) estimated the CH4 and N2O on-farm livestock emission intensity based on two
functional units: product-based (kg CO2e per total live weight sold) and area-based (kg CO2e per land
area used); (ii) identified farm attributes and management practices that were associated with low
emission intensities; and (iii) assessed the implications of using each of the two functional units in
identifying the farming practices that minimize GHG emissions.

2. Materials and Methods

The study was conducted in a 4160-km2 area in the San Luis province, Central Region, Argentina
(center of the study area: 34◦17′22.46′ ′ S; 66◦25′40.89′ ′ W), where an extensive cow-calf system, based
on year-round, open-air grazing, is the main land use. The climate is semi-arid, and the annual
precipitation ranges from 350 to 500 mm. The average daily temperature ranges from 8.5 ◦C (coldest
month) to 23 ◦C (warmest month) [37]. The soils are shallow, poor in organic matter, have low
water retention capacity, and low-medium productivity [38]. The climate and soil conditions are
unsuited to croplands, and rangeland native grasslands are the main source of feed for livestock [30].
Natural vegetation consists of two main types [39]: (i) a woodland-shrubland mixture dominated
by legume trees (Prosopis flexuosa and Geoffroea decorticans) and shrubs (Larrea divaricata); and (ii)
grass-dominated steppes of Nassella tenuis, Piptochaetium napostaense, Poa ligularis and Poa lanuginose,
and small scattered woodlands of legume trees (mainly G. decorticans). Most of the cattle are Hereford,
Aberdeen Angus, or crossbreeds of the two, although some farms also have Creole [40]. A low
productivity and potential improvement of the farm system have previously been reported in the
region [10].

In 2014, 30 of the 67 beef cattle farms in the study area were surveyed. The farms were
representative of the region based on earlier studies [30]. The survey, recorded in a structured
questionnaire, collected detailed information about the size and structure of the farm, livestock
management, infrastructures, productivity, as well as the ages and levels of education of the producer
and the labor, referred to a one-year production cycle. With that information, a characterization of the
farms was obtained, and variables were calculated, which were used in the analysis.

The general characteristics of the farms are detailed in Table 1. Seven percent of the farmers did
not have any type of education, 61% had a primary or secondary education, and 32% had higher
education. Half of the farms surveyed had salaried employees. In addition to natural grassland areas,
23% of the farms improved grasslands by introducing grasses, such as Eragrostis curvula, Digitaria
eriantha, and Panicum coloratm cv. verde, and 17% had annual forage crops, such as maize (Zea mays),
sorghum (Sorghum vulgare), rye (Secale cereale) with melilotus (Melilotus albus), and oats (Avena sativa),
although in both cases, the areas were much smaller than the natural pastures (4% and 2% of the total
land on average, respectively, Table 1). The annual forage crops are seeded if there have been enough
rains; they are ‘low-input’ crops, which are not mowed but only grazed, and farmers generally do not
use pesticides or chemical fertilizers. Half of the farmers purchased small amounts of maize, alfalfa or
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mineral complements, only in winter in critical years and not always for feeding all animal categories.
Three types of production systems were observed: (i) cow-calf (CC) systems (60% of the farms), where
calves are sold at weaning; (ii) backgrounding (BG) systems (10%) (i.e., farmers purchase weaned
calves that are sold once they are fattened); and (iii) cow-calf + backgrounding (CCBG) systems (30%).
The calves are weaned at 6 months at 130–150 kg of live weight (LW) and sold fattened at 15 months
(280–300 kg LW). On the CC and CCBG farms, the reproductive system was either (i) year-round
mating (44% of the farms), or (ii) seasonal. Only 7% of farms employed artificial insemination. On the
farms, water was collected in artificial dams by drilling, extraction from wells and, to a lesser extent,
using natural streams.

Table 1. General characteristics of the beef cattle farms in San Luis province, central Argentina.

Variable Mean s.d. Min Max

Socio-economic data

Age (years) 56 11.3 34 75
+ Hired labor (WU/LU) (×10−3) 0.7 0.8 0 2.5

Land use
+ Total land area (ha) 3598 4706 67 23,400

+ Land area used for native pastures (%) 95 14 33 100
+ Land area used for improved pastures (%) 4 13 0 67

Land area for annual forage crops (%) 2 6 0 29

Beef cattle
+ Total Livestock Units 1 (LU) 337 399 17 1856

Mortality rate (%) 6.7 11.1 0.6 50.0
Stocking rate (LU/ha) 0.13 0.09 0.02 0.46

Grazing infrastructures

Water reservoirs per total land/ha (×10−3) 2.8 3.2 0.3 14.9
Water reservoirs/LU (×10−3) 25 21 4 89

+ Grazing paddocks/ha (×10−3) 3.7 4.5 0.6 19.6

System productivity

Average LW of livestock (kg) 283 50 195 399
Weaning rate 2 (%) 65 17 26 95

+ Land productivity (kg LW sold/ha) 18.3 20.4 1.1 93.8
+ Animal productivity (kg LW sold/LU) 138 91 53 337

s.d., standard deviation; Min and Max, minimum and maximum values (n = 30 farms); WU, work units; LU,
livestock units; LW, live weight. +Variables used for the typification of the beef cattle farms. 1 Livestock units were
calculated based on Cocimano et al. [41]. 2 n = 27 (remaining three farms are backgrounding systems; they do not
have breeding).

GHG emissions were estimated on-farm, based on the CH4 emissions from cattle enteric
fermentation and N2O emissions from the managed soils used by grazing animals. Animals graze
year-round, and manure is not managed, which is consistent with the Intergovernmental Panel on
Climate Change (IPCC) [42]. No animal housing was involved, and crops and imported feeds were
not relevant in the study area. CO2 emissions from infrastructure, energy used for crops, and off-farm
GHG emissions were not included in this study. Therefore, we focused on the relevant on-farm
GHG emissions, as affected by the farm management practices. GHG emissions were expressed
as CO2 equivalents (CO2e) for a time horizon of 100 years: CH4 kg × 25 and N2O kg × 298 [43].
Emissions were expressed as kgCO2e per kg LW sold (sum of weaned calves and culled cows), and
per hectare (ha) of farmland.

Assessments of GHG emissions were based on the IPCC Tier 2 protocols [42]. Appendix A shows
the IPCC (2006) equations used in the calculations. Further updates of IPCC (2006) protocols did not
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affect those equations. Enteric CH4 was estimated for each category of cattle on the farm: cow, weaned
calf, replacement heifer, bull and steer.

Estimates of the gross energy (GE) intake of the animals were calculated based on the net energy
(NE) requirements for maintenance, activity, growth, pregnancy and lactation. Enteric emissions were
estimated based on GE intake and using methane conversion factors (Ym). We refined Ym calculations
using the Cambra-López et al. (2008) [44] equation: Ym = −0.0038*DE2 + 0.351*DE-0.8111, where
DE is feed digestibility, expressed as a percentage of the GE of the feed. DE was estimated based on
earlier studies on the quality of the pastures in the study area [45], percentage of land with annual
forage crops, and the opinions of local experts of the ‘Estación Experimental Agropecuaria San Luis’
del ‘Instituto Nacional de Tecnología Agropecuaria’ (INTA). The average DE was 58% (range = 52–60;
SD = 1.3), and the average Ym was 6.7% (range = 6.5–7.1; SD = 0.12).

N2O emissions from managed soils were calculated based on the N deposited on pastures by
grazing animals (urine and dung). The amount of N deposited on the pasture by each cattle type
while grazing was estimated based on the number of animals, feed intake, pasture N content, and N
retention of the animals, following IPCC [42] and the National Research Council [46].

Two analyses were conducted: statistical models that described GHG emissions and
cluster analysis, identifying homogeneous groups of farms that differed in emissions and
management practices.

The relationship between farm management practices and GHG emission was investigated
using generalized linear models (GLM) [47], with the assumption that the data followed a Tweedie
distribution, and a logarithmic link function. The dependent variable was CO2e emissions, which was
expressed as either (a) per kg of LW sold or (b) per hectare of land.

A set of explanatory variables was used for the models of each of the two dependent variables.
The values of all explanatory variables (nominal, ordinal, or continuous) were transformed
to 0–1 values and included as ‘factors’ (categorical predictors with values 0–1) in the models.
Nominal variables included feed purchase (0, no; 1, yes); the reproductive management of the
livestock (0, year-round mating; 1, seasonal mating); technical advice (0, no; 1, yes); type of production
system [0, cow-calf (CC); 1, cow-calf + backgrounding (CCBG)]; and grazing system (0, continuous;
1, rotational). For the ordinal and continuous variables, the scoring criteria were based on the
median (values ≤ median = 0; values > median = 1), except for the land area used for introduced
pastures or annual forage crops. Ordinal variables included water reservoirs per total land (0,
low; 1, moderate; median = 16.7 × 10−4 water reservoirs/ha); grazing paddocks per total land
(0, low; 1, moderate; median = 16 × 10−4 grazing paddocks/ha); and livestock care controls (0,
poor = three or fewer types of controls; 1, good = four to six types of controls; median = 3 controls).
The types of livestock care controls were body condition, teeth examination, rectal palpation/ecography,
parasite control, reproductive vaccine, and bull review control. Continuous variables included
land area used for introduced pastures or annual forage crops (0, null/very low if area ≤ 4%; 1,
low/moderate if area > 4%), average live weight of livestock (0, low; 1, moderate; median = 292 kg),
cows-to-total animals rate (0, low; 1, moderate; median = 55%), average weight of sold calf (0, low;
1, moderate; median = 204 kg), mortality rate (0, low; 1, moderate; median = 2.6%), stocking rate (0,
low; 1, moderate; median = 0.10 LU/ha), weaning rate (0, low; 1, moderate; median = 66.5%), land
productivity (0, low; 1, moderate; median = 9.2 kg LW sold/ha), and animal productivity (0, low; 1,
moderate; median = 100 kg LW sold/LU).

Prior to the GLM analysis, an exploratory analysis was conducted, based on the Mann–Whitney
test, to identify the independent effects of variables on GHG emissions, and a Spearman’s
non-parametric test was used to identify co-linearity among variables. Only non-correlated variables
(rs < 0.38, p > 0.05) were included in a given GLM. Backgrounding farms were excluded from the
analysis because they do not have a breeding herd.

Several analyses were performed based on all possible combinations of non-correlated variables
and removing the non-significant explanatory variables one at a time (variables that did not
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reach p < 0.05 in a Wald’s Chi-square test) until the final models only contained significant
explanatory variables.

Only models that were significant (p < 0.05) based on an omnibus test were included in the
analyses. The resultant models were defined as:

LnE = α + β1 var1 + β2 var2 + . . . + βi vari ,

where E = CO2e emission, the first term ‘α’ contains the regression intercept, and the remaining terms
include the variables used in the model. The model indicates the partial regression β coefficients,
which indicate the weights of the variables 1, 2, . . . , i in the model when the variable is ‘0’. Thus, if β

is > 0, E and the variable (level ‘0’) are positively correlated, and if β is < 0, E and the variable (level ‘0’)
are negatively correlated. If the variable is ‘1’, the model takes the reference value (β = 0 and, hence,
LnE = α). Emissions are calculated as:

E = eα·eβ1var1 ·eβ2var2 · . . . ·eβivari

The statistical significance of the coefficients of individual variables in the models was tested
using Wald’s Chi-square test. Significant interaction effects were not detected. To express the main
effects in each model, the estimated marginal means were calculated. For all possible combinations
of non-correlated variables in the models, a model fit was evaluated based on Akaike’s information
criterion for finite samples (AICc) [48]. ∆AICc was calculated as: ∆AICc = AICci − AICcmin, for i = 1,
2, . . . , R, where AICcmin denotes the minimum of the AICc values for the R models [49]. Models that
had the lowest AICc were selected as the best models within a set of models that included the same set
of variables [48]. Models with ∆AICc < 7 were considered plausible, and models with ∆AICc > 11 were
discarded [49]. The explained deviance reflected the contributions of significant individual explanatory
variables to the model as follows: D2 = (D0 − Dmodel)/D0, where D0 is the deviance of the null model
(intercept only), and Dmodel is the deviance of the analyzed model [50]. The contribution of each
explanatory variable was estimated based on the change in D2 after the variable was deleted from the
model divided by the total explained deviance [51], which is expressed here as ‘D2 change on deletion’
(%DCD). As the values of the variables were 0 or 1, standardization of the explanatory variables was
not conducted. The statistical significance of the independent effects of each management variable on
GHG emissions was assessed based on Spearman’s correlation non-parametric tests.

For the typification of the farms, 7 continuous and 4 discrete variables were selected. To identify
the main factors (eigenvalues > 1) that characterized the changes observed, 11 variables were
subjected to principal component analysis (PCA), with varimax rotation. The Bartlett sphericity
test and a Kaiser–Meyer–Olkin (KMO) test for sampling adequacy were used to validate the sampling.
To identify a typology of the farms, we subjected the main factors of the PCA to a hierarchical cluster
analysis (CA), with a squared Euclidean distance and Ward’s aggregation method. In that way, five
groups of farms were identified. To validate the results, we used a non-parametric Kruskal–Wallis test,
known as ‘analysis of variance by ranges’ [52], which verifies which continuous variables, either those
used in the PCA-CA (7 variables) or not (10 variables), are significant in explaining the differences
between the groups. To identify which groups differ according to each continuous variable, we used
the non-parametric Dunn–Bonferroni post-hoc test. To identify differences between groups for the
discrete variables, we used the Pearson’s chi-square test. The testing of variables not included in the
CA is known as ‘criterion validity’ [53] and has been used to characterize livestock farms [54].

The statistical analyses were performed using IBM SPSS Advanced Statistics software ver. 22 [55].
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3. Results

3.1. Farm Greenhouse Gas (GHG) Emissions

Among the beef farms in the San Luis province, central Argentina, the mean GHG emission
intensity was 19.6 kg CO2e/kg LW sold, but varied widely (range = 6.2–39.7). Backgrounding (BG)
farms produced fewer emissions than did cow-calf (CC) farms, and mixed CCBG farms produced
average emissions. On a farm-area basis, the average emission rate was 261 kg CO2e/ha (range = 26 to
1042), which did not differ significantly among types of production systems (Table 2).

Table 2. Farm greenhouse gas emissions of the beef cattle farms in San Luis province, central Argentina.

Farm Greenhouse
Gases Emission

Intensity
Production System Mean 1 s.d. Min Max n

kg CO2e/kg LW sold

Cow-calf 23.6 b 7.3 12.4 39.7 18
Backgrounding 6.9 a 1.1 6.2 8.1 3

Cow-calf + Backgrounding 15.7 ab 6.3 7.0 22.6 9
Overall 19.6 8.6 6.2 39.7 30

kg CO2e/ha

Cow-calf 243 225 26 1042 18
Backgrounding 345 70 270 409 3

Cow-calf + Backgrounding 269 200 83 671 9
Overall 261 205 26 1042 30

s.d., standard deviation; Min and Max, minimum and maximum values; LW, live weight. 1 Different letters in the
same column indicate significant differences between production system groups (p = 0.002). Kruskal–Wallis test.

3.2. Effects of Farm System and Management on GHG Emissions

Considered independently, six variables had a significant effect on emission intensity per kg of LW
sold (Table 3). Emissions were significantly lower under good than under poor livestock care management
controls, if technical advice was sought, if rotational grazing was used, and in CCBG rather than in CC
systems. Land and animal productivity affected the emissions, with lower emission intensities under
higher land and animal productivity. Furthermore, emission intensity was negatively correlated with
land and animal productivities (r = −0.46, p < 0.05; r = −0.87, p < 0.001, respectively). Weaning rate and
emission intensity were negatively correlated (r = −0.39, p < 0.05); however, a Mann-Whitney test did not
indicate a significant effect of weaning rate on emission intensity (p < 0.10, Table 3).

The set of variables that, considered independently, had a significant effect on emissions per
hectare of farmland differed from those that affected emission intensity per kg of LW sold, with the
exception of land productivity, which significantly affected both types of emissions, but in opposite
directions (Table 3). Emissions per hectare were significantly lower if little or no land had been
dedicated to improved pastures or annual forage crops, if mortality rate was low, if stocking rate was
low, and if the number of grazing paddocks per total land was low. Emissions were higher under
moderate than under low land productivity. Furthermore, land productivity and emissions per hectare
were positively correlated (r = 0.66, p < 0.001).

Eleven models for emissions per kg of LW sold and eight models for emissions per hectare
of farmland had significant (p < 0.05) values for the intercept and explanatory variables (Table 4).
All of the variables that individually had a significant effect on emission intensity (Table 3) yielded
significant models.

In the best model for explaining emissions per kg LW sold (Model 1, lowest AICc and highest D2),
animal and land productivities were significant explanatory variables (Table 4 and Figure 1). Systems
that had higher animal and higher land productivity emitted less than those systems with a lower
productivity. The calculated square deviance (D2) indicated that the model explained 51.2% of the
variation in the response variable. Models 2–3 performed worse in terms of AICc and D2 but were
plausible in terms of ∆AICc (∆AICc < 7) and should rarely be dismissed [49]. Models 2–3 included
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management care controls of livestock as an explanatory variable: systems that had good management
controls emitted less than those that did not. Models 4–9 performed worse than 1–3 but were not
necessarily dismissed (∆AICc < 11) [49], and they included the type of production system, grazing
system and technical advice as significant explanatory variables: CCBG systems emitted less than
CC systems, rotational emitted less than did continuous grazing, and systems that received technical
advice emitted less than did those that did not. Models 10–11 had relatively little empirical support
(∆AICc > 11) [49] and were dismissed. Within each model, the partial regression coefficients and
the ‘D2 change on deletion’ (%DCD, results not shown) indicated that animal productivity (Model
1), livestock care management (Model 3), type of production system (Model 4), and grazing system
(Model 5) had more weight in influencing emission intensity than land productivity.

Table 3. Individual effects of farm characteristics and management on greenhouse gas
emission intensity.

Variable Level/Type

Farm Greenhouse Gases Emissions Intensity

kg CO2e/kg LW Sold kg CO2e/ha

Mean ± s.d. n Sig.a Mean ± s.d. n Sig.a

Land use

Land area used for improved pastures or
annual forage crops (%)

0/very low 21.29 ± 7.76 24 n.s. 221 ± 199 24
**Low/moderate 18.28 ± 9.72 3 503 ± 184 3

Feed purchase No 22.28 ± 9.19 14 n.s. 232 ± 263 14 n.s.
Yes 19.54 ± 6.12 13 273 ± 153 13

Beef cattle

Average live weight of livestock (kg) Low 21.94 ± 7.39 14 n.s. 257 ± 251 14 n.s.
Moderate 19.91 ± 8.47 13 246 ± 175 13

Cows to total animals rate (%)
Low 19.82 ± 6.25 14 n.s. 237 ± 171 14 n.s.

Moderate 22.18 ± 9.37 13 268 ± 258 13

Average weight of sold calf (kg) Low 22.00 ± 6.94 14 n.s. 258 ± 258 14 n.s.
Moderate 19.84 ± 8.85 13 246 ± 164 13

Mortality rate (%) Low 21.31 ± 8.70 14 n.s. 170 ± 75 14
*Moderate 20.58 ± 7.13 13 341 ± 277 13

Stocking rate (LU/ha) Low 20.83 ± 9.65 14 n.s. 145 ± 73 14
***Moderate 21.10 ± 5.67 13 367 ± 256 13

Grazing infrastructures

Water reservoirs/ha−1 (×10−3)
Low 20.30 ± 8.21 14 n.s. 196 ± 114 14 n.s.

Moderate 21.67 ± 7.68 13 312 ± 268 13

Grazing paddocks/ha (×10−3)
Low 20.09 ± 8.56 14 n.s. 157 ± 71 14

*Moderate 21.90 ± 7.21 13 354 ± 268 13

Technical management of the farm

Livestock care management controls Poor 24.23 ± 7.36 15
*

262 ± 245 15 n.s.
Good 16.87 ± 6.59 12 239 ± 177 12

Reproductive management of the
livestock (mating)

Year-round 23.72 ± 9.51 12 n.s. 227 ± 269 12 n.s.
Seasonal 18.75 ± 5.60 15 272 ± 165 15

Technical advice
No 23.96 ± 7.40 15

*
254 ± 245 15 n.s.

Yes 17.21 ± 6.92 12 249 ± 177 12

Grazing system Continuous 27.65 ± 7.74 7
**

323 ± 350 7 n.s.
Rotational 18.62 ± 6.55 20 227 ± 146 20

Type of production system CC 23.60 ± 7.29 18
*

243 ± 225 18 n.s.
CCBG 15.68 ± 6.31 9 269 ± 200 9

Reproductive efficiency

Weaning rate (%) Low 23.67 ± 7.53 14
(*)

262 ± 252 14 n.s.
Moderate 18.04 ± 7.34 13 241 ± 173 13

System productivity

Land productivity (kg LW sold/ha) Low 24.28 ± 7.78 14
*

148 ± 67 14
***Moderate 17.38 ± 6.40 13 364 ± 261 13

Animal productivity (kg LW sold/LU) Low 26.00 ± 6.27 14
***

262 ± 253 14 n.s.
Moderate 15.53 ± 5.39 13 241 ± 172 13

LU, Livestock Units. LW, Live Weight. CC, Cow-calf. CCBG, Cow-calf + Backgrounding. a Sig. = significance based
on Mann-Whitney test. (*) = p < 0.10, * = p < 0.05, ** = p < 0.01, *** = p < 0.001.
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Table 4. Generalized linear models (GLM) for the response in emission intensity (kg CO2e/kg LW sold, and as kg CO2e/ha) of beef cattle farms to farm management
and characteristics.

Emission Model Livestock
Care

Technical
Advice

Grazing
System

Production
System

Animal
Productivity

Land
Productivity Land Use Mortality

Rate
Stocking

Rate
Grazing

Paddocks Sig. AICc ∆AICc D2 (%)

kgCO2e
kg−1

LW
sold

1 +0.459 *** +0.218 * *** 176.67 0.0 51.23
2 +0.515 *** *** 177.78 1.1 43.81
3 +0.360 ** +0.332 ** ** 182.43 5.8 39.83
4 +0.342 ** +0.261 ** ** 184.88 8.2 34.22
5 +0.330 ** +0.264 * ** 185.23 8.6 33.39
6 +0.282 * +0.287 ** ** 186.07 9.4 31.34
7 +0.409 ** ** 186.29 9.6 23.45
8 +0.396 ** ** 186.69 10.0 22.34
9 +0.362 ** * 187.00 10.3 21.44
10 +0.334 ** * 187.94 11.3 18.74
11 +0.331* * 188.20 11.5 17.97

kg
CO2e
ha−1

1’ −0.784 *** −0.675 *** *** 334.64 0.0 57.39
2’ −0.748 *** −0.442 * *** 341.82 8.2 45.25
3’ −0.929 *** *** 342.02 8.4 39.32
4’ −0.903 *** *** 342.98 9.3 37.29
5’ −0.811 *** ** 346.01 12.4 30.45
6’ −0.699 ** −0.620 * ** 346.83 13.2 34.93
7’ −0.698 ** * 349.08 15.4 22.81
8’ −0.823 ** * 351.084 17.4 17.45

Partial regression ß coefficients, with their statistical significance when the variable is ‘0’, statistical significance of the model (Sig.) based on an omnibus test, Akaike’s information criteria
(AICc), ∆AICc and square deviance (D2) are given. If β is > 0, emissions and the variable are positively correlated and if β is < 0, emissions and the variable are negatively correlated.
Only statistically significant variables (based on Wald’s chi-square test) are shown. Empty cells indicate variables not included in a given model. * = p < 0.05, ** = p < 0.01, *** = p < 0.001.
∆AICc calculated as: ∆AICc = AICci − AICcmin, for i = 1, 2, . . . , R, where AICcmin denotes the minimum of the AICc values for the R models. D2 calculated as: D2 = (D0 − Dmodel)/D0,
where D0 is the deviance of the null model (with intercept, only), and Dmodel is the deviance of the analyzed model.
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Figure 1. Marginal means and standard error of the most significant GLM models for the response in emission intensity (kg CO2e/kg LW sold, and kg CO2e/ha) of
beef cattle farms in San Luis province, central Argentina. Differences were tested using Wald’s chi-square test.
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In the best model for explaining emissions per hectare of farmland (Model 1’, lowest AICc and
highest D2), land productivity and the number of grazing paddocks per total land were significant
explanatory variables (Table 4 and Figure 1). Systems that had lower land productivity emitted less
than did those systems with a higher land productivity. In addition, systems that had less grazing
paddocks emitted less. In this model, the partial regression coefficients indicated that land productivity
had more weight than the number of grazing paddocks. Calculated square deviance (D2) indicated
that the model explained 57.4% of the variation in the response variable. Models 2’-4’ performed worse
than model 1’ in terms of AICc and D2 but were not necessarily dismissed (∆AICc < 11) [49], and they
included the mortality rate and stocking rate as significant explanatory variables: systems that had a
lower mortality rate emitted less than did those that had a higher mortality rate, and systems that had
a lower stocking rate emitted less than did those that had a higher stocking rate. Models 5’–8’ had
relatively little empirical support (∆AICc > 11) [49] and were dismissed. Within each model, the partial
regression coefficients and the ‘D2 change on deletion’ (%DCD, results not shown) indicated that the
number of grazing paddocks (Model 1’) and mortality rate (Model 2’) had less weight in influencing
emissions than land productivity.

3.3. Farm Typification

The PCA identified the following five groups of farms (Tables 5–7):

• Group I (23% of farms): ‘High emitters per LW sold’ (higher emitters than group V) and ‘low
emitters per hectare’ (lower emitters than group II). ‘Worse management’ and ‘low stocking
rates’ (lower stocking rates than group II). Only cow-calf systems. Highest proportion of farms
with continuous grazing. On those farms, all of the land area consists of natural grasslands,
and off-farm feeds are not used. Lowest percentage of farms that have three or more types
of livestock care management controls. Highest percentage of farms with year-round mating.
Highest proportion of farms without any technical advice. Low weaning rates (lower weaning
rates than group IV). ‘Low land and animal productivities’ (lower land productivity than groups
II and V, and lower animal productivity than group V).

• Group II (30% of farms): ‘Intermediate emitters per LW sold’ and ‘high emitters per hectare’
(higher emitters per hectare than group I). ‘Medium level of management’ and ‘high stocking
rates’ (higher stocking rates than group I). Cow-calf systems and rotational grazing predominate.
Almost all of the land area consists of natural grasslands, and most of the farms use off-farm
feeds (higher percentage than group I and III). Most of the farms have three or more livestock
management controls, 50% of farms have year-round mating, and 78% of farms receive no
technical advice (less technical advice than groups III and IV). Intermediate weaning rates. ‘High
land productivity’ (higher than group I) and ‘intermediate animal productivity’.

• Group III (17% of farms): ‘Intermediate emitters per LW sold and per hectare’. ‘Suitable farm
management’ and ‘intermediate stocking rates’. Cow-calf or mixed CCBG systems, and all the
farms use rotational grazing. The entire land area consists of natural grasslands, and off-farm
feeds are not used. All of the farms implemented at least 3 types of livestock management
controls, 80% of the farms had seasonal mating of the herd, and all farms have technical advice.
Intermediate weaning rates. ‘Intermediate land and animal productivity’.

• Group IV (20% of farms): ‘Intermediate emitters per LW sold and per hectare’. ‘Suitable farm
management’, and ‘intermediate stocking rates’. Cow-calf, BG or mixed CCBG systems, and
all the farms have rotational grazing. Almost all of the land area consists of natural grasslands,
and most farms use off-farm feeds. All of the farms implement at least 3 types of livestock
management controls and have seasonal mating of the herd, and 83% of farms have technical
advice. High weaning rates (higher weaning rates than group I). ‘Intermediate land and
animal productivities’.
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• Group V (10% of the farms): ‘Low emitters per LW sold’ (lower emitters than group I), and
‘intermediate emitters per hectare’. ‘Good farm management’ and ‘intermediate stocking rates’.
None of the farms were exclusively cow-calf systems. All of the farms had rotational grazing.
Relatively high proportion of land used for introduced pastures and annual forage crops, and
67% of farms used off-farm feeds (higher percentage of farms than in groups I and III). All of the
farms implemented at least 3 types of livestock management controls, had seasonal mating of the
herd, and 67% of farms had technical advice. Intermediate weaning rates. ‘High land and animal
productivities’ (higher than group I).

Table 5. Mean values for continuous variables by cluster group.

Variable

Cluster Group

Sig.aI II III IV V

n = 7 n = 9 n = 5 n = 6 n = 3

Socio-economic data

Age (years) 61 58 48 49 55 n.s.
+ Hired labor (WU/LU) (×10−3) 1.0 a 0.2 a 4.6 b 2.9 ab 1.3 ab ***

Land use
+ Total land area (ha) 1077 a 1673 a 7010 b 3284 ab 10,200 ab **

+ Land area used for native pastures (%) 100 b 98 b 100 b 94 ab 64 a **
+ Land area used for improved pastures (%) 0 b 0 b 0 b 6 ab 26 a ***

Land area used for forage crops (%) 0 b 2 ab 0 b 0 b 10 a *

Beef cattle
+ Total livestock units 51.6 a 194.4 ab 482.1 b 328.0 ab 1207.0 b ***

Mortality rate (%) 11.9 10.0 2.3 2.2 2.2 n.s.
Stocking rate (LU/ha) 0.07 a 0.19 b 0.08 ab 0.10 ab 0.19 ab *

Grazing infrastructures

Water reservoirs per ha (×10−3) 3.0 ab 5.2 a 0.9 b 1.4 ab 1.4 ab *
Water reservoirs/LU (×10−3) 46 b 27 ab 12 a 17 ab 8 a **

+ Grazing paddocks/ha (×10−3) 2.6 7.2 1.1 2.4 2.2 n.s.

System productivity

Average live weight of livestock (kg) 272 284 302 283 271 n.s.
Weaning rate (%) 49 a 63 ab 69 ab 82 b 73 ab *

+ Land productivity (kg LW sold/ha) 4.7 a 20.3 b 11.3 ab 19.6 ab 52.9 b ***
Animal productivity (kg LW sold/LU) 74 a 123 ab 160 ab 144 ab 283 b *

Farm greenhouse gases emission intensity

kg CO2e/kg LW sold 27 b 20 ab 15 ab 19 ab 8 a *
kg CO2e/ha 121 a 372 b 166 ab 266 ab 403 ab **

+ Variables used in the principal component analysis and in the cluster analysis. a Sig. = significance based on the
Kruskal–Wallis test. * = p < 0.05, ** = p < 0.01, *** = p < 0.001. Different letters in the same row indicate significant
differences between groups (Dunn–Bonferroni post-hoc test).

Table 6. Frequency (% of farms) of discrete variables by cluster group.

Variable

Cluster Group

Sig.aI II III IV V

n = 7 n = 9 n = 5 n = 6 n = 3

Socio-economic data
+ Level of education of farmer 1

None 0 22 20 0 0 n.s.
Primary or secondary school 100 b 78 b 20 a 0 a 100 b ***
Higher education 0 a 0 a 60 b 83 b 0 a ***



Sustainability 2018, 10, 4228 13 of 22

Table 6. Cont.

Variable

Cluster Group

Sig.aI II III IV V

n = 7 n = 9 n = 5 n = 6 n = 3

Type of production system

Cow-calf 100 b 78 b 60 ab 50 a 0 a *
Backgrounding 0 11 0 17 33 n.s.
Cow-calf + backgrounding 0 11 40 33 67 n.s.

Grazing system

Continuous 71 b 22 a 0 a 0 a 0 a **
Rotational 22 a 78 ab 100 b 100 b 100 b **
+ Feed purchase

Yes 0 a 89 b 0 a 83 b 67 b **
No 100 b 11 a 100 b 17 a 33 a *

Technical management of the farm
+ Livestock care controls 2,3

None 43 13 0 0 0 n.s.
One or two control types 43 25 0 0 0 n.s.
Three or more control types 14 a 62 b 100 b 100 b 100 b ***
Reproductive management of the livestock 3

Year-round mating 100 b 50 a 20 a 0 a 0 a **
Seasonal mating 0 a 50 b 80 b 100 b 100 b **
+ Technical advice
None 100 c 78 b 0 a 17 a 33 ab **
Veterinarian and/or agronomist 0 a 22 ab 100 c 83 c 67 bc **

+ Variables used in the principal component analysis and in the cluster analysis. 1 Remaining farmers, Do not
know/No answer. 2 Types of livestock care controls: body condition, teeth examination, rectal palpation/ecography,
parasite control, reproductive vaccine, bull review control. 3 n = 27 (backgrounding farms excluded). a Sig. =
significance based on Pearson’s chi-squared test. * = p < 0.05, ** = p < 0.01, *** = p < 0.001. Different letters in the
same row indicate significant differences between groups.

Table 7. Main characteristics of each cluster group: socio-economic data, land use, beef cattle, feed
purchase, technical management of the farm, system productivity, greenhouse gases emission, grazing
system and type of production system. Based on Tables 5 and 6.

Cluster Group

I II III IV V

Main education level PS PS HE HE PS
Hired labor a a b ab ab
Total land area a a b ab ab
Land area used for native pastures b b b ab a
Land area used for improved pastures a a a ab b
Land area used for annual forage crops a ab a a b
Total livestock units a ab b ab b
Stocking rate a b ab ab ab
Dependence on off-farm feeds a b a b b
Livestock care controls: ≥3 control types a b b b b
Technical advice: Veterinarian and/or
Agronomist a ab c c bc

Weaning rate a ab ab b ab
Land productivity a b ab ab b
Animal productivity a ab ab ab b
Emission intensity per LW sold b ab ab ab a
Emission intensity per hectare a b ab ab ab
Main grazing system CON ROT ORO ORO ORO
Main system OCC CC CC CC CCBG
Main reproductive management OYR YRS S S S

PS = Primary or secondary school. HE = Higher education. CON = Continuous, ROT = Rotational, ORO = Only
rotational, OCC = Only cow-calf, CC = Cow-calf, CCBG = Cow-calf and backgrounding, OYR = Only year-round,
YR = Year-round, YRS = Year-round/seasonal, S = Seasonal. Different letters in the same row indicate significant
differences between groups (based on Tables 5 and 6).
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4. Discussion

GHG farm emissions varied widely among the 30 farms surveyed in the semiarid rangelands
of central Argentina, which reflected the high diversity in the types of production systems [26,56].
Variability is especially high in studies that have been based on actual farm survey data [14,26].

In our study, on a product sold basis, cow-calf systems emitted more GHG than backgrounding
systems. Similar results have been reported in grassland-based beef systems in Uruguay [14,15,57]
and Argentina [58]. In our study, the GHG emissions of cow-calf systems were similar to those of 295
cow-calf farms in Canada [26] and the cow-calf systems based on native and improved grasslands in
Uruguay [14]. Emissions from backgrounding systems were similar to those from background-finishing
systems that had seeded pastures and feedlots in Uruguay [57].

On a farm-area basis, in our study, GHG emissions did not differ significantly among types of
systems. The average was much lower than previously reported values, which ranged between 265 and
9782 [26], and between 2334 and 3037 [59] in Canadian beef cattle production systems, between 1490
and 2827 in Uruguayan beef systems [14], and between 7902 and 10,913 in New Zealand pasture-based
dairy systems [60]. The higher stocking rates in those studies (0.31, 0.77 and 2.3–3.0 LU/ha in Canadian,
Uruguayan and New Zealand systems, respectively, versus 0.13 LU/ha in our study) were mainly
responsible for the differences in emissions between those studies and ours. In our study, the emissions
per hectare and stocking rate were positively correlated (r = 0.900, p < 0.001). In beef systems in the
Brazilian Amazon [61] and in dairy systems in Ireland [62], emissions per hectare and stocking rates
were positively correlated. Livestock density on extensively managed grazing lands are relatively
low; therefore, CH4 emissions per unit area from these grazing lands is much lower than those from
intensively managed grazing lands [33,63]. The contribution of extensively managed grasslands to
GHG emissions is expected to be low per unit area because of low livestock densities and agronomic
inputs, although the absolute global contribution might be high because of their large land area [63].

In our study, on a product sold basis, animal productivity was the variable that best explained
the largest amount of variance in emission intensity, which was negatively correlated with
productivity. To a lesser degree, land productivity and emission intensity were negatively correlated.
Improving production efficiency has been recommended as a strategy to mitigate GHG emissions
in beef systems [14,15,26,57,64–66]. For instance, Alemu et al. [26] found that low-emitting farms
had higher animal and land productivities than high-emitting farms in Canadian cow-calf systems.
In French suckler-beef production farms, animal productivity was the main factor influencing GHG
emissions [64], which suggested that technical efficiency was a factor. Becoña et al. [14] found that
beef farm productivity was one of the main determinants of GHG emissions in Uruguayan cow-calf
systems. The same negative correlation was found in dairy systems [67,68], mainly because emissions
are spread over more units of output per cow, which dilutes emission intensity. Productivity gains
are generally achieved through improved husbandry practices and technologies that increase the
proportion of resources used for production purposes rather than for the maintenance of the animals,
which contribute to emission reductions [1]. Improved farm productivity can result from a combination
of several types of strategies.

On the beef farms in our study, continuous stocking practices emitted significantly more GHG per
product sold than rotational stocking. Beef cattle in rotational stocking systems emitted less methane
than cattle in continuous grazing [35]. Furthermore, good grazing management can have a positive
impact on soil carbon sequestration [1].

Improved livestock care management was associated with reduced GHG emission intensity per
kg LW sold in our study. Improved animal health can increase herd productivity and reduce GHG
emission intensity [24]. Along with improved reproduction management, improved animal health
helps to reduce the unproductive portion of the herd and associated emissions, and concomitantly,
these measures increase productivity [1]. Preventive health measures can play a role in increasing
growth and fertility rates, which improve animal and herd performance [1]. Llonch et al. [27] reported
a reduction in rumen methanogenesis in response to an increase in production efficiency caused
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by improvements in the health status of the herd, which is a win-win strategy, because it increases
environmental sustainability and animal welfare.

In our study, farms that had received technical advice had lower emissions per unit of product
sold, which reflected the importance of technical advice in grazing management planning, feeding,
health care, the reproductive management of the herd, and overall farm system management [69,70].

Land-related variables can affect GHG emissions from animals through diet quality [26].
Diet digestibility directly reduces CH4 emission intensity [64,71], which was apparent on farms
that had an increased area of improved pastures, including seeded pastures, oversowing with legumes,
and annual winter crops for grazing [14]. In our study, such an effect was not apparent, probably
because of the small proportion of the farmland that had been used for improved pastures or annual
forage crops (mean = 6%, vs. 20.5% in the study by Becoña et al. [14]).

Many of those husbandry practices are associated with increases in productivity, which suggests
that an economic benefit can be realized with a concurrent reduction in GHG emissions [27].
Strategies that both improve production efficiency and reduce GHG emissions are those most attractive
to and most likely to be adopted by farmers [26]. Further studies should compare the economic impact
of several measures to mitigate GHG emissions and willingness to adopt them in our study area.

In our study, emission intensity per hectare of farmland was positively correlated with stocking
rate and land productivity. Similar results were reported by Becoña et al. [14] in beef cow-calf systems.
In Irish dairy farms, Casey and Holden [16] found a significant positive correlation between stocking
rate and the amount of GHG emissions per hectare. Bava et al. [68] found a strong positive correlation
between emissions per land area and stocking rate in dairy systems. Stocking rate and total dry
matter intake are the main factors driving production per hectare and GHG emissions from grazed
pastoral systems [7]. The number of grazing paddocks per hectare and the proportion of land used
for improved pastures and annual forage crops were positively correlated with GHG emissions per
hectare of land area in our study. Higher stocking rates and land productivity, coupled with higher
density of grazing paddocks and land use for improved pastures and forage crops, reflect a certain
degree of intensification of the farming system, i.e., intensification implied higher emissions per hectare.
Bava et al. [68] concluded that intensification, defined as the increase in output per hectare, invariably
led to higher emissions on a per-area basis. Nevertheless, the emissions per unit of product and
land productivity were negatively correlated, which illustrates the potential trade-off between carbon
efficiencies per unit of product and per unit of land, i.e., is it possible to reduce emissions per unit of
land and per unit of product at the same time?

The CA indicated that, if GHG emissions are evaluated on a land-unit basis, farms of group 1
had low emissions and were very extensive in terms of land use. They had low stocking rates, a low
dependence on off-farm feeds, land productivity, and low proportion of land used for improved
pastures or annual crops. Farms in that group, however, had the lowest level of husbandry practices in
terms of livestock care controls and reproductive management, technical advice, and grazing system,
low weaning rate and animal productivity, and concomitantly, they had high emissions per product
sold. From that ‘base-line’ traditional farming system, strategies can differ considerably in practice
and results, in terms of farm productivity and emissions. Farms in group II intensified the system by
increasing the stocking rates and dependence on off-farm feeds, and they improved some husbandry
practices, maintained emissions per product sold, but increased emissions per hectare. Farms in group
V had a higher proportion of land as improved pastures and annual forage crops, medium stocking
rates, improved livestock husbandry practices, and had intermediate levels of emissions per hectare.
This group had lower emissions per product sold than group I because of those improvements, but
also because of the high proportion of backgrounding on the farms in this group. Nevertheless, it has
to be taken into account that only three farms belonged to group V. Groups III and IV had higher levels
of husbandry practices than groups I and II, but they did not have stocking rates that were as high as
those in group II. Thus, those groups (III and IV) had intermediate levels of farm productivity and
emissions per product sold and per hectare.
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The CA suggested that farms that had a high level of husbandry ‘intensification’ through livestock
care and reproductive management achieved high animal productivity and, therefore, low GHG
emissions per product sold compared to ‘base-line farms’ (group I). Thus, if land productivity
is increased by using that high-output animal strategy, emissions per hectare can be limited to
intermediate levels. However, if land productivity is maximized through high stocking rates, emissions
per hectare is the highest, as in the case of group II. Becoña et al. [14] stated that both emissions per
unit of land and per unit of product can be reduced concurrently and suggested that the key factor
is reducing stocking rate (or increasing forage allowance) in grazing beef cow-calf systems. GHG
emission intensity can be reduced through changes in animal husbandry practices that increase animal
outputs [14,64]. Casey and Holden [16] suggested that it is physically and biologically possible to
achieve low emissions, both per unit of land and per product, by using high-output cows at low
stocking rates in dairy systems. A move toward fewer cows producing more milk at lower stocking
rates is required, representing an extensification in terms of area, but an intensification in terms of
animal husbandry practices. In a simulation experiment on pasture-based dairy farms in New Zealand,
Beukes et al. [60] maintained production but reduced GHG emissions per unit of land and per unit
of product by increasing efficiency (e.g., reducing the number of non-productive animals in the herd,
among other mitigation strategies), which allowed stocking rates to be reduced. The mitigation of
GHG emissions per unit of product should be based on the intensification of husbandry systems rather
than on land intensification, which might lead to potential losses in ecosystem service provisioning,
increases in GHG emissions per unit of area and other environmental impacts, such as eutrophication
and acidification [15].

Among the beef cattle farms in our study, those in groups III and IV could further reduce
emission intensity by adopting practices, such as improving feed quality [22,26,64], using superior
animal genetics [72], or increasing the proportion of backgrounding vs. cow-calf in the farm system.
Feed quality can be increased by applying seeding grasses to improve native pastures, annual forage
cropping, and by purchasing high-quality off-farm feeds. However, introduced grasses can increase the
impact on native grasslands, with potential biodiversity, wildlife habitat and landscape losses [15,57].
The mitigation of climate change should not be associated with directly reducing biodiversity [15].
In several regions of the world, pasture intensification has been used to increase productivity, incomes,
and mitigate GHG, but has increased rangeland degradation [32]. Annual cropping systems have
relatively high levels of agronomic inputs and nutrient leakage, frequent and significant disturbances
of the soil surface, and net losses of soil organic content [33]. In addition, CO2 emissions derived
from fertilizers and machinery operations for annual forage crops are high [26]. Feed quality can
be improved by purchasing high-quality feeds, but the embedded emissions associated with feed
production should not be ignored. Alemu et al. [26] found that minimizing purchased cereal grain
and forage per unit cow reduced the emissions associated with the production and transportation
of farm inputs. In strategies, such as improving genetic merit, the animals have to be selected
not only for their high efficiency in transforming feeds, but also for their ability to adapt to rough
environments and low-quality feeds [73], which are characteristic of the semi-arid rangelands of central
Argentina. In addition, to reduce emissions per unit of product, farmers can increase the proportion
of backgrounding versus cow-calf in their system. However, this strategy can transfer the negative
environmental impacts of the cow-calf phase to other areas, i.e., the emissions of the replacement stock,
if purchased, have occurred elsewhere on other farms [74].

Our results from actual semi-arid rangeland beef systems in central Argentina suggest that the
implementation of relatively easy-to-adopt farming management practices has considerable potential
for reducing GHG emissions per unit of product and per unit of land area. At the same time, the
preservation of rangeland ecosystem services should be a target.

The expansion of agriculture and an increase in the intensification of livestock systems have
challenged the integrity of rangelands in Argentina and worldwide. Future research should assess the
ecosystem services provided by the beef production systems in the semi-arid rangelands of Argentina,
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e.g., wildlife biodiversity and landscape preservation, animal welfare, nutrient cycling, hydrologic
conditions, control of invasive plant species, and carbon sequestration. Grazing lands have a high
potential for carbon sequestration [23,75,76], which can, at least partially, mitigate the GHG emissions
from ruminant production systems [77]. Extensive livestock grazing systems had a lower GHG
emission intensity if soil carbon uptake had been included in the emission inventory [15,65,78–81],
particularly for low-input or small-scale grazing systems [20,81]. Therefore, land-use decisions
should be informed by all environmental factors, negative impacts—not only GHG emissions—and
ecosystem services. In order to increase the sustainability and efficiency of beef livestock systems in
the Argentinean semi-arid rangelands, future studies should use an integrated, holistic approach.

5. Conclusions

This study assessed the relationships between GHG emissions and characteristics and the
management practices of commercial farms in extensive beef systems that are based on the natural
rangelands in the semi-arid Central Region of Argentina. The results suggest that the implementation
of realistic, relatively easy-to-adopt farming management practices has a considerable potential to
mitigate GHG emissions. Emissions per product sold were low on farms that had improved livestock
care management, had rotational grazing, received technical advice, and had high animal and land
productivities. The emissions per hectare of farmland were low on farms that had low stocking rates, a
low number of grazing paddocks, little or no land dedicated to improved pastures and annual forage
crops, and low land productivity.

Therefore, in our study, the set of variables that influenced the emissions per hectare of farmland
differed from those that affected the emissions per unit of product, and land productivity affected
the two types of emission expressions in opposite directions, which suggests a potential trade-off
between the mitigation of GHG emissions per unit of product and per unit of land. Given that GHG
emissions per product and per hectare of farmland differ in their implications for the assessment of the
environmental impacts of food production (e.g., global vs. local scales, intensification processes), both
measures should be taken into account and reconciled as much as possible.

To identify ways to increase the sustainability and efficiency of the management of beef livestock
systems in the Argentinean semi-arid rangelands, future studies should use an integrated, holistic
approach in which all negative environmental impacts and ecosystem service provisioning, e.g.,
diversity preservation and carbon sequestration, should be assessed.
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Appendix A

The IPCC (2006) [42] equations used in the calculations of the on-farm CH4 and N2O gases
emissions were: 10.3, 10.4, 10.6, 10.8, 10.13, 10.14, 10.15, 10.16, 10.17, 10.18, 10.19, 10.20, 10.21, 10.31,
10.32, 10.33, 11.1, 11.5, and 11.11.
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