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Abstract: Wind direction and speed are both crucial factors for wind farm layout; however,
the relationship between the two factors has not been well addressed. To optimize wind farm layout,
this study aims to statistically explore wind speed characteristics under different wind directions
and wind direction characteristics. For this purpose, the angular–linear model for approximating
wind direction and speed characteristics were adopted and constructed with specified marginal
distributions. Specifically, Weibull–Weibull distribution, lognormal–lognormal distribution and
Weibull–lognormal distribution were applied to represent the marginal distribution of wind speed.
Moreover, the finite mixture of von Mises function (FVMF) model was used to investigate the
marginal distribution of wind direction. The parameters of those models were estimated by the
expectation–maximum method. The optimal model was obtained by comparing the coefficient of
determination value (R2) and Akaike’s information criteria (AIC). In the numerical study, wind data
measured at a featured wind farm in north China was adopted. Results showed that the proposed
joint distribution function could accurately represent the actual wind data at different heights, with
the coefficient of determination value (R2) of 0.99.

Keywords: wind characteristics; joint probability distribution; wind direction and speed;
Weibull–Weibull distribution; lognormal–lognormal distribution; Weibull–lognormal distribution

1. Introduction

With the gradually increasing consumption of nonrenewable energy, such as oil, coal, and natural
gas, renewable energy has become the hope of humankind to solve the current energy shortage and
future energy crisis [1,2]. Wind energy is a well-known renewable energy source and has been used
worldwide due to its advantages of clean, renewable, and large reserves [3–5]. People capture wind
energy through wind turbines, and wind speed and wind direction characteristics are therefore crucial
for calculating wind power and the design and arrangement of wind turbines [6]. The wind speed
probability density distribution can be used to estimate wind power density [7,8] and can also be
applied to determine the most dominant wind direction [9–11]. In order to optimize wind farm
layout in complex terrain, the joint probability distribution of wind direction and wind speed have
gained great attention [12–14] as it can be used to obtain wind speed characteristics under different
wind directions in complex terrain. Wind speed characteristics under different wind directions play
a significant role in arrangement of wind turbines. It should be noted that wind speed with the
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highest frequency and wind speed that can capture the maximum wind energy are different. To obtain
maximum energy output, the two wind speeds should be as close as possible [9]. In addition, the joint
probability distribution is important in the construction of the measure–correlate–predict method and
the calculation of structural wind load [15–17].

Up to now, a large number of probability models have been used to fit wind velocity
distribution [18–21]. However, there is no fixed optimal model for different regions. Masseran et al. [22]
investigated eight probability models to describe the wind speed probability distribution:
Weibull, Rayleigh, lognormal, exponential, inverse Gaussian, gamma, Burr, and inverse gamma.
Jaramillo et al. [23] found that the Weibull–Weibull distribution was more appropriate than the
two-parameter Weibull distribution for regions where wind speed presented a bimodal probability
distribution. Kollu et al. [24] used a mixture of three probability distributions—Weibull–lognormal
distribution, Weibull–extreme value, and lognormal–extreme value distribution—to model wind
speed distribution. The result showed that the mixed model had good fitting on both multipeak
and single-peak wind speed distribution. Moreover, it is known that wind direction distribution
plays a crucial role in determining the most dominant wind direction [11]. However, compared
to wind speed, there are few models that are suitable for fitting wind direction distribution [25].
This can be attributed to two main difficulties. Firstly, the wind direction is generally divided
into 16 intercardinal directions: north (N), north-northeast (NNE), northeast (NE), east-northeast
(ENE), east (E), east-southeast (ESE), southeast (SE), south-southeast (SSE), south (S), south-southwest
(SSW), southwest (SW), west-southwest (WSW), west (W), west-northwest (WNW), northwest (NW),
and north-northwest (NNW). Second, the wind direction is a circular variable. Masseran et al. [11]
manifested that a finite mixture of von Mises function (FVMF) could be applied to describe the actual
data of wind direction in Malaysia. As a result, it was found that more than 90% of wind directions
could be explained by FVMF models. So far, FVMF models have been widely applied to model
the angular variable, which plays an important role in many fields, such as wind energy [26–29],
environment [30], economics [31], and video analysis [32].

In modeling the joint probability function of wind direction and speed, Johnson and Wehrly [12]
constructed four kinds of models, and the fourth model was a combination of wind direction and speed
distribution. Carta et al. [6] derived joint distribution with isotropic Gaussian model, angular–linear
model, and anisotropic Gaussian model. The conclusion was that the angular–linear model had
a better degree of fit in the case of the Canary Islands. Erdem and Shi [13] constructed bivariate joint
distribution based on angular–linear model, Farlie–Gumbel–Morgenstern model, and anisotropic
lognormal approaches model. The results indicated that angular–linear model had a good fit to the
measured wind data in North Dakota, USA. Han et al. [17] proposed two nonparametric models to
fit joint speed and direction distributions and claimed that the novel methods performed better than
parametric distributions. Up to now, very few publications have utilized joint probability distributions
to simultaneously approximate wind speed and direction.

For a more accurate description of complex wind characteristics, the wind speed
distribution is described by a mixture of three probability distributions: Weibull–Weibull (W–W),
lognormal–lognormal (L–L), and Weibull–lognormal (W–L); the FVMF models are used to investigate
the wind direction characteristics, and the joint probability distribution of wind direction and speed is
obtained with angular–linear model. The suitability of the distribution is judged from the coefficient
of determination R2.

2. Wind Data Measurement

The wind data were collected for a wind farm in Taonan, China (45◦24′18.16” N, 122◦20′22.24” E)
from April 2013 to March 2017. The actual wind direction and speed data were taken at a height of
70 m and 50 m above ground level and stored with a time interval of 10 min.
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3. Models

3.1. Joint Distribution

In this paper, we used the angular–linear model proposed by Johnson and Wehrly [12] to construct
the joint probability distribution of wind direction and speed. The joint probability distribution of
wind direction and speed is as follows (Equations (1) and (2)):

fV,Θ = 2πg(ζ) fV(v) fΘ(θ); 0 ≤ θ < 2π; −∞ ≤ v < ∞ (1)

where fV(v) is the probability distribution of the wind speed; fΘ(θ) is the probability distribution of
the wind direction; g(·) is the probability distribution of the angular variable ζ. The angular variable ζ

is as follows:

ζ =

{
2π[FV(v)− FΘ(θ)], FV(v) ≥ FΘ(θ)

2π[FV(v)− FΘ(θ)] + 2π, FV(v) < FΘ(θ)
(2)

where FV(v) is the cumulative probability distribution of the wind speed; FΘ(θ) is the cumulative
probability distribution of the wind direction.

3.2. Wind Speed Distribution

For the probability distribution of wind speed, we used W–W, given by Equation (3), L–L, given
by Equation (4), and W–L, given by Equation (5):

fV(v) = ∑M=2
m=1 wm

βm

αm
(

v
αm

)
βm−1

exp

[
−
(

v
αm

)βm
]

, v > 0; αm, βm > 0 (3)

where wm are weight coefficients that add to one; the parameter αm is a shape parameter; βm is a scale
parameter with the same units as the wind speed.

fV(v) = ∑M=2
m=1

wm

vσm
√

2π
exp[
−(ln(v)− µm)

2

2σ2
m

], v > 0; σm > 0 (4)

where wm are weight coefficients that add to one; the parameter µm is the mean of the associated
normal distribution; σm is standard deviation of the associated normal distribution.

fV(v) = w1
β

α
(

v
α
)

β−1
exp
[
−
( v

α

)β
]
+ w2

1
vσ
√

2π
exp[
−(ln(v)− µ)2

2σ2 ], v > 0 (5)

where w1 and w2 are weight coefficients that add to one.

3.3. Circular Variable Distribution

For the probability distribution of wind direction, we used a finite mixture of von Mises function.
The FVMF is a mixture distribution that consists of Mth single von Mises distribution. The finite
mixture von Mises function is as follows (Equations (6) and (7)):

fΘ(θ) = ∑M
m=1

wm

2π I0(km)
exp[km cos(θ − µm)], 0 ≤ θ < 2π; km ≥ 0; 0 ≤ µm < 2π (6)

where wm are weight coefficients that add to one; the parameter µm is the mean wind direction; and
the parameter km is the concentration parameter. Here, I0(km) is the modified Bessel function of the
first kind and order zero [33]. I0(km) is as follows:

I0(km) =
1√
2π

∫ 2π

0
exp[km cos x]dx = ∑∞

k=0
1

(k!)2 (
km

2
)

2k
(7)
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For the probability distribution of the angular variable ζ, the two component mixtures von Mises
function was used [6].

3.4. Cumulative Distribution Function

The cumulative probability distribution of the wind speed can be derived through Equation (8).
The cumulative probability distribution of the wind direction can be derived through Equation (9).

FV(v) =
∫ v

0
fV(v)dv (8)

FΘ(θ) =
∫ θ

0
fΘ(θ)dθ (9)

4. Parameter Estimation

In this paper, we chose the expectation–maximization method to estimate the parameters of W–W,
L–L, W–L, and FVMF [34].

4.1. Parameter Estimation of W–W Distribution

If we let bm = βm and cm = αm
βm , the W–W in Equation (3) can also be written as follows

(Equation (10)):

fV(v) = ∑M=2
m=1 wm

bm

cm
vbm−1exp

[
−vbm

cm

]
(10)

The W–W parameters (wm, bm, and cm) can be estimated through the actual wind speed data.
The W–W parameters can be derived by Equations (11)–(14):

pn = p( m|vn; wm, bm, cm) =
wm

bm
cm

vn
bm−1exp[− vn

bm

cm
]

∑M=2
m=1 wm

bm
cm

vnbm−1exp[− vnbm
cm

]
(11)

ŵm =
1
N ∑N

n=1 pn (12)

∑N
n=1 pn

b̂m
+ ∑N

n=1[ln(vn)pn]−
∑N

n=1

[
ln(vn)vb̂m

n pn

]
ĉm

= 0 (13)

∑N
n=1

(
vb̂m

n pn

)
− ĉm ∑N

n=1 pn = 0 (14)

where N is the number of measured wind speed data; pn = p(m|vn; wm, µm, σm) and pn is the
distribution of hidden variables in the expectation–maximization method [11].

4.2. Parameter Estimation of L–L Distribution

The L–L parameters (wm, µm, and σm) can be determined through the actual wind speed data.
The L–L parameters can be derived by Equations (15)–(18):

pn = p( m|vn; wm, µm, σm) =

wm
vnσm

√
2π

exp[−(ln(vn)−µm)2

2σ2
m

]

∑M
m=1

wm
vnσm

√
2π

exp[−(ln(vn)−µm)2

2σ2
m

]
(15)

ŵm =
1
N ∑N

n=1 pn (16)

µ̂m =
∑N

n=1[ln(vn)pn]

∑N
n=1 pn

(17)
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σ̂m = { ∑N
n=1 [(lnvn − µ̂m)

2 pn]

∑N
n=1 pn

}
1
2

(18)

where N is the number of measured wind speed data; pn = p( m|vn; wm, µm, σm) and pn is the
distribution of hidden variables in the expectation–maximization method [11].

4.3. Parameter Estimation of W–L Distribution

If we let b = β1 and c = α1
β1 , the W–W in Equation (5) can also be written as follows

(Equation (19)):

fV(v) = w1
b
c

vb−1exp[−vb

c
]+w2

1
vσ
√

2π
exp[
−(ln(v)− µ)2

2σ2 ] (19)

The W–L parameters (w1, w2, b, c, µ, and σ) can be determined through the actual wind speed
data. The W–L parameters can be derived by Equations (20)–(26):

p( m|vn; Θ) = p( m|vn; w1, w2, b, c, µ, σ) =


w1

b
c vb−1

n exp[− vb
n
c ]

fV(vn)
, m = 1

w2
1

vnσ
√

2π
exp[−(ln(vn)−µ)2

2σ2 ]

fV(vn)
, m = 2

(20)

ŵ1 =
1
N ∑N

n=1 p(m = 1|vn; Θ) (21)

ŵ2 =
1
N ∑N

n=1 p(m = 2|vn; Θ) (22)

∑N
n=1 p(m = 1|vn; Θ)

b̂
+∑N

n=1[ln(vn)p(m = 1|vn; Θ)]−
∑N

n=1

[
ln(vn)vb̂

n p(m = 1|vn; Θ)
]

ĉ
= 0 (23)

∑N
n=1

(
vb̂

n p(m = 1|vn; Θ)
)
− ĉ ∑N

n=1 p(m = 1|vn; Θ) = 0 (24)

µ̂ =
∑N

n=1[ln(vn)p(m = 2|vn; Θ)]

∑N
n=1 p(m = 2|vn; Θ)

(25)

σ̂ = { ∑N
n=1 [(lnvn − µ̂)2 p(m = 2|vn; Θ)]

∑N
n=1 p(m = 2|vn; Θ)

}
1
2

(26)

where N is the number of measured wind speed data; Θ = {w1, w2, b, c, µ, σ} and p( m|vn; Θ) is the
distribution of hidden variables in the expectation–maximization method [11].

4.4. Parameter Estimation of FVMF

The FVMF in Equation (6) can also be written as follows (Equation (27)):

fΘ(θ) = ∑M
m=1

wm

2π I0(km)
exp{km[cos(θ) cos(µm) + sin(θ) sin(µm)} (27)

where sin (µm) and cos (µm) are considered two parameters, and sin2 (µm) + cos2 (µm) = 1.
The FVMF parameters {wm, sin(µm), cos(µm), km} can be determined through the actual wind

direction data [25]. The FVMF parameters can be derived by Equations (28)–(32):

pn = p( m|θn; wm, sin(µm), cos(µm), km) =
wm

2π I0(km)
exp{km [cos(θn) cos(µm)+sin(θn) sin(µm)}

∑M
m=1

wm
2π I0(km)

exp{km [cos(θn) cos(µm)+sin(θn) sin(µm)} (28)

ŵm =
1
N ∑N

n=1 pn (29)
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sin2(µ̂m) =
{∑N

n=1[pn sin(θn)]}
2

{∑N
n=1[pn sin(θn)]}

2
+ {∑N

n=1[pn cos(θn)]}
2 (30)

cos2(µ̂m) =
{∑N

n=1[pn cos(θn)]}
2

{∑N
n=1[pn cos(θn)]}

2
+ {∑N

n=1[pn sin(θn)]}
2 (31)

I1(k̂m)

I0(k̂m)
=

cos(µ̂m){∑N
n=1[pn cos(xn)]}+ sin(µ̂m){∑N

n=1[pn sin(xn)]}
∑N

n=1 pn
(32)

where N is the number of measured wind direction data; pn is the distribution of hidden variables
in the expectation–maximization method [11]; I1(k̂m) is the modified Bessel function of the first kind
and order one. Here, the derivative of I0(km) with respect to km is I1(km). Besides, to evaluate the
goodness of fit for the theoretical distribution [33], the coefficient of determination (R2) and Akaike’s
information criteria (AIC) are given by Equations (33) and (34):

R2 =
∑N

n=1 (F̂n − F)2

∑N
n=1 (F̂n − F)2

+ ∑N
n=1 (Fn − F̂n)

2 (33)

where F̂n are estimated cumulative probabilities; F = ∑N
n=1 F̂n/N; Fn are empirical cumulative probabilities.

AIC = −2log(L) + 2k (34)

where L is the likelihood; k is the number of parameter in the fitted model.

5. Wind Power Density

Wind power density can be used to evaluate the potential of wind energy in a region. The mean
wind power density [35–37] can be expressed as follows (Equation (35)):

E =
1

2N ∑N
n=1 ρv3

n (35)

where E represent the mean wind power density (W/m2); N is the number of records in the set period;
vi is the wind speed of the ith record (m/s); ρ is the density of air (kg/m3). In this paper, the value of ρ

was 1.225 kg/m3. The probability distribution of wind power density at different wind speed can be
determined using Equation (36):

P(v) =
1
2

ρ fV(v)v3 (36)

In addition, the wind power density can be estimated by Equation (37):

Ee =
∫ ∞

0

1
2

ρ fV(v)v3dv (37)

The joint probability distribution of wind direction and speed can be used to evaluate the wind
speed distribution at different wind directions, given by Equation (38):

f(θ1−θ2)(v) =
∫ θ2

θ1
fV,Θdθ (38)

Moreover, two useful wind speeds parameters, namely the most probable wind speed and the
wind speed carrying maximum energy, can be derived by the wind speed distribution and wind power
density distribution [38,39]. The most probable wind speed is the wind speed of maximum point in the
wind speed distribution. The wind speed carrying maximum energy is the wind speed of maximum
point in the wind power density distribution [40].
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6. Results and Discussion

Figure 1 was drawn by analyzing the data at a height of 70 m, and it demonstrates the wind
speed distributions (Figure 1a) and the probability distribution of wind power density (Figure 1b).
The parameters in the wind speed distributions, the corresponding R2 coefficient, and AIC are shown in
Table 1. It can be seen from Figure 1a that W–L distribution was better than W–W and L–L distribution
for the histogram of wind speed data, which is also clear from in Table 1. Therefore, we chose W–L
distribution as the marginal distribution of wind speed to construct the joint distribution. Figure 1b
illustrates the probability density distribution of wind power density. The estimated wind power
density was 270.79 W/m2, 307.34 W/m2, and 271.97 W/m2 corresponding to W–W, L–L, and W–L,
respectively. The mean wind power density was 270.53 W/m2.
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Figure 1. The distribution of wind speed characteristics at a height of 70 m: (a) wind speed distributions,
(b) probability distribution of wind power density.

Table 1. Fitted parameters in wind speed distributions.

Distribution m wm αm/µm βm(m/s)/σm R2 AIC

Weibull–Weibull
1 0.5382 7.4895 2.4639

0.9942 10737052 0.4617 6.0398 1.5558

Lognormal–Lognormal 1 0.7794 1.8437 0.4342
0.9945 10795512 0.2206 0.8139 0.8520

Weibull–Lognormal 1 0.7594 6.1016 1.7790
0.9943 10733442 0.2405 2.0413 0.3324

Figure 2 shows that the wind direction rose at a height of 70 m (Figure 2a) and the wind energy
rose at a height of 70 m (Figure 2b). As shown in Figure 2, wind direction 1, 8, and 13 (N, SSE, and W)
had a large wind direction frequency of 9.28%, 7.66%, and 10.41%, respectively, while wind direction
12 (WSW) had a large wind power density frequency (Figure 2b) of 14.92%. Therefore, in order to
investigate their internal correspondence, we needed to study the wind speed characteristics under
different wind directions and investigate their characteristics.
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Figure 2. The rose diagrams at a height of 70 m: (a) wind direction rose; (b) wind energy rose.

Figure 3 was obtained by numerical calculation of the circular variable, which was measured at
a height 70 m. Figure 3a shows the wind direction distributions, and Figure 3b depicts the probability
distribution of the angular variable ζ. It can be seen from the histogram of the measured wind direction
data in Figure 3a that there were up to four main wind directions; therefore, the FVMF with M = 2,
M = 3, and M = 4 was chosen to fit the wind direction distribution. Figure 3b illustrates that there
were two distinct peaks in the histogram of the angular variable ζ; Therefore, the FVMF with M = 2
was selected to construct the probability distribution of the angular variable ζ. The parameters in
the wind direction distributions, the corresponding R2 coefficient, and AIC are shown in Table 2.
The parameters in the angular variable ζ distribution function and the corresponding R2 coefficient
are shown in Table 3. From Figure 3a and Table 2, it can be seen that the FVMF with M = 4 was the
best fitted model for the wind direction data. In addition, in order to estimate the parameters of the
FVMF model, we redefined sin(µm) and cos(µm) instead of µm. Here, the µm should be calculated by
sin(µm) and cos(µm) to describe the mean wind direction. The FVMF with M = 4 reflected that the
most dominant wind direction was 4.69 rad (268.6◦). As displayed in Figure 3b and Table 3, the FVMF
with M = 2 was suitable to describe the angular variable ζ distribution.
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direction distributions; (b) probability distribution of the angular variable ζ.
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Table 2. Fitted parameters in wind direction models.

Distribution m wm km sin(µm) cos(µm) R2 AIC

FVMF with M = 2
1 0.8604 0.7638 −0.9315 0.3639

0.9890 7402792 0.1396 6.7758 0.4512 −0.8924

FVMF with M = 3
1 0.2414 5.2855 −0.9904 −0.1379

0.9883 7371922 0.3587 2.7048 −0.3228 0.9465
3 0.3999 1.6529 0.3105 −0.9506

FVMF with M = 4

1 0.1999 5.2058 0.4319 −0.9019

0.9864 735538
2 0.1567 8.3011 −0.1414 0.9900
3 0.5610 1.5859 −0.9997 −0.0263
4 0.0825 2.7812 0.9408 0.3388

Table 3. Fitted parameters in angular variable ζ.

Distribution m wm km sin(µm) cos(µm) R2

FVMF with M = 2
1 0.2544 0.9229 −0.0856 0.9963

0.99062 0.7456 0.4296 0.9019 −0.4318

Figure 4 shows the joint probability distribution of actual wind direction and speed at a height of
70 m. Figure 5 shows the joint probability distribution at a height of 70 m, which was obtained with the
angular–linear distribution model. According to the proposed joint probability distribution at a height
70 m, the wind speed distribution under 16 wind directions could be determined. The corresponding
R2 value can be seen in Table 4. As can be seen from Figures 4 and 5 and Table 4, the proposed model
had a great degree of fit to the sample data at a height 70 m. Moreover, in order to verify the validity
of the selected model, the proposed model was used to construct the joint probability distribution at
a height of 50 m. It should be borne in mind that the wind direction varied slightly from 70 m to 50 m.

Table 4. The R2 value of the 70-m high wind speed distribution under 16 wind directions.

Wind Direction N NNE NE ENE E ESE SE SSE S

R2 0.9831 0.9122 0.909 0.9341 0.9137 0.9354 0.9799 0.9997 0.9886

Wind Direction SSW SW WSW W WNW NW NNW

R2 0.9853 0.9958 0.971 0.9848 0.997 0.985 0.9869
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Figure 6 shows the joint probability distribution at a height of 50 m. In the proposed joint
distribution model, W–L distribution was selected to process the wind speed data, and the FVMF with
M = 4 was the fitted model for the wind direction data. Moreover, the FVMF with M = 2 was chosen to
describe the angular variable ζ distribution. The parameters in the joint probability distribution at
a height of 50 m and the corresponding R2 coefficient are shown in Table 5. According to the proposed
joint probability distribution at a height of 50 m, the wind speed distribution under 16 wind directions
could be determined. The corresponding R2 value can be seen in Table 6. It can be seen from the above
analysis that the proposed model could well present wind characteristics at different heights.
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Table 5. Fitted parameters in the joint probability distribution at a height of 50 m.

Distribution m wm αm/µm βm(m/s) / σm km sin(µm) cos(µm) R2

W–L
1 0.6108 5.3568 1.6104 — — —

0.99332 0.3892 1.8266 0.3853 — — —

FVMF with M = 4

1 0.1999 — — 0.1999 5.2058 0.4319

0.9864
2 0.1567 — — 0.1567 8.3011 −0.1414
3 0.5610 — — 0.5610 1.5859 −0.9997
4 0.0825 — — 0.0825 2.7812 0.9408

FVMF with M = 2
1 0.4410 — — 0.6048 −0.1081 0.9941

0.99032 0.5590 — — 0.6030 0.8675 −0.4974

Table 6. The R2 value of the 50-m high wind speed distribution under 16 wind directions.

Wind Direction N NNE NE ENE E ESE SE SSE S

R2 0.9868 0.9288 0.9033 0.9139 0.9337 0.9468 0.9729 0.9835 0.9835

Wind Direction SSW SW WSW W WNW NW NNW

R2 0.9808 0.9955 0.9737 0.9857 0.9981 0.9882 0.9896

The wind direction was recorded in 16 intercardinal directions. Each wind direction of the 16
intercardinal directions had a corresponding wind speed and a wind power density distribution. Due
to the limitation of space, we have only given the results of two wind directions—wind direction 12 (E)
and wind direction 13 (W)—in Figure 7. The figure was drawn by applying the joint probability density
distribution at a height of 70 m. As can be seen from Figure 7, the most probable wind speeds for
wind direction 12 and 13 were 6.5 m/s and 6.95 m/s, respectively; the wind speeds carrying maximum
energy were 9.34 m/s and 9.63 m/s, respectively.
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The FVMF with M = 4 was a good fitted model for the wind direction data and could be used
to investigate the wind direction characteristics for four seasons. The four seasons were defined
as follows: (a) spring: March, April, and May; (b) summer: June, July, and August; (c) Autumn:
September, October, and November; (d) winter: December, January, and February. Figure 8 depicts the
wind direction distributions over four seasons. It was drawn using the wind direction data of 70 m for
three years. The parameters in the wind direction model over four seasons and the corresponding R2

coefficient are shown in Table 7. As can be seen from Figure 8, the most dominant wind direction was
5 rad (286.6◦) in the spring season, 6 rad (348.8◦) in the summer season, 4.5 rad (260.2◦) in the autumn
season, and 4.7 rad (267.1◦) in the winter season. There were more than two prevailing directions in
the four seasons. It was concluded from Figure 8 that the wind direction had seasonal features.
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Table 7. Fitted parameters in wind direction models over four seasons.

Season Distribution m wm km sin(µm) cos(µm) R2

Spring FVMF with M = 4

1 0.1640 6.8674 0.3582 −0.9336

0.9871
2 0.0309 7.4065 0.9851 0.1721
3 0.7488 1.0602 −0.9580 0.2869
4 0.0563 23.9653 −0.0576 0.9983

Summer FVMF with M = 4

1 0.3752 1.0583 −0.9999 −0.0100

0.9873
2 0.3126 3.4264 0.5993 −0.8005
3 0.2492 4.6498 −0.1368 0.9906
4 0.0630 6.4372 0.8626 0.5058

Autumn FVMF with M = 4

1 0.4161 3.1634 −0.9855 −0.1696

0.9859
2 0.0599 3.4360 0.9456 0.3254
3 0.2950 4.5123 0.3778 −0.9259
4 0.2290 6.5931 −0.2147 0.9767

Winter FVMF with M = 4

1 0.0803 8.5141 0.4261 −0.9047

0.984
2 0.0310 4.0085 0.9529 0.3031
3 0.7966 1.5032 −0.9989 −0.0477
4 0.0922 22.7153 −0.0708 0.9975
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7. Conclusions

This paper presents the analysis of wind speed and wind direction using joint probability
distribution methods. The joint distribution was obtained with wind direction and speed distributions.
By fitting the wind data at different heights, the proposed model could well present wind characteristics.
Thus, the proposed model was used to investigate the wind direction and wind speed. The main
findings of this paper are as follows:

(1) W–W, L–L, and W–L distribution with higher R2 coefficient provide a good fitting for wind
speed data at a height of 70 m. In this paper, the best fitting model for wind speed was W–L distribution,
which could accurately represent wind speed characteristics.

(2) The FVMF with M = 4 was a good fitted model for the wind direction data at a height of
70 m and could accurately describe the wind direction distribution with multiple peaks. Moreover,
the dominant wind direction was 4.69 rad (268.6◦) in the three years.

(3) The joint probability distribution provided a good fit to the measured wind data at different
heights, and the R2 of the joint probability distribution was greater than 0.99, indicating that this model
was able to explain more than 99% of wind data. With the joint probability distribution, the most
probable wind speeds for wind direction 12 and 13 were 6.5 m/s and 6.95 m/s at a height of 70 m,
respectively; the wind speed carrying maximum energy were 9.34 m/s and 9.63 m/s at a height of
70 m, respectively.

(4) The wind direction had seasonal features. The most dominant wind direction was 5 rad
(286.6◦) in the spring season, 6 rad (348.8◦) in the summer season, 4.5 rad (260.2◦) in the autumn season,
and 4.7 rad (267.1◦) in the winter season. Moreover, there were more than two prevailing directions in
the four seasons.
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