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Abstract: Rapid urbanization has dramatically spurred economic development since the 1980s,
especially in China, but has had negative impacts on natural resources since it is an irreversible
process. Thus, timely monitoring and quantitative analysis of the changes in land use over time and
identification of landscape pattern variation related to growth modes in different periods are essential.
This study aimed to inspect spatiotemporal characteristics of landscape pattern responses to land
use changes in Xuzhou, China durfing the period of 1985-2015. In this context, we propose a new
spectral index, called the Normalized Difference Enhanced Urban Index (NDEUI), which combines
Nighttime light from the Defense Meteorological Satellite Program/Operational Linescan System
with annual maximum Enhanced Vegetation Index to reduce the detection confusion between urban
areas and barren land. The NDEUI-assisted random forests algorithm was implemented to obtain
the land use/land cover maps of Xuzhou in 1985, 1995, 2005, and 2015, respectively. Four different
periods (1985-1995, 1995-2005, 2005-2015, and 1985-2015) were chosen for the change analysis of
land use and landscape patterns. The results indicate that the urban area has increased by about
30.65%, 10.54%, 68.77%, and 143.75% during the four periods at the main expense of agricultural
land, respectively. The spatial trend maps revealed that continuous transition from other land use
types into urban land has occurred in a dual-core development mode throughout the urbanization
process. We quantified the patch complexity, aggregation, connectivity, and diversity of the landscape,
employing a number of landscape metrics to represent the changes in landscape patterns at both
the class and landscape levels. The results show that with respect to the four aspects of landscape
patterns, there were considerable differences among the four years, mainly owing to the increasing
dominance of urbanized land. Spatiotemporal variation in landscape patterns was examined based
on 900 x 900 m sub-grids. Combined with the land use changes and spatiotemporal variations in
landscape patterns, urban growth mainly occurred in a leapfrog mode along both sides of the roads
during the period of 1985 to 1995, and then shifted into edge-expansion mode during the period
of 1995 to 2005, and the edge-expansion and leapfrog modes coexisted in the period from 2005 to
2015. The high value spatiotemporal information generated using remote sensing and geographic
information system in this study could assist urban planners and policymakers to better understand
urban dynamics and evaluate their spatiotemporal and environmental impacts at the local level to
enable sustainable urban planning in the future.

Keywords: land use/land cover (LULC); nighttime light (NTL); Normalized Difference Enhanced
Urban Index (NDEUI); landscape metrics; random forests; urban growth mode
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1. Introduction

In China, significant economic development has resulted in the rapid expansion of urban areas in
cities since the 1980s, placing tremendous stress on the environment, natural resources, and public
health [1-4]. Dynamic change monitoring and quantifying of urban areas play a critical role in
studying urban growth modeling [5,6], urban heat islands [7,8], and land cover changes [9-11].
Accurate and long-term monitoring of urban dynamics is essential for understanding and regulating
the consequences of urbanization at regular intervals [2]. Therefore, urban expansion has increasingly
become a major issue facing many fast-developing cities experiencing a sharp growth in urban
population and intensive human activities [5,12].

Remote sensing provides a useful tool for monitoring and quantifying land use/land cover (LULC)
changes at high spatial resolution and annual temporal scales, to systematically track the magnitude
and spatial trends of urbanization [2,5,13]. Several LULC datasets have been developed using remote
sensing, such as the 500-m Moderate-Resolution Imaging Spectroradiometer Global Yearly Land
Cover Type (MCD12Q1, from 2001 to 2013) [14], 30-m National Land Cover Database (NLCD, 1992,
2001, 2006, and 2011) [15], and the 30-m Finer Resolution Observation and Monitoring-Global Land
Cover (GLOBELAND30, 2000 and 2010) [16]. However, these datasets are either not accurate enough
for city-level research or lack sufficient temporal resolution, and are hard to use to characterize the
urban long-term spatial-temporal dynamics [17-19]. Thus, various approaches have been proposed
to derive urban land from different remote sensing images, such as spectral mixture analysis [20,21],
object-based approaches [22,23], and a multivariate texture approach [1]. In addition, Since the optical
spectrum of urban land is complex and can be confused with bare and fallow land, accurate urban
land extraction is extremely difficult utilizing single-sensor data [24]. Various indices have been
used to distinguish urban land from other land, such as the multi-source Normalized Difference
Impervious Surface Index (MNDISI) [25], the Biophysical Composition Index (BCI) [26], the Enhanced
Built-Up and Bareness Index (EBBI) [27], Normalized Difference Urban Index (NDUI) [24], and the
Normalized Difference Bareness Index (NDBal) [28]. For instance, MNDISI is used to highlight urban
areas combining Landsat surface temperature and fine-resolution International Space Station night
light images [24,25]. However, temperature varies dramatically along with terrain changes.

To track multi-temporal trajectories of urban areas, change detection techniques have been widely
employed for comparison of paired images. The most common methods include image differencing,
principal component analysis, and post-classification comparison [29]. Note that no single approach is
optimal and applicable to all cases [30]. The Landsat series data (Thematic Mapper, TM; Enhanced
Thematic Mapper plus, ETM+; and Operational Land Imager, OLI) are useful for change detection
due to their high temporal-spatial resolution and spectral resolution [31]. Reynolds et al. [2] presented
a temporal trajectory polishing method to generate high frequency, high accuracy, and consistent
trajectories of urban land-cover change in Northwest Arkansas. Son et al. [32] explored urban growth
using the linear mixture model in Ho Chi Minh City, Vietnam through Landsat images. Villa [33]
proposed the Soil and Vegetation Index (SVI) and used the multi-temporal SVI ratios threshold for
identifying urban growth areas.

Understanding the dynamic changes in landscape patterns is critical for revealing the process of
urbanization and its impacts on the environment [12,34,35]. In this context, identifying the driving
forces contributes to protecting and properly planning landscapes with high value that are located
close to big cities [36]. Landscape metrics have been widely used to quantify landscape patterns and
analyze the dynamic changes in the regional landscape [37]. Liu and Yang [38] utilized landscape
metrics to characterize land use changes and reveal the underlying processes of urban sprawl. The
landscape change index (LCI) was proposed to assess the level of change in different periods [39]. Due
to spatial heterogeneity, landscape patterns changes can be used to indicate the spatial distribution of
urbanization modes [34]. Based on spatial variation analysis of landscape patterns and related built-up
growth, Yang et al. [12] evaluated and modeled the relationship between the urban sprawl characters
and landscape pattern based on different temporal scales.



Sustainability 2018, 10, 4287 3of24

In this study, to highlight urban areas, we employed medium-resolution Landsat
and coarse-resolution Defense Meteorological Satellite Program/Operational Linescan System
(DMSP/OLS) nighttime light (NTL) data as both have long historical archives. There are two key
issues we wanted to address. Firstly, we derived the maximum Enhanced Vegetation Index (EVI) of
each pixel from the Landsat 32-day EVI Composites and generated the annual “Max EVI” composite
to distinguish between urban land and fallow land. Secondly, we constructed and calculated the
Normalized Difference Enhanced Urban Index (NDEUI) combining the Max EVI composite with
normalized NTL data for each year, which distinguishes between the urban area and bare or fallow
land. Then, random forest (RF) was employed as a basic classifier to obtain annual classification
result based on the original spectral bands, as well as NDNEIL. All the above were implemented on
the Google Earth Engine (GEE), which is a cloud computing platform. This study aimed to monitor
and reveal land use change and urban spatial expansion patterns in Xuzhou, China from 1985 to 2015.
The landscape patterns were analyzed at the class and landscape levels to understand the process
of urbanization and its impacts on the environment. In this context, it was essential to develop a
systematic approach including both spatiotemporal monitoring and landscape pattern analysis. Finally,
we quantified the LULC changes, landscape pattern, and analysis trends of urban sprawl in Xuzhou
from 1985 to 2015.

2. Material and Methodology

2.1. Study Area

Xuzhou (33°43'-34°58' N, 116°22/-118°40" E) is located in the northwest of Jiangsu Province,
China, adjacent to Shandong, Henan, and Anhui provinces (Figure 1). Xuzhou is about 300 km away
from Nanjing, Jinan, Zhengzhou, and Hefei, the capitals of adjacent provinces. It is also the main
city of the Huaihai Economic Zone, which has an area of 17.6 million km? and a population of 120
million. Xuzhou is the largest city among the adjacent 19 cities, consisting of 5 administrative districts,
3 counties, and 2 county-level cities. It is mostly comprised of plains, with small areas of hillocks and
mountains in the central and eastern regions. The Old Yellow River flows across the city generally in a
west to southeast direction, and the Yunlong Lake is located in the south part of the region. For the
purposes of this study, the central area of the city was selected, which is composed of four districts:
Quanshsn, Gulou, Yunlong, and Jiawang. The central area covers 1058 km?2. Since the 1980s, Xuzhou
has experienced significant economic growth and rapid urbanization. The urban population increased
from 0.67 million in 1978 to approximately 2.02 million in 2015. The gross domestic product (GDP) has
increased to 531.952 billion RMB Yuan in 2015 from 2.14 billion in 1978 (Figure 2).

2.2. Data and Preprocessing

The analyses of land use changes and landscape pattern were conducted based on a
post-classification change detection strategy. The procedural workflow proposed in this study is
illustrated in Figure 3. Each component will be described in detail, including data sources and
pre-processing, classification scheme, and land use change and landscape pattern analysis.
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Figure 1. (a) Map of China showing the location of Jiangsu province (Data Source: ESRI); (b) Map
of Jiangsu province showing the location of Xuzhou city center (Data Source: ESRI); and (c) map of
study area.
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Figure 2. Population, built-up area and gross domestic product (GDP) growth of Xuzhou from 1978 to

2014 (Data Source: Statistical Yearbook of Xuzhou City). Note: In 1993 and 2000, some administrative
divisions were adjusted.
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Figure 3. Flowchart of the procedural workflow.

2.2.1. Landsat Time Series

With free access to the Landsat archive and other new remote sensing data sources online, it
is possible to exploit multi-temporal remote sensing data to map urban changes. Google Earth
Engine is a cloud-based platform for planetary-scale environmental data analysis integrating a
petabyte-scale archive of publicly available remotely sensed imagery and other data. Landsat series
Top-of-Atmosphere (TOA) reflectance data (orthorectified) were used in this study, including Landsat
TM, ETM+, and Landsat OLI. The data were produced from Level L1T orthorectified scenes, using
the computed TOA reflectance [40]. These composites were created from all scenes from each 32-day
period beginning from the first day of the year and continuing to the 352nd day of the year. The last
composite of the year, beginning on day 353, overlapped the first composite of the following year by
20 days [2]. All the images from each 32-day period were included in the composite, with the most
recent pixel as the composite value.

To avoid confusion between new urban land and other land cover types (such as bare land, or
fallow or post-harvest cropland), we combined images from multiple seasons (Figure 4). There is a
high probability that bare or cropland is vegetated during at least one season of each year, and thus
can be separated from built-up areas that are predominantly non-vegetated all year-round. However,
it is unrealistic to select all the seasonal images in a year.

Nl o

a. 5 March, 2005 b. 12 August, 2005 c. 31 October, 2005 d. 16 January, 2005 e. 2 May, 2005

Figure 4. Multispectral seasonal observations of built-up land and cropland from 30-m resolution
Landsat TM data in 2005 (a—e) in a peri-urban area northwest of Xuzhou (the Near-infrared, Red, and
Green wavelengths were set to R-G-B, respectively. A reference of the same area is shown in (e) from
Google Earth).
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Apart from the raw data or preprocessing data, Google Earth Engine also provides all kinds of
composite products derived from raw data, such as 32-day composites for NDWI, NDVI, and EVI. In
this study, we compared the 32-day NDVI composite with the EVI composite (Figure 5). For EV], it is
clear that all the land use types have better separability, especially in summer (Figure 5). For crop land
and grassland, EVI has a higher value than the corresponding NDVI, with the maximum value being
1. The statistical analysis results also indicate that EVIy, has a better variation and dispersion than
NDVIpax for different land-use types. Thus, the EVI was employed in this study, which is generated
from the near-infrared (NIR), red, and blue bands of each scene, and it ranges in value from —1.0 to
1.0 [41] as shown in Equation (1).

ONIR — PRed
EVI =25 x 1
PNIR 6 X PReg —7.5 X pprye + 1 @

where ppje, Pred, and pnjr are the TOA reflectance of blue, red, and NIR bands for Landsat
series imagery.
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Figure 5. Comparison between the NDVI and EVI, derived from the Landsat 8 32-day NDVI composite
and EVI composite in 2016.

2.2.2. DMSP/OLS NTL Data

The version 4 DMSP/OLS NTL data with 30 arc second (about 1 km) resolution can also be
obtained from the Google Earth Engine platform [42]. It has the unique capability to detect visible and
near-infrared (VNIR) emission sources at night. Each image in the collection contains 4 bands: avg_vis,
cf_cvg, avg_lights_x_pct, and stable_lights. The cleaned up avg_vis (stable_lights) was selected in our
study, as it contains the lights from cities, towns, and other sites with persistent lighting, including
gas flares. Ephemeral events, such as fires, were discarded. The background noise was identified and
replaced with values of zero. The DN values were recorded in the range of 0 to 63.

2.2.3. Data Pre-Processing

The 32-day EVI composites precede the NDVI composites in distinguishing among the different
land use types (Figure 5). Thus, 32-day EVI composites were used in this study. Due to growth cycles
and the seasonality of crops, it is difficult to determine the optimal TOA reflectance data for each
year, which are also affected by the clouds. Thus, in order to overcome these limitations, one effective
approach involves generating a maximum EVI image from multi-temporal EVI images. In this study,
32-day EVI composites were selected for each year, which included 12 EVI images. For each pixel, we
obtained the maximum EVI over the year and generated the EVIyax imagery for each year. Another
important role for the EVI,a« imagery is removing the impacts of cloud. Therefore, the final EVIpax
imagery is cloud-free with a data range between —1 and 1.

Due to the lack of on-board calibration and the differences between sensors, there are systematic
biases in NTL data. Consequently, the individual composites of the NTL data had to be inter-calibrated
carefully to generate a consistent NTL time series [43-45]. Pandey et al. [46] compared and evaluated
the existing nine calibration methods to provide guidance on their relative strengths and weaknesses.
Their research results showed that inter-calibration reduces systematic biases consistently across most



Sustainability 2018, 10, 4287 7 of 24

countries using the methods adopted in reference [45] and reference [47]. Pandey et al. [46] obtained
marginally better results than Elvidge et al. [45]. The coefficients for inter-calibration provided by
Zhang et al. [47] were adopted in our study.

Notably, the calibrated DMSP/OLS NTL values are recorded in the range [0, 63], whereas EVI
values are between —1 and 1. Here, we normalized the calibrated DMSP/OLS NTL into the range of
[0, 1] to enable comparison. Then, we resampled the normalized data to 30 m resolution.

2.2.4. Normalized Difference Enhanced Urban Index (NDEUI)

DMSP/OLS NTL has been widely used to study urban sprawl, and several spectral indices
have been proposed. Zhang et al. [48] proposed a new index, VANUI, combining MODIS NDVI and
DMSP/OLS NTL. Zhang et al. [24] proposed the Normalized Difference Urban Index (NDUI) to obtain
urban spatial structures on a much finer scale. However, each annual NDVI composite was generated
from contiguous three-year ETM+ imageries, which confuses changed land use types during the three
years, especially in rapidly developing regions. The thresholds of NDVI provided by the authors is not
suitable for all cases. Cheng et al. [49] constructed the Biophysical Composition Index (BCI)-Assisted
NTL Urban Index (BANI) based on the correlations between BCI and normalized DMSP/OLS NTL
data. BCI was calculated using MODIS surface reflectance data, which not only included several
complex steps, including Tasseled Cap transformation, but also only produced a coarse-resolution
BCI. Thus, in our study, we combined the EVI.x imagery mentioned in Section 2.2.1 with the 30 m
resolution normalized DMSP/OLS NTL data to generate a new index, the Normalized Difference
Enhanced Urban Index (NDEUI) calculated using Equation (2):

NDEUI = (NTL — EVInax)/(NTL + EVIpax) ()

where NTL is the normalized DMSP-OLS stable nighttime lights data, and EVInax imagery is generated
from the all the 32-day EVI composites for one year.

2.3. Classification with Random Forests

According to the definition by Schneider and Mertes [50], urban land is dominated by the
built environment with more than 50% coverage ratio within a landscape unit, which includes
all non-vegetative and human-constructed elements (building, roads, etc.). Thus, five land cover
categories were classified from remote sensing imagery in this study: Urban land, water bodies,
agriculture/grassland, forest, and barren land.

The annual classification was implemented using optimal Landsat TOA reflectance as the base
scene and the corresponding NDEUL Due to the seasonal phenology of the study area and cloud cover,
a base scene with less cloud cover acquired from July to October was preferred. It should be noted that
there were no DMSP/OLS NTL data before 1992 or after 2013. According to the Statistical Yearbook of
Xuzhou City, there was no obvious urban land change during the two periods. Thus, the DMSP/OLS
NTL data were replaced by the data of 1992 and 2013 for annual classification before 1992 and after
2013, respectively.

To reduce possible biases caused by training samples and to obtain relative classifiers, a
hierarchical sampling scheme [5] was adopted in our study. Firstly, with the support of EVIyax
imagery in 2005 and Google Earth, training samples were collected on the cloud-based platform
(Google Earth Engine). The training samples were loaded as the initial training samples of a specific
temporally adjacent year, and were rechecked to identify whether their types had changed. We could
reassign their types, move to corresponding positions, or delete the changed samples. Thus, we
repeated the procedure and obtained all the training samples for all years.

RF is an ensemble learning method for classification, regression, and other tasks [51] that uses trees
as base classifiers. RF is a combination of many classifiers and confers some special characteristics [52].
RF increases the diversity of the trees by making them grow from different training data subsets
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created through bootstrap aggregating (bagging), which is a technique used for training data creation
by resampling the original dataset with random replacement [53]. Several research results have shown
that RF classifier outperforms other well-known classifiers because of its high efficiency, robustness to
noise or outliers, high efficiency, and lighter computation load [52,54,55]. In addition, RF can handle
a larger number of variables and can quantitatively measure variable contributions [5]. In theory,
the RF classifier randomly selects a sample of the training set and a sample of variables many times
to generate a large number of small classification trees. Then, all the small trees are aggregated to
determine the final category by applying a majority vote rule [51].

Two parameters should be defined in the RF classifier to generate a prediction model: the number
of classification trees (k), and the number of prediction variables (1) used to split a RF node. In general,
the generalization error always converges and over-training is not a problem due to the Strong Law
of Large Numbers with increasing numbers of trees [53]. In order to decrease the strength of each
individual tree of the model and reduce the correlation between trees, there is an effective approach to
reduce the number of predictive variables (). Thus, it is essential to optimize the parameters k and
m to minimize the generalization error. In this study, based on the sensitivity experiment, we applied
the RF classifier with 500 classification trees. The number of prediction variables (1) corresponds to
the square root of the number of input variables [56]. Out-of-Bag (OOB) accuracy was employed to
assess the performance of classification for each year, which is an unbiased estimator of the classification
overall accuracy (OA) and can be used to substitute the cross-validation [51]. Approximately 2/3 of the
train data were used to train the classifier, and the remaining data were used to validate the training.
After classification, the mode filter (3 x 3) was used for post-classification procedures, like salt-and-pepper
removal. Thus, the final LULC maps for 1985, 1995, 2005, and 2015 were generated (Figure 6).

A

Legend

- Urban
- Agriculture/grass
- Water
- Forest
- Barren

Kilometers
0255 10 15 20 25

=m= — ]

Figure 6. Land use and land cover (LULC) maps of Xuzhou city for (a) 1985, (b) 1995, (c) 2005, and
(d) 2015 derived from Landsat series imageries.
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2.4. Classification Accuracy Assessment

Accuracy assessment for individual classification is essential to correctly and efficiently analyze
LULC change. The validation samples for each class using Google Earth and knowledge of the
study area were collected based on the stratified random distribution method to conduct an accuracy
assessment of each classification. The error matrix, overall accuracy, and Kappa coefficient were
calculated for each classified land use map and tabulated in Tables 1-4, respectively. The overall
accuracies ranged from 95.56% to 98.46%, with Kappa coefficients from 0.9432 to 0.9803.

Table 1. Accuracy assessment for the 1985 land use and land cover (LULC) map produced from

Landsat TM.
. Reference Data User’s Kappa
Classified Data C1 c2 C3 Cca C5 Sum  Accuracy (%) Accuracy
Urban land (C1) 181 1 3 9 194 93.30 0.9124
Agriculture/grass land (C2) 256 256 100 1
Water bodies (C3) 1 141 3 145 97.24 0.9670
Forest (C4) 1 114 115 99.13 0.9899
Barren land (C5) 20 125 145 86.21 0.8364
Sum 201 259 141 120 134 885
Producer’s Accuracy (%) 90.05 98.84 100 95.00 93.28
Overall Accuracy (%) 95.56
Kappa Coefficient 0.9432

Table 2. Accuracy assessment for the 1995 LULC map produced from Landsat TM.

Reference Data

” User’s Kappa
Classified Data 1 < © 4 C5 Sum Accuracy (%) Accuracy
Urban land (C1) 241 2 243 99.18 0.9892

Agriculture/grass land (C2) 293 293 100 1

Water bodies (C3) 2 203 6 211 96.21 0.9529
Forest (C4) 145 145 100 1
Barren land (C5) 8 144 152 94.74 0.9388
Sum 249 295 203 151 146 1044
Producer’s Accuracy (%) 96.79 99.32 100 96.03  98.63
Overall Accuracy (%) 98.28
Kappa Coefficient 0.9780

Table 3. Accuracy assessment for the 2005 LULC map produced from Landsat TM.

Reference Data

e User’s Kappa
Classified Data C1 2 C3 C4 C5 Sum  Accuracy (%) Accuracy
Urban land (C1) 300 1 3 304 98.68 0.9825

Agriculture/grass land (C2) 353 1 354 99.72 99.60

Water bodies (C3) 209 3 212 98.58 98.30
Forest (C4) 193 193 100 1
Barren land (C5) 8 1 2 157 168 93.45 0.9247
Sum 308 355 209 199 160 1231
Producer’s Accuracy (%) 97.40 99.44 100 96.98  98.18
Overall Accuracy (%) 98.46
Kappa Coefficient 0.9803

Table 4. Accuracy assessment for the 2015 LULC map produced from Landsat OLIL

Reference Data

e User’s Kappa
Classified Data C1 C2 3 C4 C5 Sum  Accuracy (%) Accuracy
Urban land (C1) 338 3 8 349 96.85 0.9182

Agriculture/grass land (C2) 1 350 3 354 98.87 0.9755

Water bodies (C3) 1 1 253 255 99.22 1
Forest (C4) 199 199 100 1
Barren land (C5) 21 1 123 145 84.83 1
Sum 361 351 253 203 134 1302
Producer’s Accuracy (%) 93.63 99.72 100 98.03 91.79
Overall Accuracy (%) 97.00

Kappa Coefficient 0.9615
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2.5. Land Use Change and Landscape Analysis

Land change analysis was carried out using geographic information system (GIS)-based spatial
operations and landscape metrics derived from the LULC maps. In this paper, we focused on the land
use changes during the periods of 1985-1995, 1995-2005, 2005-2015, and 1985-2015, especially on
the growth of urban land and its spatial change trend. Several qualitative and quantitative methods
were employed to analyze the spatial landscape patterns changes of land use at different stages. Here,
landscape patterns were evaluated using landscape metrics, which can be calculated on the three
different levels: patch, class, and landscape levels. In this study, class-level and landscape-level metrics
were employed. Class-level metrics are used to qualify the characteristics of the same LULC type and
return a unique value for each class in the landscape. Landscape-level metrics return a unique value
corresponding to the landscape mosaic as a whole [57]. In order to reduce the correlativity, landscape
metrics selected in this study are provided in Table 5 [58].

To visualize the spatiotemporal changes in landscape patterns and reveal their temporal and
spatial characteristics during urbanization, the LULC maps of the four years were divided into
900 x 900 m grids using the gridsplitter plugin in Quantum GIS (QGIS, an official project of the Open
Source Geospatial Foundation). A total of 1424 sub-grids were obtained in this study. The landscape
metrics at the landscape level for each sub-grid were calculated using the Fragstats 4.2 (Oregon State
University, Corvallis, OR, USA) to analyze the spatiotemporal changes in the landscape patterns.

3. Results and Analysis

3.1. Change Detection Analysis

The changes detections were implemented for 1985-1995, 1995-2005, 2005-2015, and 1985-2015.
Firstly, we calculated the net area changes by category between the different years based on the LULC
maps (Figure 7). Urban land has significantly increased, while the agricultural land was drastically
reduced, which is supported in the Percentage of Landscape (Ppanp) of different land uses in different
years (Figure 8). During the period of 1985 to 1995, the urban area increased by 6082 ha, which is an
increase of more than 30.65%. In the next two decades, the urban area increased by more than 10.54%
and 68.78%, respectively (Figures 7-9). This suggests a sharply ascending trend in the development of
the urban area, especially from 2005 to 2015.
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Table 5. List and descriptions of landscape metrics used in this study.

11 of 24

Landscape Metrics Description Level Unit Range
General index
To quantify the proportional abundance of each patch type in
<
PLAND (Percentage landscape) the landscape Class Percent 0 <Ppranp < 100
Patch complexity
PD (Patch density) To quantlfy the density of patches for each class in the Landscape/Class Number per 100 hectares PD>0
entire landscape
ED (Edge density) To measure the perimeter for each class type per unit area Landscape/Class Meters per hectare ED > 0, without limit.
. To measure the shape index based on the perimeter-to-area ratio . .
>
LSI (Landscape shape index) for each class type with regards to the entire landscape boundary Landscape/Class None LSI > 1, without limit
Aggregation
CONTAG To measure to what extent .landscapes Aare aggregated or clumped Landscape Percent 0 < CONTAG < 100
as a percentage of the maximum possible
LPI (Largest Patch Index) To quantify the percentage of total landscape area comprised by Landscape/Class Percent 0 <LPI < 100
the largest patch
To quantify the aggregation of different patch types and the
Al (Aggregation Index) spatial configuration characteristics of landscape components Landscape/Class Percent 0 < AI <100
calculated from an adjacency matrix
Connectivity
COHESION (Patch Cohesion Index) gz tgﬁ;giy the physical connectedness of the corresponding Landscape/Class None 0 < COHESION < 100
Diversity
Ty . To measure relative patch diversity or the proportional . . .
>
SHDI (Shannon’s Diversity Index) abundance of each patch type within the landscape Landscape Information SHDI > 0, without limit
SIDI (Simpson’s Diversity Index) To measure the probability that any two pixels selected at Landscape None 0<SIDI<1

random would be different patch types
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Figure 9. Maps presenting gains and losses in urban area during the period of (a) 1985-1995,
(b) 1995-2005, (c) 2005-2015, and (d) 1985-2015.

Figure 9 presents the gains and losses in urban area during the different periods. Agricultural
land continually decreased, losing 26,933 ha in the 30-year period. Overall, the urban area significantly
increased by about 143.75% in the study period, at the main expense of agricultural land in the area.
Water bodies increased by 26.78%, which can be explained by the subsidence result from coal mining
from 1985 to 1995. In the next two decades, the government attached importance to the reclamation of
subsidence, so the water area slightly decreased by 5.72% and 15.90%, respectively. In general, there
were no significant changes in the water body area. Forest increased by 15.68%, while barren land
decreased by 28.63%. The transition mainly occurred from agricultural land to urban land from 1985 to
2015. Figure 10 illustrates the transition from other land use types to urban land in different periods.

3.2. Spatial Trend of Changes

In landscapes dominated by human intervention, patterns of change can be complex, and thus
difficult to decipher. Figure 11 shows the spatial sprawl of urban areas in 1985, 1995, 2005, and 2015.
To reveal the spatial trend in urbanization, we created spatial trend maps of changes from other land
types to urban land during the given periods adopting the ninth polynomial order (Figure 12).
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Figure 10. Maps of land use transition from other land use types to urban land during (a) 1985-1995,
(b) 1995-2005, (c) 2005-2015, and (d) 1985-2015.
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Figure 11. Spatial forms of urban sprawl in 1985, 1995, 2005, and 2015.
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Figure 12. Spatial trend in urban growth during (a) 1985-1995, (b) 1995-2005, (c) 2005-2015, and
(d) 1985-2015, and (e) digital elevation map (DEM) of the study area.

As can be seen from the results, continuous transition occurred from other land use types into
urban land via dual-core development throughout the urbanization process, which occurred in the
main city region and Jiawang district, but with different development intensities in different periods.
During 1985-1995, there was a continuous increase in the urban area between the two core regions
from southwest to northeast (Figure 12a). In the subsequent 10 years, however, the expansion in
the urban area mainly occurred in all directions around the two core regions, especially in the main
city region (Figure 12b). During the period of 2005-2015, the growth in the southeastern part of the
main city was mainly due to the construction of a new city region planned in 2004, which is also
the location of the municipal government (Figure 12c). By the end of 2015, the total investment was
around 70 billion yuan to construct the roads with a total length of about 110 km and 57 bridges, with
a residential growth of more than 5 million m? [59]. As can be seen in Figure 12¢, the high railway
station that became available in 2011 contributed to the growth in the urban area. Overall, in these
three decades, the continuous increase in the urban area mainly occurred in the new city region and
the Jiawang district, mainly affected by the construction of the new city region, a freeway, and the high
railway station (Figure 12d). Compared with the digital elevation map (DEM) in Figure 12e, terrain
was also one of the factors, affecting the spatial trend of urban area changes. In the southwest and
northeast of the study area, the topography undulates considerably and the degree of urbanization
was lower than in other areas.

3.3. Changes Analysis of Landscape Metrics

As shown in Figures 8 and 10, the transition of land use types occurred mainly from agricultural
land to urban land from 1985 to 2015. Thus, the changes and relationships measured based on different
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landscape metrics at the class level were analyzed between urban land and agricultural land (Figure 13).
Here, the landscape metrics were fit into four major categories to represent different aspects of the
landscape pattern: patch complexity (represented by PD, ED, and LSI), aggregation (represented by
LPI and AlI), connectivity (represented by COHESION), and diversity (represented by SHDI and SIDI)
(Table 5).

4- N 60-
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Figure 13. All landscape metrics of urban and agricultural land underwent tremendous changes
during the study period. In terms of PD, urban land use trended downward while agricultural land use
continuously increased. (a) In terms of PD, urban land use trended downward while agricultural land
use continuously increased. (b) On the contrary, there was a consistent trend in the changes in the ED
of agricultural land and urban land, reaching the lowest values in 2005, then dramatically increasing
up to 48.853m/ha and 55.9287 m/ha in 2015, respectively. (c¢) Considering urban land, the dates for LSI
are interesting: the values decreased rapidly from 75.4532 in 1985 to 58.1453 in 2005, but then increased
again to 68.1731 in 2015. The LSI of agricultural land increased overall increase from 41.6725 in 1985 to
64.2222 in 2015, except for a slight decrease in 2005. (d) Illustrates that with a significant decrease in the
LPI of agricultural land, the LPI of urban land continued to increase, with an increase of more than
18.5%. Meanwhile, there was a gradual increase in the Al of urban land, reaching 90.8229% in 2015. In
terms of agricultural land, however, the Al gradually dropped from 95.3672% in 1985 to 90.7922% in
2015. (e) Meanwhile, there was a gradual increase in the Al of urban land, reaching 90.8229% in 2015.
In terms of agricultural land, however, the Al gradually dropped from 95.3672% in 1985 to 90.7922% in
2015. (f) The aggregation of urban land gradually increased and surpassed that of agricultural land
during the 30-year process of urbanization. With regards to COHESION, the values of agricultural
land changed from 99.8371 to 99.0596, and urban land from 97.7713 to 99.6485 during the study period.

Figure 14 shows the landscape-level metrics changes during the period of 1985-2015.
The descriptions of landscape metrics used are tabulated in Table 5.
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Figure 14. Line graphs depicting the landscape-level metrics changes from 1985 to 2015. (a) PD, (b) ED,
(c) LSL, (d) LPI, (e) CONTAG, (f) Al (g) COHESION, (h) SHD], (i) SIDI. (a—c) There were the lowest
patch complexity in 2005, increasing to a maximum in 2015. The highest rates of change in the three
metrics were observed in the period between 2005 and 2015. In terms of urbanization modes, this
may indicate that infilling and edge-expansion modes were dominant in Xuzhou before 2005, and
then leapfrog mode dominated. (d) LPI declined from 30.2737% in 1985 to 13.9131% in 2005, which
may provide evidence that agricultural land was dominant in 1985. However, LPI increased again
to 23.9468% in 2015. (e,f) The CONTAG and Al metrics were inversely related to LSI. They slightly
fluctuated, but then dramatically decreased after 2005. This tendency confirms that the landscape
pattern was vastly disaggregated and less contiguous in 2015, mainly owing to continued increasing
leapfrog urban land. (g) Shows the changes in COHESION. The COHESION value decreased sharply,
reaching its lowest value of 99.2116 in 1995. Thereafter, it increased continuously in the later stages of
urbanization. (h,i) Both SHDI and SIDI measure relative diversity. From 1985 to 2015, the two diversity
metrics increased constantly, indicating an increasing heterogeneity of this landscape. This fact is
evident as agriculture segmented into smaller patches with the continual increase in urban land.

3.4. Spatiotemporal Changes Analysis of Landscape Pattern

At the landscape level, landscape metrics calculated on the basis of sub-grids depict landscape
pattern characteristics of each sub-grid and contribute to revealing the spatiotemporal changes in
the study area. From the spatiotemporal changes in the landscape pattern, urban core, urban fringe,
and rural area can be discerned. Here, we mapped the spatial distribution of each landscape metric
for different years using the quantile grading method (Figure 15). The landscape patterns changed
remarkably in the process of urbanization in Xuzhou.
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Figure 15. Spatiotemporal changes of landscape metrics: (a) 1985, (b) 1995, (c) 2005, and (d) 2015.
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For the PD landscape metric, urban core and rural areas were associated with lower values, mainly
dominated by urban land and agricultural land, respectively, whereas urban fringe areas were the
opposite. From the perspective of spatiotemporal changes, the urban core area expanded continuously,
while the PD landscape metric in rural areas continued to increase, indicating that agricultural land
continuously transitioned into urban land, demonstrating a tendency of fragmentation in the process
of urbanization. Al, however, was opposite to PD, with higher values in the urban core and rural areas
and lower values in urban fringes. As shown in Figure 15, ED and PD had a similar spatiotemporal
change tendency. During urbanization, the values surrounding the urban core area slightly decreased,
demonstrating that the core area continued to expand. From the southeast to the northeast of the main
urban region, however, the value obviously increased, especially in 2015, mainly due to the construction
of the new city region and the high railway station, resulting in considerable transformation of
agricultural land into urban land. As LPI is used to quantify the percentage of the total landscape area
of the largest patch, it is a simple measure of dominance. For instance, the LPI map Figure 15a depicts
the prominence of the old city region and distribution of agricultural land. With the fragmentation of
agricultural land, the LPI map (Figure 15d) clearly highlights the urban core area. The COHESION
maps reveal the connectivity of the patches in the study area and represent the extent of the impact of
urban expansion. Compared with the COHESION map in Figure 15a, the COHESION in Figure 15d
obviously decreased in the southeast of the main city region, which verifies the vigorous development
of the new city region. Regarding SHDI, although there was a marked decrease in 2005, SHDI
significantly increased, mainly due to the continuous expansion of the urban area and the promotion of
a large number of municipal projects, including the construction of freeways and subways. Considering
the urban evolution, all landscape metrics used in this study were mutually corroborated in terms of
spatiotemporal characteristics. The changes in landscape-level metrics in sub-grids effectively reveal
the spatiotemporal evolution process of urbanization during the study period.

4. Discussion

4.1. NDEUI as an Effective Index for Improving the Classification Accuracy

The study of dramatic LULC change caused by urbanization is a major topic around the world.
In China, the urbanization process has been accelerating. The study of LULC change caused by
urbanization has attracted increasing attention, and a large amount of relevant research results have
been published, especially for the extraction of urban areas based on indices [1,27,49]. A novel index,
NDEUI, was proposed in this study, which combines annual maximum EVI and corresponding
DMSP/OLS NTL, to effectively reduce confusion between urban areas and barren and fallow land.
The advantage of this index is that annual maximum EVI ensures agricultural land has maximum EVI
values, obtained during the growing season, to decrease the impact of seasonal fallow lands. Since
barren land, especially far from urban area, is associated with extremely low NTL values, DMSP/OLS
NTL can effectively separate them from urban lands. The 1-km resolution normalized NTL data
must be downscaled to 30 m resolution. Firstly, we generated an annual maximum EVI from 32-day
EVI composites for each year. Secondly, the NDEUI for each year was calculated. Afterward, a new
composite was generated combining NTL, annual maximum EVI, and Landsat raw bands, which
was used to obtain the land use classification using a random forests classifier. In this study, all the
procedures were implemented on a free cloud computing platform, Google Earth Engine. GEE, based
on its cloud computing and storage capability, has archived a large catalog of earth observation data
that enables researchers to work on the trillions of online images. GEE represents one of the most
powerful tools in remote sensing, given its ability to analyze and classify remotely sensed data over
different temporal scales. In this study, GEE provided an effective approach to obtain the land cover
classifications using JavaScript.
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4.2. Relationship of Urbanization and Changes Dynamic of Landscape Pattern

The study of urban boundary extraction and sprawl analysis has attracted the attention of
numerous researchers [12,60-63]. Analysis of the changes in landscape metrics has demonstrated the
urban growth modes in the different processes of urbanization [12,35,64]. Some new landscape indices
were proposed to quantitatively analyze changes in landscape patterns caused by urbanization [39,64].
Yang et al. [12] proposed a grid-based framework to analyze the influence of the landscape pattern on
urban growth using multitemporal Landsat imagery. Usually, there are three urban growth modes
discussed in the literature: Infilling, edge-expansion, and leapfrog mode [34,64,65]. In this study,
several landscape metrics at the class and landscape level, depicted in detail in Section 3, were selected
to characterize their spatiotemporal changes, generating a large quantity of information on landscape
patterns. All of the information allowed us to determine which urban growth mode was dominant
and the degrees of effects of urbanization at different stages during the study period. The gradual
changes in landscape metrics imply that the landscape was undergoing a major transformation from
one dominant land cover type to another due to urbanization. This dramatic land cover change caused
by rapid urbanization has resulted in an essential change in landscape patterns. There are some
inherent relationships between urbanization and the changes in landscape metrics, both at the class
and landscape level. Consequently, studying urbanization using landscape metrics is essential.

Considering the urban growth modes, our analysis based on the results is as follows. With a slight
increase in infilling area, urban growth mainly occurred in leapfrog mode along both sides of roads
during the period from 1985 to 1995, resulting in a slightly decreased aggregation of the landscape.
Subsequently, the urban growth mode shifted to edge-expansion. With increasing edge-expansion
growth in urban areas, the urban land became increasingly aggregated and compact at this stage,
especially in the main city region, reflected by the decreasing PD, ED, and LSI values and the increasing
Al Since 2005, the process of urbanization accelerated, and urban growth mainly appeared in the
southeast to the northeast of the main city region due to the construction of a new city region and
other infrastructure. During this stage, the edge-expansion and leapfrog modes coexisted, causing
different degrees of change in the landscape metrics in different regions. The urbanization processes in
different stages are reflected in the spatiotemporal changes of the landscape metrics.

5. Conclusions

Urbanization is an irreversible process, and rapid urbanization has resulted in drastic changes
in LULC and landscape patterns since the 1980s, particularly in developing countries. Mapping and
monitoring of LULC change, therefore, is crucial to generating information for policymakers and
planners, as well as for understanding the underlying socio-economic and biophysical processes
in urban areas. Accordingly, a GIS- and RS-based integrated approach was used to quantitatively
characterize the LULC pattern and dynamics of urban sprawl in Xuzhou, China during the period of
1985 to 2015.

In this study, we integrated NTL with annual maximum EVI and proposed a new spectral index,
NDEUI An NDEUI-assisted Random Forests algorithm was implemented to obtain the LULC maps
in 1985, 1995, 2005, and 2015. The results indicate that the proposed classification scheme was more
accurate, reducing confusion between urban areas and barren land. The results show that Xuzhou
has experienced rapid urbanization since the 1980s. Urban areas increased by 143.75%, approximately
2.44 times greater than the urban area in 1985, resulting in a considerable decrease in agricultural
land. Among the three decades, the highest growth in urban land was 68.78% from 2005 to 2015,
averaging nearly 7% per year. As can be seen from the analysis of the urban growth spatial trend
that urban growth proceeded in different directions during the different periods. Overall, the urban
growth occurred in dual-core development mode throughout the urbanization process. The process of
urbanization in the northeast area of the main city region occurred due to a growth in the industrial
area in the first two decades, whereas, in the southeastern direction, the urban growth was mostly due
to the construction of a new city region that was planned in 2004 and the high railway station that
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became available in 2011, accompanied by growth of residential areas. Notably, terrain and roads were
also important factors affecting urbanization.

Statistical analysis may have limited power to demonstrate the inherent relationship between
LULC changes; accordingly, the dynamic changes of landscape pattern affected by urbanization were
studied. Six landscape metrics at the class level were calculated to reveal the dynamic changes in
landscape patterns in urban and agricultural land. The changes in the selected landscape metrics
indicate a lower aggregation and connectivity in agricultural land due to increasing dominance of urban
land during the study period. Nine landscape metrics were also calculated to indicate the landscape
metrics changes at the landscape level. The landscape-level metrics changes suggest an increasing
spatial heterogeneity along with the process of rapid urbanization during 1985-2015. To visualize the
spatiotemporal changes in landscape patterns and reveal their temporal and spatial characteristics
during urbanization, we divided all the LULC maps into 900 x 900 m sub-grids and calculated their
landscape metrics at the landscape level. The findings suggest that different urbanization modes and
intensities result in various spatiotemporal evolutions of landscape patterns. In terms of the urban
growth mode, the urban growth mainly occurred in leapfrog mode along both sides of the roads during
the period of 1985 to 1995, and then shifted into edge-expansion mode during the period of 1995 to 2005,
whereas the edge-expansion and leapfrog modes coexisted during the period of 2005 to 2015, causing
different degrees of change in the landscape metrics in different regions. Overall, the highly valuable
spatiotemporal information generated using RS and GIS may assist urban planners and policymakers
to better understand urban dynamics and evaluate their spatiotemporal and environmental impacts at
the local level to enable sustainable urban planning in the future.
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