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Abstract: China has one of the most serious air quality conditions in the world, with the main energy
consumption and air pollution emissions coming from its industrial sector. Since 2010, the Chinese
government has strengthened the governance requirements for industrial sector emissions. This study
uses emission treatment as a new input on the basis of past literature, and employs the dynamic
SBM model to evaluate the energy and emission-reduction efficiencies of the country’s industrial
sector from 2011 to 2015. The study finds that the improvement in industrial sector efficiency is not
only due to the optimization of the energy consumption structure and reduction of energy intensity,
but also from investing inemission treatment methods that help cut emissions as an undesirable
output. The end result is a positive effect on the improvement and sustainability of energy and
emission-reduction efficiencies.

Keywords: energy efficiency; air pollution reduction; emission treatment; China’s industrial sector;
dynamic SBM model

1. Introduction

China is the world’s largest energy consumer and CO2 emitter; its energy consumption accounts
for about one quarter [1] of the world’s total, and its CO2 emissions accounted for 28.21% [2] of the
world’s total in 2016. Due to differences in resource endowments, the country energy structure is
still dominated by coal, which constituted 62% [2] of the country’s total energy consumption in 2016.
In addition to CO2, coal combustion emits a large amount of SO2, NOx, and PM2.5, causing air
pollution problems that led to the deaths of about 1.1 million people in China in 2015 [3].

China’s industrial sector (including mining, manufacturing, and power industries) made up
about one-third of its gross domestic product (GDP) in 2016, while energy consumption and CO2

accounted for two-thirds of the country’s energy consumption and CO2 emissions [2]. In 2015, the total
emissions from China’s industrial sector hit 68.5 trillion cubic meters, with SO2 accounting for 83.73%,
NOx accounting for 63.79%, and soot accounting for 66.59% of the country’s emissions. Therefore, the
negative effects of China’s industrial sector on energy efficiency and emission treatment have received
great attention from academia, the government, and the whole society.

To address air pollutant emissions, in 2010 the Chinese government issued guiding opinions,
focusing on the industrial sector, and made arrangements for government emissions control during
the “12th Five-Year Plan” period (2011–2015). The main contents include setting up key areas to
limit high-energy consumption industries, accelerating the replacement of coal by clean energy and
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renewable energy, and forcing the installation of waste gas treatment equipment by enterprises in the
industrial sector.

In the treatment of air pollution, the efforts made by the Chinese government have achieved
results. According to analyses of National Aeronautics and Space Administration (NASA satellite
data, the levels of fine particulate matter in China fell by 17% between 2010–2015 [4]. It shows
that it is of great practical significance to make a more dynamic assessment of the energy and
emission-reduction efficiencies of China’s industrial sector during this period, as well as clarify
the sources of its performance.

The dynamic slacks-based measure (SBM) is an application of the data envelopment analysis
(DEA) method. As DEA is an efficiency analysis model for multiple inputs and outputs, more research
studies are applying this form of energy-efficiency assessment. Compared to most studies based
on DEA models, the dynamic SBM model normally uses a capital variable as the carry-over term in
between two periods. Therefore, one can interpret the carry-over (capital) variable by the dynamic SBM
model for analyzing and comparing continuous changes to decision-making units (DMUs) over years.

Färe et al. [5] first applied the DEA method to the field of energy and environment, evaluating
energy efficiency through the DEA method on DMUs by using labor, capital, and energy consumption
as inputs, and GDP as output. With an emphasis on the greenhouse effect, some scholars have analyzed
CO2 as an undesirable output item. Such studies first appeared in comparisons between Organization
for Economic Co-operation and Development (OECD) countries, such as those of Zaim et al. [6],
Färe et al. [7], and Zhou and Ang [8]. With China’s strong economic growth and the imbalance
between regional developments, some scholars have used the DEA international comparison method
for comparisons among its provinces. Hu and Wang [9] used labor, capital, and energy consumption
as inputs, and GDP as an output item, to analyze the energy efficiency of 29 provinces. Since then, this
method has been used to analyze China’s energy efficiency, including by: Wei [10], Chang and Hu [11],
Zou [12], Li and Lin [13], and Zhou et al. [14]. In recent years, some scholars have begun to evaluate
energy efficiency by adding an undesirable output, such as Choi et al. [15], Wang et al. [16], and
Wang et al. [17]. Many scholars have included China’s air pollutants other than CO2 such as SO2 or
PM2.5 as undesirable outputs for analysis, such as Yeh et al. [18], Wang and Feng [19], Zhang and
Choi [20], and Yu and Choi [21]. The above studies are based on static analysis.

Kao [22] emphasized that dynamic analysis is necessary whenever data are available, because
system efficiency is a linear combination of the period efficiencies of a dynamic system, and ignoring
the dynamic nature produces overestimated efficiencies. There are some common methods that
have been employed to analyze changes in energy efficiency, such as those with window analysis
and the Malmquist index. For example, Sueyoshiet al. [23] applied DEA window analysis to a data
set on United States(U.S.) coal-fired power plants during 1995–2007, and found that these plants
have gradually paid more attention to environmental protection issues. Wang et al. [24] used the
DEA window analysis technique, analyzed China’s regional total-factor energy and environmental
efficiencies, and found that environmental efficiency in China slightly increased from 2000 to 2008.
Wu et al. [25] used Malmquist indices to investigate the energy utilization efficiency of China’s 30
provinces, and found that the eastern region is better than the central and western regions regarding
energy efficiency. Yao et al. [26] applied the meta-frontier non-radial Malmquist CO2 emission
performance index to estimate the changes in China’s CO2 emission performance. Wu et al. [27]
measured the regional energy and environmental performances in China by using DEA-based
Malmquist indices, and found that most regions exhibited a declining trend in technical efficiency and
an increasing trend in technical progress during the 11th five-year plan period (2006–2010).

Tone and Tsutsui [28] suggested that window analysis and the Malmquist index usually neglect
carry-over activities between two consecutive terms, and developed dynamic DEA into a dynamic
SBM within the SBM framework. Appling this method, Guo et al. [29] used energy stock as a carry-over
to evaluate the inter-temporal efficiency for executive efficiency based on fossil fuel CO2 emissions in
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OECD countries and China. Ke [30] used capital stock as a carry-over to evaluate the energy efficiency
of Asia-Pacific Economic Cooperation (APEC) member economies over 18 consecutive years.

Some scholars have focused on China’s industrial sector to explore the relationship between energy
consumption structure, energy intensity, government policies, and other factors related to energy
efficiency. Cole et al. [31] found that China’s industrial emissions have a positive function on both its
energy use and human capital intensity, and a negative function on its productivity. Wang et al. [32]
noted that energy consumption and economic growth are the long-run causes for CO2emissions, and
that CO2emissions and economic growth are the long-run causes for energy consumption, indicating
that China’s CO2emissions will not decrease for a long period of time, and that reducing CO2emissions
may handicap China’s economic growth to some degree. Yang et al. [33] found that there is a lack of
cooperation among local governments to continue reducing energy intensity, and hence complementary
policies for reducing energy and carbon intensities are needed. Dong et al. [34] indicated that the
industrial sector has a better reduction potential than the other sectors, and suggested that the Chinese
government should consider adjusting the energy consumption structure into existing energy policies
and measures in the future.

As mentioned earlier, through the intervention of the Chinese government, companies have
increased their capital investment in waste gas treatment. The result showed that for the period
between 2011–2015, that there was a significant rise in the number of industrial waste gas treatment
facilities in China’s industrial sector. Previous studies that employed the DEA method to assess energy
efficiency often used population, capital, and energy as input variables, and GDP and undesirables
(such as CO2, SO2, PM2.5, etc.) as output variables. In our research, we will add the expenditure
on industrial waste gas treatment facilities (i.e., Expenditure) as a new input variable and apply
industrial waste gas emissions (i.e., Emission) including CO2, SO2, NOx, Soot etc., as an undesirable
output variable. In the selection of models for dynamic efficiency values, we are trying to make the
necessary modifications to the dynamic SBM model proposed by Tone and Tsutsui [28] that will make
it suitable for analyzing data with an undesirable output. Then, we define the efficiency value as
energy and emission-reduction efficiencies. Previous studies have discussed the impact of energy
efficiency improvements on the optimization of the energy consumption structure and the reduction of
energy intensity. The authors used the estimated efficiency results to establish treatment intensity and
emission intensity as new indicators that can help evaluate whether emission treatment has a positive
effect on improving energy and emission-reduction efficiencies.

The purpose of this study is to explore the case of considering the emission treatment, energy
consumption structure, and energy intensity as factors in tests. Emission intensity exists as a factor
that affects the dynamic change of efficiency, in order to see if there is a positive effect on whether the
change in treatment intensity improves energy and emission-reduction efficiencies.

2. Methodology and Date Sources

2.1. The Modified Dynamic SBM Model

From the development of the DEA dynamic methodology, Färe et al. [35] proposed the Malmquist
index (MPI) to analyze a firm’s technical change and efficiency change, but they did not analyze the
impact of carry-over activities fortwo periods. Färe and Grosskopf [36] then proposed a new analysis
of the dynamic impact of consecutive activities. Tone and Tsutsui [28] extended the dynamic analysis
model into a slacks-based measure. Tone and Tsutsui [28] proposed the SBM (weighted slack-based
measures) dynamic DEA model, in order to carry over activities as a form of connectivity.

The methodology of this study is designed based on the Tone and Tsutsui [28] assumption, and
the investigation is described as follows.

Suppose there are n DMUs over t periods; each DMU has a different input and output during
period t, and there is a carry-over (link) to the next period (t + 1). The input and output that are used
to compute the efficiency are labeled as x ∈ RM

+ and y ∈ RN
+ , respectively. As the basis of analysis for



Sustainability 2018, 10, 4329 4 of 18

the dynamic DEA model, we divided the carry-over activities into four kinds: (1) desirable (good), (2)
undesirable (bad), (3) discretionary (free), and (4) non-discretionary (fixed).

The following is the non-oriented model:

ρ∗0 = min

1
T ∑T

t=1 Wt
[

1− 1
m+nbad

(
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w−i s−it
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Equation (2) is the connection equation between periods t and t + 1.
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The most efficient solution is:
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Since this study considers undesirable output in the dynamic SBM model, the Tone and
Tsutsui [37] dynamic SBM model can be modified to include undesirable output in the dynamic
SBM model. Suppose the observations make up a J(J = 1 . . . n) dimension DMU set in which the DMU
under evaluation is represented by DMUO and is subject to DMUO∈ J. The input and outputthat
areused to compute the efficiency are labeled as m inputs xijt (i = 1 . . . m) and s outputs Yl jt, respectively.
Let output Y be divided into (yg, yb), where yg is a desirable output, yb is an undesirable output, and
Zgood is carried over from period t to period t + 1. The following is the non-oriented model:
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Equation (6) is the connection equation between periods t and t + 1.
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The most efficient solution is:
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2.2. Variables and Carry-Over

This study uses 30 provincial administrative units in China as DMUs, the revenue from principal
business (i.e., Revenue; namely the main business income of industrial enterprises) as the desirable
output, and industrial waste gas emissions (i.e., Emission; including CO2, SO2, NOx, and soot) as
the undesirable output. The two traditional inputs of annual average employees (i.e., Labor), and
total energy consumption (i.e., Energy) are added to the coal, petroleum, natural gas, and electricity
consumed together. Furthermore, the expenditure on industrial waste gas treatment facilities (i.e.,
Expenditure) is added as the input, and mainly refers to the annual operating cost of waste gas
treatment equipment, such as desulfurization, denitrification, and dust removal equipment. Capital
stock is used as the carry-over in periods t and t+1 to assess the efficiency of energy and emissions
management in China’s industrial sector. Data from 2011 to 2015are collected from the Industry
Statistical Yearbook of China [37–41], Energy Statistical Yearbook of China [42–46], and Statistical
Yearbooks on the Environment of China [47–51].

The overall variables and carry-over settings are shown in Figure 1 and Table 1.
Under the guiding opinions issued by the Chinese government in 2010 in the 12th Five-Year

Plan (2011–2015), which were intended to limit the emissions of high-energy industries, it is
mandatory for them to install waste gas treatment machinery, including desulfurization, denitrification,
and de-dusting equipment. This study found that during the five years that the number of industrial
waste gas treatment facilities (i.e., Facilities) in China’s industrial sector increased significantly,
the expenditure of industrial waste gas treatment facilities (i.e., Expenditure) also presented a
significant increase. Figure 2 shows the trends of facility and expenditure from 2011 to 2015.
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Table 1. Descriptive statistics of variables and carry-over.

Year Variable and
Carry-Over Unit Average SD Min Max

2011 (I)Labor million persons 3.148 3.273 0.181 14.511
(I)Energy million tce 58.841 36.713 8.636 163.490

(I)Expenditure billion RMB 4.459 3.552 0.371 14.390
(O)Revenue trillion RMB 2.806 2.799 0.160 10.703

(OB)Emission trillion cubic meters 2.248 1.657 0.168 7.718
(C)Capital stock trillion RMB 2.252 1.872 0.175 7.626

2012 (I)Labor million persons 3.224 3.588 0.122 15.576
(I)Energy million tce 60.892 36.621 8.522 170.668

(I)Expenditure billion RMB 4.840 4.565 0.556 22.438
(O)Revenue trillion RMB 3.097 3.085 0.170 11.929

(OB)Emission trillion cubic meters 2.118 1.474 0.196 6.765
(C)Capital stock trillion RMB 2.560 2.056 0.202 8.455

2013 (I)Labor million persons 3.262 3.426 0.127 14.558
(I)Energy million tce 57.990 34.370 8.606 161.11

(I)Expenditure billion RMB 4.992 3.640 0.364 13.316
(O)Revenue trillion RMB 3.430 3.423 0.164 13.232

(OB)Emission trillion cubic meters 2.231 1.615 0.369 7.912
(C)Capital trillion RMB 2.834 2.240 0.233 9.208

2014 (I)Labor million persons 3.325 3.458 0.116 14.705
(I)Energy million tce 59.292 35.435 8.973 174.868

(I)Expenditure billion RMB 5.769 4.349 0.687 16.352
(O)Revenue trillion RMB 3.690 3.706 0.176 14.314

(OB)Emission trillion cube 2.313 1.648 0.264 7.273
(C)Capital trillion RMB 3.187 2.514 0.244 10.126

2015 (I)Labor million persons 3.257 3.451 0.116 14.638
(I)Energy million tce 59.374 33.434 8.762 156.134

(I)Expenditure billion RMB 6.219 4.713 0.732 18.435
(O)Revenue trillion RMB 3.699 3.826 0.166 14.707

(OB)Emission trillion cubic meters 2.229 1.721 0.234 7.857
(C)Capital trillion RMB 3.408 2.686 0.279 10.706
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The cost of industrial waste gas treatment facilities invested by industrial enterprises is included
in the capital stock. This study also investigates the relationship between capital stock and revenue
from the principal business (i.e., Revenue), as well the trend during these five years. Figure 3 shows
the trends of capital stock and revenue from 2011–2015.Sustainability 2018, 10, x FOR PEER REVIEW  8 of 19 
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It shows that the growth in capital stock during 2010–2015 was higher than the growth rate of the
main business, especially in 2014–2015. Figure 2 illustrates a distinct increase in the input of industrial
waste gas treatment facilities for 2014–2015. Thus, it easy to see that higher capital stock includes
a portion that increases desirable output (Revenue) and a portion that reduces undesirable output.
The undesirable output of energy consumption in the industrial sector is mainly waste gas.
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3. Empirical Study

Based on the modified dynamic SBM model (8), this study estimate the energy and
emission-reduction efficiency values of the industrial sectors in 30 provinces of China. Table 2 reports
the results of the estimation. Figures 4 and 5 compare the values of 2011 and 2015, and allow us to
visually see the changes in values over the past five years. Table 2 shows that there are large differences
in the efficiency values of the DMUs in different provinces, and divides the DMUs into different groups
based on their values and changes over the five years.

Table 2. Energy and emission-reduction efficiency values by dynamic SBM model from 2011–2015.
DMU: decision-making unit.

DMU Score 2011 2012 2013 2014 2015 Rank Group

Anhui 0.503 0.497 0.507 0.477 0.514 0.519 16 �
Beijing 1 1 1 1 1 1 1 H

Chongqing 0.512 0.466 0.431 0.429 0.575 0.685 15 I
Fujian 0.658 0.729 0.638 0.555 0.659 0.719 11 �
Gansu 0.331 0.336 0.344 0.328 0.332 0.313 23 L

Guangdong 1 1 1 1 1 1 1 H
Guangxi 0.426 0.372 0.401 0.398 0.472 0.497 19 I
Guizhou 0.194 0.162 0.168 0.168 0.211 0.262 29 I
Hainan 0.265 0.152 0.245 0.286 0.291 0.346 24 I
Hebei 0.392 0.441 0.422 0.381 0.367 0.352 21 L/D

Heilongjiang 0.424 0.497 0.469 0.426 0.411 0.322 20 D
Henan 0.753 1 0.658 0.647 0.700 0.810 9 �
Hubei 0.575 0.528 0.561 0.567 0.601 0.624 14 I
Hunan 0.711 0.796 0.662 0.789 0.707 0.602 10 �
Inner

Mongolia 0.429 1 0.382 0.327 0.314 0.294 18 D

Jiangsu 1 1 1 1 1 1 1 H
Jiangxi 1 1 1 1 1 1 1 H

Jilin 1 1 1 1 1 1 1 H
Liaoning 0.599 0.746 0.673 0.696 0.583 0.340 13 D
Ningxia 0.184 0.181 0.202 0.181 0.179 0.175 30 L
Qinghai 0.194 0.225 0.206 0.174 0.190 0.177 28 L
Shaanxi 0.357 0.378 0.385 0.333 0.349 0.341 22 L

Shandong 1 1 1 1 1 1 1 H
Shanghai 0.949 1 1 1 1 0.761 8 H

Shanxi 0.198 0.239 0.240 0.190 0.170 0.152 27 L/D
Sichuan 0.492 0.446 0.456 0.447 0.539 0.585 17 I
Tianjin 1 1 1 1 1 1 1 H

Xinjiang 0.256 0.323 0.273 0.247 0.231 0.210 25 L/D
Yunnan 0.226 0.231 0.243 0.212 0.223 0.222 26 L
Zhejiang 0.608 0.625 0.637 0.565 0.585 0.635 12 �

Average 0.575 0.612 0.577 0.561 0.573 0.561 � �
Max 1 1 1 1 1 1 � �
Min 0.184 0.152 0.168 0.168 0.170 0.152 � �

St. Dev. 0.299 0.321 0.295 0.310 0.304 0.307 � �
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These figures show the DMUs that have maintained a high level of energy and emission-reduction
efficiency values over the five years, including Beijing, Guangdong, Jiangsu, Jiangxi, Jilin, Shandong,
Shanghai, and Tianjin. Seven of the values of these eight DMUs (excluding Shanghai) are one during
the five years; Shanghai fell in 2015, but its average value is 0.949. Among the 30 DMUs, only these
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eight DMUs’ values were greater than 0.8. This group of eight DMUs can be marked as H (High
efficiency). For this group, most of them are located in eastern coastal areas with more developed
economies, except Jiangxi and Jilin.

Second, it indicates the DMUs that had low energy and emission-reduction efficiency values
within the five years and no growth trends; these included Gansu, Hebei, Ningxia, Qinghai, Shaanxi,
Shanxi, Xinjiang, and Yunnan. These eight DMUs’ values were all less than 0.4. Although the values
for Guizhou and Hainan are less than 0.4, their efficiency values show a significant upward trend,
and treat these two DMUs separately. This group of eight DMUs can be marked as L (Low efficiency).

Third, it shows the DMUs that had a significant increase in energy and emission-reduction
efficiency values over the past five years, including Chongqing, Guangxi, Guizhou, Hainan, Hubei,
and Sichuan. Therefore, note that four of the six DMUs are concentrated in the southwest; this group
is marked as I (Increase efficiency).

Fourth and finally, the DMUs that had a significant decline in energy and emission-reduction
efficiency values over the past five years included Hebei, Heilongjiang, Inner Mongolia, Liaoning,
and Shanxi. It can be seen that four of the six DMUs are located around the capital, Beijing,
whereas Hebei, Shanxi, and Xinjiang also belong to the L group above; this group was marked
as D (Decrease efficiency).

The results from this study can be compared to previous studies by conducting a dynamic analysis
of China’s energy and environmental efficiency. Eastern China has the highest efficiency, followed
by central China, and western China has the worst (Wang et al. [24]; Wu et al. [27]). Yao et al. [26]
found that the average emission performance of the industrial sector in eastern, central, and western
China decreased in turn. The gap of efficiency values between eastern, central, and western regions are
shown in Figures 4 and 5, but this study pointed out that there was a significant decrease in some of
the eastern provinces such as Liaoning and Hebei, as well a significant increase in some of the western
provinces such as Chongqing and Sichuan. The results show that it is related to expenditure as an
input added in this study.

4.Discussion

3.1. Improvement of Energy and Emission-Reduction Efficiencies Caused by Energy Consumption Structure
and Energy Intensity Effects

The energy consumption structure and energy intensity are important factors affecting the energy
efficiency of China’s industrial sector. Before discussing whether the cost of waste gas treatment
can improve the energy and emission-reduction efficiencies, it should first dynamically compare the
impacts of these two factors.

As mentioned above, China’s coal consumption accounted for 62% of the country’s total energy
consumption in 2016. Coal as a traditional fossil fuel is the main cause of CO2 emissions. Compared to
oil and natural gas, coal contains more impurities such as sulfur and phosphorus, which are the
main reasons for the formation of SO2, NOx, and soot (PM2.5). Therefore, coal as a source of energy
consumption usually implies an investment of more waste gas treatment costs and a generation of
more emissions. The proportion of coal in total energy consumption can be applied to define the
energy share of energy consumption in China’s industrial sector. At the same time, when a DMU’s
industrial sector relies more on energy consumption to generate revenue, the DMU has higher energy
intensity. Thus, the proportion of energy consumption and income are defined as energy consumption
per renminbi (RMB) of Revenue.

Figure 6 shows a four-quadrant map of energy efficiency associated with the five-year average
of energy consumption structure and energy intensity. We intuitively see that DMUs with a lower
coal share and lower energy intensity have higher energy and emission-reduction efficiency values.
We further discuss the impact of energy consumption structure and energy intensity on efficiency by
comparing data trends over the five-year period.



Sustainability 2018, 10, 4329 11 of 18

Sustainability 2018, 10, x FOR PEER REVIEW  12 of 19 

 

 

Figure 6. Efficiency values depending on energy consumption structure and energy intensity. 

The next, we compare the changes in energy consumption structure and energy intensity 
between groups H and L. Tables 3 and 4 show the results for comparison, and find that the coal share 
in group H is lower than that in group L in 2011, but only by a difference of 5.3%, showing a 
downward trend in 2011–2015.The average value of group L did not change significantly over the 
five years. By 2015, the gap in the coal share between groups H and L had expanded to 14.6%.In 
group H, the coal share of DMUs in the eastern coastal areas had dropped more significantly. 

Figure 6. Efficiency values depending on energy consumption structure and energy intensity.

The next, we compare the changes in energy consumption structure and energy intensity between
groups H and L. Tables 3 and 4 show the results for comparison, and find that the coal share in group
H is lower than that in group L in 2011, but only by a difference of 5.3%, showing a downward trend
in 2011–2015.The average value of group L did not change significantly over the five years. By 2015,
the gap in the coal share between groups H and L had expanded to 14.6%. In group H, the coal share
of DMUs in the eastern coastal areas had dropped more significantly.

Table 3. Comparing the coal share of energy consumption between the H (High-efficiency) and L
(Low-efficiency)groups, unit: 100%.

Group H 2011 2012 2013 2014 2015 Group L 2011 2012 2013 2014 2015

Beijing 0.296 0.273 0.238 0.197 0.148 Gansu 0.484 0.504 0.474 0.492 0.505
Guangdong 0.472 0.467 0.408 0.430 0.425 Hebei 0.671 0.687 0.677 0.688 0.669

Jiangsu 0.534 0.487 0.454 0.430 0.435 Ningxia 0.527 0.524 0.535 0.582 0.607
Jiangxi 0.702 0.708 0.682 0.694 0.703 Qinghai 0.235 0.289 0.286 0.292 0.345

Jilin 0.741 0.725 0.665 0.667 0.643 Shaanxi 0.645 0.679 0.635 0.635 0.665
Shandong 0.665 0.675 0.614 0.636 0.538 Shanxi 0.693 0.686 0.718 0.721 0.709
Shanghai 0.271 0.233 0.222 0.244 0.207 Xinjiang 0.518 0.519 0.380 0.316 0.347

Tianjin 0.342 0.333 0.309 0.306 0.260 Yunnan 0.679 0.674 0.697 0.673 0.680

Average 0.503 0.488 0.449 0.450 0.420 Average 0.556 0.570 0.550 0.550 0.566

In terms of energy intensity, group H was significantly lower than group L. The average value of
group H declined from 0.151 in 2011 to 0.105 in 2015. The average value of group L has not changed
significantly, and has remained around 0.5.

Next, we compare the energy consumption structure and energy intensity changes over the
five-year period between groups I and D. Tables 5 and 6 show the results of the comparison. Table 5
shows that the average coal share values of both groups I and D have decreased over the five years.
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Table 4. Comparing the energy intensity between the H and L groups, unit: tce per 100 million renminbi
(RMB).

Group H 2011 2012 2013 2014 2015 Group L 2011 2012 2013 2014 2015

Beijing 0.095 0.086 0.057 0.057 0.057 Gansu 0.380 0.369 0.348 0.323 0.338
Guangdong 0.124 0.122 0.108 0.096 0.094 Hebei 0.259 0.248 0.223 0.223 0.223

Jiangsu 0.106 0.095 0.088 0.079 0.079 Ningxia 0.873 0.737 0.877 0.746 0.852
Jiangxi 0.176 0.158 0.159 0.128 0.129 Qinghai 0.757 0.830 0.888 0.753 0.837

Jilin 0.304 0.261 0.164 0.179 0.161 Shaanxi 0.309 0.303 0.282 0.271 0.278
Shandong 0.164 0.145 0.118 0.122 0.107 Shanxi 0.364 0.352 0.381 0.416 0.486
Shanghai 0.108 0.105 0.105 0.104 0.106 Xinjiang 0.584 0.669 0.703 0.620 0.737

Tianjin 0.130 0.123 0.115 0.110 0.111 Yunnan 0.525 0.473 0.449 0.438 0.447

Average 0.151 0.137 0.114 0.109 0.105 Average 0.506 0.498 0.519 0.474 0.525

Table 5. Comparing the coal share of energy consumption between the I (Increased efficiency) and
D(Decreased efficiency) groups, unit:100%.

Group I 2011 2012 2013 2014 2015 Group D 2011 2012 2013 2014 2015

Chongqing 0.725 0.751 0.660 0.695 0.701 Hebei 0.671 0.687 0.677 0.688 0.669
Guangxi 0.725 0.728 0.692 0.678 0.655 Heilongjiang 0.532 0.544 0.539 0.553 0.503
Guizhou 0.746 0.775 0.661 0.766 0.704 Inner Mongolia 0.594 0.515 0.545 0.523 0.576
Hainan 0.241 0.281 0.245 0.228 0.215 Liaoning 0.439 0.407 0.467 0.459 0.403
Hubei 0.790 0.807 0.677 0.640 0.647 Shanxi 0.693 0.686 0.718 0.721 0.709

Sichuan 0.614 0.686 0.586 0.642 0.522 Xinjiang 0.518 0.519 0.347 0.316 0.347

Average 0.640 0.671 0.587 0.608 0.574 Average 0.574 0.560 0.549 0.543 0.535

Table 6. Comparing the energy intensity between the I and D groups, unit: tce per 100 million RMB.

Group I 2011 2012 2013 2014 2015 Group D 2011 2012 2013 2014 2015

Chongqing 0.398 0.334 0.291 0.230 0.214 Hebei 0.259 0.248 0.223 0.223 0.223
Guangxi 0.330 0.291 0.236 0.219 0.193 Heilongjiang 0.367 0.355 0.305 0.333 0.354
Guizhou 0.758 0.765 0.535 0.409 0.372 Inner Mongolia 0.368 0.315 0.396 0.350 0.409
Hainan 0.539 0.502 0.534 0.511 0.527 Liaoning 0.200 0.198 0.154 0.170 0.242
Hubei 0.353 0.328 0.199 0.187 0.174 Shanxi 0.364 0.352 0.381 0.416 0.486

Sichuan 0.257 0.279 0.235 0.190 0.214 Xinjiang 0.584 0.669 0.703 0.620 0.737

Average 0.439 0.416 0.338 0.291 0.283 Average 0.357 0.356 0.360 0.352 0.409

The larger difference appears in Table 6. The energy intensity of group I fell from 0.439 in 2011 to
0.283 in 2015. In this group, except for Hainan, the other five DMUs showed a trend of decreasing year
by year, of which Guizhou especially experienced a significant decrease. In group D, this indicator had
a large increase to 0.409 in 2015 compared to 0.357 in 2011. The indicators of the four DMUs other than
Hebei and Heilongjiang in this group showed a significant increasing trend.

Based on the above analysis, reducing the coal share and energy intensity can increase the energy
and emission-reduction efficiencies. Those DMUs with higher efficiency values in the eastern coastal
areas usually had lower energy intensity and a leading position in promoting the replacement of coal
energy consumption structures by clean energy. In comparison, the energy consumption structure
adjustment in the central and western regions was relatively slow, and the driving force for increasing
the efficiency value in the southwest region was mainly due to the reduction in energy intensity. At the
same time, the observations indicate that some DMUs with lower values had a significant increase in
energy intensity.
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3.2. Emission Treatment Can Reduce Air Pollution, Further Sustainably Promoting the Improvement of Energy
and Emission-Reduction Efficiencies

In this model setting, the expenditure on industrial waste gas treatment facilities is taken as an
input. On one hand, the increase in the cost will be the cause of the decrease in the efficiency value.
On the other hand, the increase in the cost can suppress the increase in the waste gas of the undesirable
output, which will bring about an increase in the efficiency value.

This study aims to find whether or not the emission treatment is conducive to improving the
energy and emission-reduction efficiencies. An indicator is set up named ‘treatment intensity’.
The definition of expenditure per cubic meter of emissions is from the proportion of waste gas
treatment costs and emissions. Moreover, another indicator is set up named ‘emission intensity’,
which defined emission per RMB of revenue by the proportion of emissions and revenue. Figure 7
shows the correlation between efficiency values and the five-year average of treatment intensity and
emission intensity.Sustainability 2018, 10, x FOR PEER REVIEW  15 of 19 
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The results show that DMUs that had higher efficiency values usually had lower emission intensity.
In fact, most had higher levels of treatment intensity. As a follow-up, we analyzed the trends of these
two indicators over the past five years, and discussed the impact on efficiency values.

We compared the changes in treatment intensity and emission intensity between groups H and L
over five years. Tables 7 and 8 list the results of this comparison. The average intensity of treatment for
the two groups increased year by year over the five years, while the emission intensity decreased over
the five years. However, the treatment intensity of group H was significantly higher than that of group
L, while its emission intensity was significantly lower than that of group L. The DMUs with higher
efficiency values had high levels of average treatment intensity, and lower levels of average emission
intensity. Those DMUs with lower efficiency values have lower average treatment intensity and higher
average emission intensity. According to the five years of data, most of the DMUs have increased their
investment in waste gas treatment, and their emission intensity has been significantly reduced, such as
Jiangxi, Jilin, Ningxia, and Shaanxi.
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Table 7. Comparing treatment intensity between the H and L groups, unit: RMB per 10 million
cubic meters.

Group H 2011 2012 2013 2014 2015 Group L 2011 2012 2013 2014 2015

Beijing 1.689 2.692 2.439 2.880 1.990 Gansu 1.561 1.485 1.819 2.273 2.142
Guangdong 2.826 3.348 3.731 3.629 3.324 Hebei 1.864 1.929 1.683 2.248 2.216

Jiangsu 2.366 4.615 2.549 2.577 2.813 Ningxia 2.085 2.220 2.735 2.593 3.537
Jiangxi 1.948 2.245 2.423 2.494 2.666 Qinghai 1.225 1.556 1.727 1.686 1.910

Jilin 1.310 1.433 1.978 2.453 2.272 Shaanxi 1.426 1.872 1.960 2.197 2.461
Shandong 2.317 2.516 2.775 3.099 3.245 Shanxi 2.095 1.820 2.087 2.781 2.637
Shanghai 3.037 3.031 3.533 3.104 3.378 Xinjiang 1.213 1.344 1.545 2.200 1.733

Tianjin 4.890 2.853 3.175 3.594 4.010 Yunnan 1.720 2.459 2.486 2.477 2.166

Average 2.548 2.842 2.825 2.979 2.962 Average 1.649 1.836 2.005 2.307 2.350

Table 8. Comparing emission intensity between the H and L groups, unit: cubic meters per RMB.

Group H 2011 2012 2013 2014 2015 Group L 2011 2012 2013 2014 2015

Beijing 0.311 0.193 0.198 0.180 0.195 Gansu 1.963 1.785 1.501 1.325 1.530
Guangdong 0.338 0.289 0.274 0.258 0.256 Hebei 1.920 1.550 1.729 1.541 1.721

Jiangsu 0.450 0.408 0.376 0.420 0.394 Ningxia 4.146 3.127 2.640 3.039 2.522
Jiangxi 0.867 0.657 0.583 0.502 0.518 Qinghai 3.034 2.915 2.748 2.866 2.490

Jilin 0.635 0.520 0.447 0.405 0.471 Shaanxi 1.139 0.904 0.916 0.847 0.879
Shandong 0.506 0.385 0.356 0.364 0.390 Shanxi 2.511 2.104 2.243 2.024 2.306
Shanghai 0.400 0.392 0.386 0.367 0.375 Xinjiang 1.750 2.113 2.145 2.373 2.449

Tianjin 0.423 0.382 0.299 0.310 0.299 Yunnan 2.302 1.672 1.633 1.609 1.582

Average 0.491 0.403 0.365 0.351 0.362 Average 2.345 2.021 1.944 1.953 1.935

Next, we compared the change in treatment intensity and emission intensity over the five-year
period between the I and D groups. Tables 9 and 10 present the comparison results, and show that
the average treatment intensity of group I increased rapidly over the five years, while the average
emission intensity decreased. Some DMUs saw their treatment intensity increase significantly and their
emission intensity decrease significantly, such as Chongqing, Guangxi, Hainan, and Hubei. In group I,
Guizhou was the only DMU whose treatment intensity did not increase. Combined with the above
analysis, the efficiency improvement of Guizhou is mainly due to its reduction in energy intensity.
In group D, the average treatment intensity was relatively slow, while the average emission intensity
did not show a downward trend. The average emission intensity value in 2015 was higher than that
for the previous four years. The emission intensity of some DMUs is more obvious, such as that for
Liaoning and Xinjiang.

Table 9. Comparing treatment intensity between groups I and D, unit: RMB per 10 million cubic meters.

Group I 2011 2012 2013 2014 2015 Group D 2011 2012 2013 2014 2015

Chongqing 1.820 2.426 2.431 2.723 2.507 Hebei 1.864 1.929 1.683 2.248 2.216
Guangxi 0.853 0.986 1.420 1.808 2.417 Heilongjiang 1.240 1.232 1.402 1.280 1.616
Guizhou 3.028 2.524 1.707 1.900 2.148 Inner Mongolia 1.730 2.123 2.107 2.093 2.348
Hainan 2.216 2.835 2.771 2.604 3.494 Liaoning 1.831 1.903 1.935 2.054 2.385
Hubei 1.541 1.817 2.292 2.447 2.447 Shanxi 2.095 1.820 2.087 2.781 2.637

Sichuan 2.446 1.958 2.398 2.352 2.743 Xinjiang 1.213 1.344 1.545 2.200 1.733

Average 1.984 2.091 2.170 2.306 2.626 Average 1.662 1.725 1.793 2.109 2.156
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Table 10. Comparing emission intensity between groups I and D, unit: cubic meters per RMB.

Group I 2011 2012 2013 2014 2015 Group D 2011 2012 2013 2014 2015

Chongqing 0.801 0.649 0.618 0.497 0.475 Hebei 1.920 1.550 1.729 1.541 1.721
Guangxi 2.444 1.874 1.278 0.985 0.820 Heilongjiang 0.906 0.834 0.783 0.902 0.925
Guizhou 2.155 2.399 3.557 2.681 1.852 Inner Mongolia 1.714 1.551 1.592 1.847 1.895
Hainan 2.046 2.155 2.877 1.502 1.408 Liaoning 0.740 0.662 0.565 0.708 1.023
Hubei 0.843 0.604 0.528 0.524 0.548 Shanxi 2.511 2.104 2.243 2.024 2.306

Sichuan 0.775 0.697 0.561 0.527 0.428 Xinjiang 1.750 2.113 2.145 2.373 2.449

Average 1.511 1.396 1.570 1.119 0.922 Average 1.590 1.469 1.509 1.566 1.720

Based on the above analysis, the DMUs that increased their expenditure on the treatment of
industrial waste gas reduced their emission intensity and suppressed the improvement of energy
and emission-reduction efficiencies caused by a reduction of undesirable output. This effect is better
than the efficiency reduction caused by increased input. The DMUs with higher efficiency values
had higher levels of treatment intensity, which was mainly concentrated in the eastern coastal areas.
DMUs can reduce their emission intensity by increasing the input of emission treatment, which is an
effective way to improve the efficiency value. This is different from Wu et al. [25], who pointed out
that Chongqing and Jilin had the lowest energy efficiency. In this study, Jilin, with an efficiency of one
as the benchmark, and Chongqing demonstrated a significant increase in efficiency, which was due to
the emission intensity decreasing in these two provinces.

5.Conclusions and Policy Recommendations

The Chinese government increased its control over energy conservation and emission reduction
in the industrial sector, and achieved improved results over the period 2011–2015. Based on the
existing research, we added the expenditure of industrial waste gas treatment as a new input
variable, modifying the dynamic SBM model to make it suitable for analysis with undesirable output.
Through this, we then estimated the energy and emission-reduction efficiencies of China’s industrial
sector over this time.

According to the results, we found that the DMUs with higher efficiency values were mainly
distributed in the eastern coastal areas and usually had lower energy intensity. They also took a
leading position in the process of energy consumption restructuring by replacing coal with clean
energy; these included Beijing, Tianjin, Shanghai, Guangdong, and Jiangsu. In the central and western
regions, the adjustment of energy consumption structure was slow, and there was more room for
improvement. Some DMUs had improved their efficiency values; this was mainly due to a reduction
of energy intensity, and included those of Guizhou, Chongqing, Sichuan, and Hubei. Some DMUs had
decreased efficiency values due to the increase in energy intensity, such as Liaoning, Inner Mongolia,
Shanxi, and Xinjiang.

For the DMUs that increased their expenditure on the treatment of industrial waste gas in order
to reduce air pollution, this effect was better than the energy-efficiency reduction caused by increased
input. The DMUs with higher efficiency values typically had higher treatment intensity and lower
emission intensity. Some DMUs had higher treatment intensity, and their emission intensity was
significantly reduced, thus maintaining high efficiency values or improving their efficiency values;
these included Jiangxi, Jilin, Guangxi, and Hainan. Some DMUs had higher or increased emission
intensity; those DMUs could increase the expenditure of industrial waste gas treatment as an effective
way to reduce air pollution, and thus further sustainably promote the improvement of their energy
and emission-reduction efficiencies. This includes the DMUs of Guizhou, Qinghai, Xinjiang, Inner
Mongolia, and Shanxi.
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