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Abstract: In accordance with the requirements of PN EN 13201-5 standard for road lighting
installation, energy performance indicators should be descripted. In order to calculate energy
performance indicators, it is necessary to know the active power of the road lighting system.
The above standard does not specify whether active power losses should be taken into account in
calculations. The main purpose of the article is to estimate the active power losses in the road lighting
installation. The article presents methods for calculating active power losses, taking into account
losses in all main elements of the installation. The obtained calculation results show the relationship
between active power losses and the power of luminaires, their number and spacing between
poles. Calculations of active power losses were made for single-phase and three-phase installations.
The active power losses in a three-phase system do not exceed 1.5% and in a single-phase installation
they may be greater than 7%. Therefore, in order to obtain exact values of energy performance
indicators (and also predict electricity consumption), active power losses should be taken into
account in calculations. In addition, a comparative analysis of the effect of luminaires dimming and
active power losses on annual CO, emissions was made. Not taking into account the active power
losses in the calculation of the lighting installation’s power, for single-phase installations in particular,
understates the calculated value of CO, emissions by more than 6%.

Keywords: power losses; road lighting; LED luminaires

1. Introduction

In each electrical installation, the losses of active power occur due to the current flowing through
the components of the system with a certain resistance and reactance. The power losses are caused by
the flow of active and reactive power in the wires and cables, in the protection devices, in the executing
components (contacts), etc. [1-4]. They cause, among others, a reduction in network bandwidth and
warming up of wiring. Consequently, the active power losses will worsen the actual energy efficiency
of the installation, because they are not included in the calculations. The practice of determining
electrical power losses concerns the sum of the losses in the individual network elements [5,6]. In order
to obtain a more accurate determination of power losses, the physical phenomena occurring within
a given network elements are taken into account. For some receivers, electricity power losses may
significantly affect their efficiency, e.g., luminaires working in road lighting.

The losses of active power in a road lighting system depend on the complexity of the network,
the number of circuits and the number of luminaires in the individual circuits, the power supply
dimming used, the reactive power level in the network, etc. Reduction of active power losses in
lighting networks can be achieved through the use of regulated devices [7,8] and by reducing the
reactive power in these networks [9-12]. In this way, one takes into account the skin effect occurring in
the conductor of the cable (wire) and its results [5]. The energy efficiency improvement of a lighting
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installation is the focus of many programs funded by the European Commission. Thanks to this, it will
be possible to improve the efficiency of an electricity receiver, to reduce the costs of working [13-18].
Energy efficiency improvement is possible by using lighting dimming systems [7,8,17]. The degree of
energy efficiency is characterized by the EEI coefficient (Energy Efficiency Index) [15]. An important
aspect of the decision-making process is to provide investors with a potential tool for evaluating it.
In the investment decision-making process, the labelling of the products plays an important role in
facilitating the identification of the most effective solutions [16]. Another aspect of improving the
energy efficiency of a lighting installation is that it is designed to maximize the efficiency of the light
flux emitted in the surrounding space while minimizing its losses [16].

Road lighting installations are now being attributed the role of one of the road safety elements,
which ensures the safe movement of all users in outdoor spaces in the evening. At the same time,
energy consumption is required to be as low as possible. The dynamic development of lighting
technologies has created a big potential of the so-called “intelligent lighting systems,” especially in
LED technology. The widespread use of such solutions depends, to a large extent, on their price.
One example of intelligent lighting systems is the use of luminaires equipped with individual systems
of power reduction to a set schedule light. Lighting schedules may be the same for each day and
season, or may be different for each period. Lighting schedule is referred to the degree of reduction
of power and luminous flux of luminaries in specified periods of the evening. The degree of power
reduction should not worsen the lighting conditions specified in [15]. Each way of reducing the
power of the luminaire brings measurable benefits in terms of reducing the electricity consumption
of the lighting system and, thus, improves the energy efficiency of the installation. Often, in the
practice of road lighting modernization, care is not taken to ensure compliance with the requirements
of [19], with reduced power and light levels. This standard allows the road/street lighting class to be
reduced in order to improve the energy efficiency of the installation. The energy efficiency should also
take into account the loss of active power when it becomes important. The standard [19] in Sheet 5
identified indicators for assessing the energy efficiency of road lighting, taking into account the energy
consumption while maintaining the appropriate lighting parameters on the road.

So far, there has been no detailed investigation in the literature about the effect of LED lighting
dimming level on the active power losses in lighting installations. The increase in power losses will
result in an increase in active power and charges for consumed electricity. Until now, when calculating
the power losses in lighting networks, it was assumed that the network would receive constant power
from the rated light sources or luminaires throughout the lighting period. During lighting operation,
the rated power of the lighting equipment may change during their lifetime. In addition, at night time,
the supply voltage may be higher than the rated network voltage, which means greater active power
consumption, higher power currents and higher power losses. For LED dimming led luminaires,
power losses are dependent on the lighting time and the light power at each reduction stage.

This article has the following structure. Section 2 includes information on how to calculate
the power density indicator in accordance with the [19] standard for the road lighting installations
and contains the methodology for calculating power losses in individual elements of the lighting
installation. Section 3 presents the characteristics of the tested luminaire and the results of calculations
of power losses for three-phase and single-phase installations. Moreover, the results of calculations
of the power losses dependence on the distance between the poles are presented. It also contains
the results of calculations of CO, emissions for lighting installations without dimming and for the
assumed lighting schedule. Section 4 presents a proposal to estimate the level of active power losses
for a given lighting circuit configuration.
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2. Calculation Method of Power Density Indicator and Active Power Losses in Road
Lighting Installation

2.1. Calculation Method of Power Density Indicator by PN-EN 13201-5

One of the coefficients for assessing the energy efficiency of a lighting installation, proposed by
Sheet 5 of [19], is the power density indicator D). The D), indicator determines the electrical power
that is needed to provide an adequate level of road illumination. It is calculated as the quotient of the
active power P of the lighting installation and the sum of the products of the average illumination on
the i-th and the horizontal planes of E; and the area of those planes A; according to the relation [19]:

Dy=— "t M

no__
Y (Ei-A))
i=1
The active power of the lighting system is calculated as the sum of the power of the lighting
points Py and the power of other devices necessary to operate the lighting system P,;.

My
pP= Py + Pyy. 2)
k=1

It seems that the active power losses in the power supply can be taken as a component of the P,
as the power supply of the luminaires together with the safety devices and connectors is essential for
the operation of the lighting system. It has therefore been found that the losses of active power in the
light source installation may be relevant in determining the total active power P of the illumination
using in Equations (1) and (2).

This article presents a detailed analysis of the active power losses occurring in lighting installations
with LED luminaires and individual power reduction systems. Two cases of power supply circuits were
considered in actual installations: Three-phase and single-phase power supply. Most manufacturers of
road lighting luminaires provide luminaire rated parameters for 100% dimming. Often, there is no
information on the dimming characteristics of the luminous intensity dependence of the luminaire’s
power for different levels of reduction. Data concerning the change of important electrical parameters of
the installation as a dimming function, such as the power factor (PFp and PFpp) and the total harmonic
distortion factor THDj [20], active power losses, etc., are also not known. These characteristics are
important in assessing energy efficiency and to ensure proper performance of the lighting system,
which guarantees the assumed durability and functionality. In the article, the extent to which active
power losses in the installation with road lighting luminaires with dimmable LED luminaires may
affect the active power consumed for lighting.

2.2. Calculation Method of Active Power Losses in Road Lighting Installation

The lighting circuit consists of the following components: The power cable protection in the
lighting panelboard, relay dimming by astronomical clock (or other dimming device), three-phase
feeder wiring, the pole protection (placed in the pole post), the wire connecting the pole plate with
luminaire, and the luminaire. Figure 1 shows, schematically, an example of a road lighting installation
with the main components. Total power losses are included in the calculation of total power losses
occurring in all the aforementioned components of the lighting circuit. The power losses in the neutral
conductor of the cable (wire) for the three-phase power supply network was also taken into account.
Losses in the neutral conductor are caused by the flow of higher zero sequence harmonic and their
order is a multiple of three. The LED luminaire with a power supply device is a nonlinear element that
generates disturbances to the supplying network (higher harmonics). Depending on the constructive
solution, the THD; determining the value of these disorders is in the range from several to several
dozen percent, which is confirmed by test results presented in [21].
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Figure 1. Example of a road lighting installation.

The total power loss of the lighting installation APrprs; can be determined from the
following relationship:

AProtar = APcapLe + APnepuTrAL + APwire + APppg + APpporE + APREL AY- 3)

For three-phase lighting, installation power losses in the feeder wiring can be determined from
the relationship [4]:

ILumz' (4)

31 [n2<101 +z> . n(n—1)2(2n—1)}

APcapLE =
BLE = oo i

In the case of single-phase installation, the power losses can be determined by the following

formula [4].
2 2 lot nn—1)2n-1)
arcane = zosz [ (F) +

Power losses in the neutral conductor of feeder wiring can be determined from the dependence [4]:

} Tunt ©)

1 101 (31’1—1)(6”—1) > 2
AP = —_— I
NEUTRAL = == {9 o > h; hLum' » (6)

or
In n@Brn-1)(6n-1)

!
AP = 9 —_
NEUTRAL = 'YCSC[ n? + ] + 5

:| INLumZ- (7)

Power losses in the wire connecting the pole switchboard and luminaire are determined by the
Equation (8).
21
APwire = 2L’ Rpw = =2 — I . (®)
TPwSpw

Power losses in protection in the lighting panelboard are determined by the following dependence:

APppp = 31.1*Rppp. )
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In case when the protection is realized by miniature circuit breaker (MCB):

Rppg = Ruyics- (10)

Knowing the rated active power losses of the minimal circuit breaker APycp given for its rated
current Ijjcp can be determined by the following formula:

APpicp
— . (11)
3Ipmca

Rpmca

If the fuse is used to protect the feeder wiring of the lighting system:

Rppp = Rpprp + Rppr. (12)

Resistance of fuse carrier can be determined from Equation (13) and resistance of fuse is calculated
as (14).

AP
Rpprp = — 202 (13)
IpBrB
AP
Rpgr = PBZF . (14)
IpgF

For protection in the pole the power losses are determined by below Equation (15).
APppp = 3I1um” Rppole- (15)
In the case when the protection is realized by miniature circuit breaker (MCB):

Rppote = Rymcs- (16)

Knowing the rated active power losses of the miniature circuit breaker APy;cp given for its rated
current IMCB can be determined by the following:

APpcp
Inics®
MCB

Rpycp = (17)

If the fuse is used to protect the wire of the luminaire, the resistance of protection device is
calculated as sum of fuse carrier and fuse resistance by Equation (18).

Rppg = Rpprp + Rppr (18)
Resistance of fuse carrier is determined as:

AP
PBFB. (19)

Rpprp = -

Resistance of fuse is calculated by using of Equation (20).

APpgF

ek (20)

Rppr =

Power losses in relay are calculated by the below dependence.

APgeray = 3111 RR. (21)
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Based on knowledge of the rated active power losses of the relay APgg given for its rated current
IR the relay resistance is calculated by the Equation (22).

 APgg
R 312

(22)

The number of light points is equivalent to the number of columns, since it is assumed that the
luminaires are mounted on columns individually. For the above Equations (3) to (22), dependencies
were used to calculate the active power losses in a three-phase system and single-phase road lighting.

3. Calculation Results of Active Power Losses in Road Lighting Installation

3.1. Characteristics of the Research Objects

In order to present the methods of calculation of power losses in the road lighting installation
described in Section 3, calculations for three luminaires with adjustable luminous flux were made.
Two dimming luminaires marked as LUM1 of rated power 32 W and LUM2 with a rated power of 85 W,
an analogous dimming input in the scope of 1-10 V standard was used. The laboratory power supply
was used as the source of the DC dimming voltage. The luminaire was powered using the Agilent
6834B power supply. Measurements of electrical and photometric parameters were made using the
TOPAS 1000 electricity quality analyzer from LEM NORMA, the L-100 Luxmeter by SONOPAN and
the Ulbricht sphere with a diameter of 2 m. The Agilent 6834B stabilized power supply enabled the
luminaire to be supplied with uninterrupted sinusoidal voltage. The third luminaire marked LUM3
with a rated power of 140 W was equipped with a wireless power and luminous flux dimming system.
The dimming was carried out using a program implemented on the server. The program enabled
the dimming of the luminaire in the range from 10% to 100%, however, the power and luminous flux
of the luminaire for particular dimming were not specified by the manufacturer. The measurements
were taken for the entire dimming range, every 10%. The determination of dimming by means of
percentages, as reported by the manufacturer, was adopted. This is also the most common way to
describe dimming. The electrical and photometric parameters of the luminaires tested are presented in
Tables 1-3 respectively.

The active power P of the luminaire marked LUM1 in the range of U dimming voltages from 1 to
8 V is linear. In the range of Uc from 8 to 10 V, the luminaire takes maximum power. The dependence
of the current supplying of the luminaire from the dimming voltage is analogous to that for the active
power (dependence is linear). Reactive power Q changes, within small limits, with the change of the
dimming voltage Uc. The next analyzed electric parameter was the total current harmonic distortion
factor THD. For Uc dimming voltages with a value greater than 5 V, the THD; value of the current
drawn from the network changes within small limits. In the range of the dimming voltage from 5
to 1V, the value of THDj increases significantly from 13.907% for Uc =10 V to 38.007% for Uc =1 V.
The reduction of the dimming causes a large change in the values of displacement power factor PFp
and distorted power factor PFpp, as illustrated in Table 1. In the range of dimming voltages from 1
to 8V, the value of the luminous flux increases linearly until the value reaches 2736 Im. Increasing
the Uc voltage above 8 V does not change the luminous flux. As one can see, Uc =1V corresponds
to 19% of rated power and 14% of luminous flux. This is the lower limit of dimming. The luminaire
efficiency #r,,, calculated as the quotient of luminous flux and active power ranges from 84.238 Im/W
t0 62.510 Im/W.
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Table 1. Values of electrical and photometric parameters for various levels of dimming of
LUMI1 luminaires.

Dimming Prym Quum PFp tgp PFpp THD; @ HLum
Uc (V) W) (var) ) ) ) (%) (Im) (Im/W)
10 32.483 14.791 0.910 0.455 0.901 13.917 2736 84.238
9 32.483 14.793 0.910 0.455 0.901 13.893 2736 84.238
8 32.509 14.776 0.910 0.455 0.902 13.854 2736 84.161
7 28.356 14.478 0.891 0.511 0.881 14.427 2409 84.941
6 24.480 14.110 0.866 0.576 0.857 14.903 2072 84.635
5 20.677 13.788 0.832 0.667 0.822 15.013 1747 84.643
4 16.624 13496 0.776 0.812 0.767 15.130 1388 83.505
3 12.845 13.642 0.686 1.062 0.668 22.199 1001 77918
2 9.045 15.001 0.516 1.658 0.483 36.873 621 68.571
1 6.277 14.031 0.408 2.235 0.373 38.007 393 62.510

Table 2. Values of electrical and photometric parameters for various levels of dimming of

LUM2 luminaires.
Dimming Plum Qlum PFD tg¢ PFDD THDI @ HLum
Uc (V) W) (var) ) ) -) (%) (Im) (Im/W)
10 83.744 17.870 0.978 0.213 0.966 13.319 12,011 143.432
9 75.194 17.197 0.975 0.229 0.962 13.716 10,941 145.511
8 66.419 15.450 0.974 0.233 0.959 14.715 9831 148.013
7 58.138 14.518 0.970 0.250 0.953 15.557 8705 149.725
6 50.046 13.113 0.967 0.262 0.946 16.611 7553 150.909
5 42.462 11.539 0.965 0.272 0.940 17.748 6361 149.812
4 34.313 10.255 0.958 0.299 0.924 19.592 5139 149.781
3 26.752 9.584 0.941 0.358 0.893 22.814 3956, 147.888
2 16.969 5.958 0.944 0.351 0.411 202.060 2789 164.349

Table 2 presents the measured electrical and photometric parameters of the LUM2 luminaire with
the rated active power equal to 85 W. For this luminaire, the parameters for the dimming voltage
ranging from 2 to 10 V were measured. For the Uc = 1 V voltage, the luminaire did not work
stably, which was manifested by the unstabilized value of the luminous flux and the pulsation of the
active power. Therefore, this point was omitted in the considerations. In the case of this luminaire,
a linear dependence of active power, current and luminous flux on the dimming voltage was also
found. The power supply used in this luminaire is equipped with a PFC (Power Factor Correction)
system, which reduces the reactive power value along with the reduction of the dimming. This allows,
practically, the constant value of displacement power factor PF to be maintained. Decreasing the level
of dimming causes the increase of the THD; value from the value of 13.319% to the value of 202.060%.
This, in turn, reduces the value of distorted power factor value PFpp from 0.966 to 0.411. The luminous
efficiency 71, is in the range of 143.432 Im/W for Uc =10 V to 164.349 Im/W for Uc =2 V.

For luminaire marked LUMS3, the active power of the luminaire varies linearly from 144.470 W
(at 100% of dimming) to 27% of the starting power (at 10% of dimming). The reactive power of the
luminaire varies much more slowly than the active power, reaching a minimum of about 79% of the
initial value with a minimum of 10% dimming. Displacement power factor PFp of the luminaire
decreases to 0.802, while the tg¢ to the level of 40% retains the value of <0.4, then rapidly grows almost
three times beyond the initial value. The distorted power factor value PFpp varies in the range of
0.759-0.955. The value of this coefficient depends on the THD current and decreases with its increase.
The luminous flux of the luminaire is almost two times lower than the dimming of the luminaire,
reaching about 70% of the initial flux at 50% of its value. For the considered luminaire, the luminous
efficiency #r,, decreases with the increase of dimming from the value of 117.885 Im/W to the value of
97.467 Im/W. Finally, the luminous efficiency decreases by over 17%.
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Table 3. Values of electrical and photometric parameters for various levels of dimming of LUM3 luminaires.

: . Prym Quum PFp g PFpp THDy @ HLum
Dimming (W) (var) ®) 8) &) (%) m)  (m/W)
100% 144.470 36.656 0.969 0.259 0.955 8.003 14,081 97.467
90% 136.040 36.322 0.966 0.274 0.951 8.453 13,390 98.427
80% 126.890 36.235 0.962 0.294 0.945 9.146 12,664 99.803
70% 116.790 36.003 0.956 0.318 0.937 9.823 11,870 101.635
60% 105.940 35.392 0.948 0.347 0.929 10.417 10,980 103.644
50% 94.152 33.946 0.941 0.377 0.919 11.005 9971 105.903
40% 81.129 32.537 0.928 0.424 0.904 12.336 8804 108.519
30% 67.233 32.430 0.901 0.524 0.871 14.338 7437 110.615
20% 51.050 30.495 0.858 0.680 0.823 16.838 5859 114.770
10% 38.843 28.913 0.802 0.921 0.759 21.052 4579 117.885

3.2. Active Power Losses Calculation Results of Three-Phase Lighting System

The calculations of active power losses were made for an exemplary three-phase road lighting
system with different numbers of lighting points (luminaires) np consisting of 3 to 30 pieces.
The number of light points was equivalent to the number of poles, since it is assumed that the
luminaires are mounted on poles individually. The adopted length of feeder wiring between the
luminaires was equal to 30 m. The distance of the first luminaire of the switchgear lighting adopted
was also equal to 30 m. The installation was made of an aluminum cable with a cross section of
4 x 25 mm? and a conductivity of 34 (m/Q-mm?). It was assumed that the wire in the pole from
the pole panelboard to the luminaire was a copper conductor with a cross-section of 1.5 mm?, 10 m
in length and a conductivity of 56 (m/Q-mm?). For the assumed parameters of the lighting system,
the active power losses were determined in feeder wiring, wires in the poles, in protection of lighting
switchboard, protection in the poles, relay, in neutral conductor of feeder wiring and were caused by
the flow of higher zero sequence harmonic and their orer is a multiple of three.

As a protection for the entire lighting circuit, a 25 A rated gG (gL) fuse with a three-phase fuse
carrier with a rated current of 160 A was used. Readings from the manufacturer’s catalogue of active
power losses for the rated current were 12 and 2.4 W, respectively. It was assumed that the lighting
circuit is switched on by a 25 A rating relay, whose power losses for the rated current were 7.9 W.
Fuse type gG (gL) with rated current of 6 A with fuse carrier with rated current of 16 A was used as
protection in the pole. Power losses for the rated current read from the manufacturer’s catalogue were
1.7 W for the fuse and 3 W for the fuse carrier. The calculations were made for three luminaires without
changing the parameters of the supply network. Calculations were made using the dependencies
shown in Section 3 for the assumed dimming. Power losses of individual circuitry components were
determined relative to the power of the Pkc circuit at a given dimming and to the total active power
loss AP1otaL- The power of the Py, lighting circuit is taken as the product of the number of light points
1y and the power of the luminaire Py, at certain dimming. The tables containing the results of the
calculations are given in Appendix A.

In Table A1, there are results of calculations of active power losses for a road lighting installation
composed of three LUM1 luminaires. Based on the analysis of the obtained calculation results, it can be
concluded that the percentage of total active power losses AProrar related to the installed power Py,
decreases as the level of the dimming decreases from 0.013% to 0.009% for Uc =4 V. Then, these losses
are increased to 0.016% for U = 1 V. The increase in the value of APrpo7a; is related to the increase
in the level of disturbances in the form of higher harmonics generated to the power supply network.
This is illustrated in Table 1, which lists the changes in the THD; coefficient. In turn, this results in an
increase in power losses, especially in the neutral wire APy TraL. The maximum share of losses in the
neutral conductor in APro7ay is 7.872% for U = 2 V. It should also be noted that for a three-luminaire
circuit, the losses in the cable connecting the pole panelboard and the APyrg luminaire are larger
than the power losses in the power cable. Power losses in the APpppy £ label range from 10.543% to
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11.115%. Power losses in other elements of the installation do not exceed 2.5% in relation to APtotar.-
It can therefore be assumed that the active power losses at the point of light (APwrg + APpporg) are
in the range from 56.015% for Uc = 10 V to 53.131% for Uc =1 V. The sum of total losses APcaprE +
APNreutrAL + APppp + APRELAY In the power cable, the protection from the panelboard, the relay and
the neutral conductor are respectively 43.985% for Uc = 10 V and 46.870% for Uc =1 V.

Based on the results of calculations obtained for a circuit composed of 30 LUM1 luminaires
(Table A2), it is concluded that the percentage of total active power losses APror41 decreases from
0.293% for Uc =10 V to 0.204% for Uc =4 V. Then, they increase to 0.386% for Uc = 1 V. Based on the
analysis of the percentage share of power losses in individual elements of the road lighting installation,
it is stated that the biggest share is in cable losses. They are respectively 91.294% for Uc =10 V and
78.193% for Uc =1 V. There is also a significant increase in active power losses in the neutral conductor
for dimming voltages Uc <3 V. As mentioned earlier, this is due to the increase in the content of higher
harmonics of the luminaire currents, along with a reduction in the level of dimming. The maximum
percentage value of APNryTRAL IS OVer 21% with respect to AProTar. Power losses in the other elements
of road lighting installations are in the order of 1%. The dependence of the percentage of total active
power losses APtoTar as a function of the dimming and the number of lighting points is shown in
Figure 2.

0.25%

0.20%

10.15%

0.10%

0.05%

5 6
U (V)

Figure 2. Dependence of total active power losses APtor4p in relation to the dimming and the number
of poles 1, for LUM1.

LUM?2 is a frame with a different performance than LUM1, as illustrated in Figure 3 and the
results of calculations are placed in Tables A3 and A4 (Appendix A). Due to higher rated power (equal
to 85 W) compared to the LUM1 luminaire, higher values of active power losses can be expected.
The total percentage of active power losses APtoTa1, for the circuit with three luminaires ranges from
0.030% to 0.043% for Uc =10 V and Uc =2 V, respectively. Additionally, in the case of this luminaire,
an increase in the percentage values of AProty related to Py, is observed, along with the reduction
of dimming. The reason is also the increase in the higher harmonics of the current generated to the
supply network by the luminaires, which is illustrated by the value of the THDj coefficient (Table 2).
Therefore, losses in the neutral conductor increase from 0.916% for U- = 10 V to the value of 22.102%
for Uc =2 V. For a three-luminaire installation, power losses at the point of light (APwirg + APppoLE)
are greater than the power losses in the cable, neutral conductor, protection in the lighting panelboard
and contactor for dimming voltages from 10 to 3 V. The only exception is when the voltage Uc =2 V is
given for the dimming input. Power losses at the point of light for Uc = 10 V are equal to 56.221% and
for Uc =2 V amounts to 44.20%. Total losses APcaprr + APNEuTRAL + APppB + APRELAY are equal to
43.779% (for Uc =10 V) and 55.800% (for Uc = 2 V), respectively. For a lighting installation composed
of 30 LUM2 luminaires, the power losses in the power cable APc4p; g have a decisive influence on the
value of active power losses. They are respectively for Uc = 10 V APcapre = 92.336% and for Uc =
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2V APcypre = 50.032%. Power losses in the neutral conductor for these dimming levels are 2.848%
and 47.359% in relation to AProtar. The total percentage power losses APror41 are equal to 0.649%
for Uc =10 V and 1.341% for Uc =2 V. Due to the large increase in the THDj coefficient for Uc =2V,
it can be assumed that the lower limit of dimming for this luminaire should be U¢ =3 V. The power
(luminous flux) adjustment of this luminaire can be made up to 100% to 30%.

30 gz
1.1%
1.0%
0.9%
218; 0.8%
0.7%
£0.6%
10.5%
1 (0.4%
0.3%
0.2%
0.1%

27

24

5 6 7 10
Us V)

Figure 3. Dependence of total active power losses AP1oT41, in relation to the dimming and the number
of poles 1, for LUM2.

The LUMS3 luminaire is equipped with a digital dimming system in which the dimming levels
were specified by the manufacturer. As indicated by the percentage measurements, the dimming
values defined by the manufacturer do not correspond to the percentage changes in active power or
luminous flux (Table 2). It was assumed in our considerations that the drive levels implemented by
the manufacturer will be used, not actual values. The actual dimming range is from 100% to 27%
of active power or 100% to 33% of luminous flux. The level of dimming will be marked with the
symbol D. The percentage of total active power losses AProt4, in the installation consisting of three
LUMS3 luminaires are within the range from 0.052% to 0.023% and they do not increase significantly
with decreasing dimming level. The dependence of the percentage of total active power losses on the
number of lighting points (luminaires) and LUM3 dimming for the luminaire is shown in Figure 4.
Losses at the point of light are greater in the entire dimming range than the total losses in other
parts of the installation. The results of the calculations for the considered case are given in Table A5
(Appendix A). Losses at the point of light are 55.197% for D = 100% and 53.492% for D = 10%. The total
percentage of active power losses in the cable, neutral conductor, protection in the lighting panelboard
and relay are equal to 44.803% (D = 100%) and 46.508% (D = 10%). Additionally, in the case of this
luminaire, the THD; of the current increases. This causes an increase in losses in the neutral conductor
APNeutraL from 0.701% to 3.769% for D = 100% and D = 10% respectively. For a circuit composed of
30 LUMS3 luminaires there are similar relationships as for the previously discussed LUM1 and LUM2
luminaires. The results of calculations are presented in Table A6 in Appendix A. The predominant loss
component APtorar is losses APcapr g in the power cable. They are equal to 93.258% for D = 100% and
85.034% for D = 10%. Losses in the neutral conductor are in the range from 2.128% to 10.759% and
increase with decreasing dimming. Percentage power losses in other elements of the installation do
not exceed 2%. The total percentage of active power loss APro74; in an installation consisting of 30
LUMS3 luminaires ranges from 0.546% for D = 10% to 1.168% for D = 100%.
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Figure 4. Dependence of total active power losses APtoT41 in relation to the dimming and the number
of poles 1, for LUM3.

3.3. Active Power Losses Calculation Results of a Single-Phase Lighting System

Similar to the three-phase circuit, calculations for a single-phase lighting circuit were made.
Similar assumptions were taken under consideration: Number of luminaires in the circuit from three
to 30 pcs; length of aluminum cable 2 x 25 mm? between luminaires of 30 m; the distance of the first
luminaire from the lighting switchboard 30 m; copper wire with a cross-section of 1.5 mm? and length
of 10 m in the lighting pole. The gG (gL) fuse with a rated current of 25 A with a single-phase fuse
carrier with rated current of 160 A was used as protection for the entire lighting circuit. Readings
from the manufacturer’s catalogue of active power losses for the rated current were 12 and 2.4 W,
respectively. The lighting circuit is switched on by a 25 A rating relay, whose power dissipation ratings
for the rated current were 7.9 W. Fuse type gG (gL) with rated current of 6 A with fuse carrier with
rated current of 16 A were used as protection in the pole. Power losses for the rated current provided
by the manufacturer were 1.7 W for the fuse and 3 W for the fuse carrier. Power losses were determined
in the lighting circuit elements, analogous to the three-phase circuit: In the feeder wiring, in the wire in
the poles, in the protection of the lighting switchboard, in the protection of the poles and in the relay on
the lighting circuit. The active power losses in the individual circuit components were determined as
relative to the Py, circuit power at a given drive level and to the total power losses AP1oT1ar. The power
of the Py lighting circuit was taken as the product of the number of light points 7, and the power
of the luminaire Py, at certain levels of dimming. The number of light points was the same as the
number of lighting poles.

The results of calculations of active power losses for the three road lighting luminaires considered
for the single-phase installation are given in Appendix B. By analyzing a single-phase road lighting
system with three LUM1 luminaires, it can be observed that the percentages of power losses in
individual devices do not depend on the dimming. Such dependence occurs for all variants of a
single-phase installation under consideration. For installations with three LUM1 luminaires, the losses
at points of light (APwre + APppoLr) are equal to 46.153% and are smaller than the sum of the
percentage losses of active power losses in other elements of the installation (APcaprg + APppp +
APRrgr4y). They are equal to 53.846%. For this variant of the installation, the total power losses
APtotaL related to the installed power of Py, decrease from 0.049% for Uc = 10 V to 0.034% for
Uc =4V and then increase to 0.055% for Uc =1 V. As one can see, the smallest losses do not occur for
the smallest value of the dimming voltage. The total percentage power loss AProt4y, for the installation
consisting of 30 LUM1 luminaires decreases from the value of 1.644% for Uc = 10 V to 1.161% for
Uc =4 V. Then, they grow to 1.856% for Uc =1 V. The main losses in this case are losses in the power
cable APcapre = 97.068%. Total losses in other devices do not exceed 3%. The results are shown in
Tables A7 and A8. Figure 5 shows the dependence of losses APror4;, in the function of the number of
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luminaires and the dimming voltage (dimming). The dependence for the LUM2 luminaire is illustrated
in Figure 6. The total percentage of active power losses APror4r, related to the installed power for the
circuit with three LUM2 luminaires is within 0.109% for Uc = 10 V to 0.122% for Uc = 1 V. The smallest
value of these losses was obtained for Uc = 3 V and they are equal to 0.041%. For an installation
consisting of 30 LUM2 luminaires, the percentage losses APror4r, are equal to 3.689% for Uc =10V
and 4.130% for Uc =1 V. The smallest value of losses occurred for Uc = 3 V, where AProrar = 1.378%.
For this luminaire, there is a similar dependence between losses at points of light, and losses in other
devices of the lighting installation, as for the LUM1 luminaire. The power losses in the APc4p1 g power
cable are respectively 48.556% for installations with three luminaires and 97.068% for installations
with 30 luminaires. The power losses APyrg in the wires connecting the pole switchboard and the
luminaire are 36.995% and the losses in these wires are equal to APpporr = 9.158%. In an installation
with 30 LUM2 luminaires, these losses are equal to APygrg = 1.095% and APppor g = 0.221% respectively.
The results of calculations are presented in Tables A9 and A10 in Appendix B.

S 4 1.6%
25 T~ = ———
g = 1.4%
20 12%
N 1.0%
c 15
£0.8%
10 |0.6%
0.4%
5
0.2%
1 2 3 4 5 6 7 8 9 10
Ug (V)

Figure 5. Dependence of total active power losses APtoT41, in relation to the dimming and the number
of poles 1, for LUM1.
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Figure 6. Dependence of total active power losses AP1oT4r, in relation to the dimming and the number
of poles 1, for LUM2.

The LUMS3 luminaire is the most powerful and has different dimming characteristics. Additionally,
in the case of installations with three LUM3 luminaires, the power losses in the wires connecting
the pole plate and the luminaire and the protection of these wires are APwrg = 36.112% and
APpporg = 8.940% respectively (Table A11). Losses in the power cable equal APcaprr = 49.962%.
Thus, total losses at points of light are smaller than losses in the power cable. Total percentage of active
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power loss relative to the installed capacity of the dew increases from the value of 0.082% for D = 10%
t0 0.193% for D = 100%, for installations with three luminaires. In the case of an installation consisting
of 30 LUM3 luminaires, these losses range from 2.850% for D = 10% to 6.689% for D = 100% (Table A12).
The main losses are also losses in the power cable APcapr g = 97.264%. Total power losses in other
devices do not exceed 3%. The dependence of APror4r. as a function of the number of luminaires and
dimming is shown in Figure 7.

6.0%
§.5%
5.0%
4.5%
4.0%
3.5%
£13.0%
12.5%
§2.0%
1.5%
1.0%
0.5%

10 20 30 40 50 60 70 80 90 100
Dimming (%)

Figure 7. Dependence of total active power losses APtor4p in relation to the dimming and the number
of poles 1, for LUM3.

3.4. Estimation of Active Power Losses for Different Distances between Poles

The calculations presented in previous sections are made for a given distance between the poles
reaching to 30 m. In practice, these distances may be different. It was considered interesting to estimate
the effect of the distance between poles on the total losses of active power in the lighting installation.
The range of the distance between poles from /, = 30 m to [, = 45 m was examined. Based on the
calculations it can be stated that the dependence of the total power losses in the road lighting system
depends linearly on the spacing of the poles.

Figures 8 and 9 show the dependence of the percentage of total active power losses AP1oT4, in the
road lighting system as a function of the distance between the poles, respectively for installations with
three and 30 LUM1 luminaires. For a three-phase circuit, Uc = 10 V and a circuit with three luminaires,
these losses increase from 0.013% for I, = 30 m to 0.016% for [, = 45 m. When the dimming voltage is
reduced to 1V, the losses are greater and range from 0.016% for [, = 30 m to 0.019% for [, =45m. In a
circuit composed of 30 luminaires, the percentages of power losses AProrar, at Uc =10 V increase from
0.386% (I, = 30 m) to 0.571% (I, = 45 m). With full dimming of these luminaires, AProrar = 0.296% for
the distance between the poles equal to 30 m. Increasing the distance between poles up to 45 m results
in an increase in losses to 0.432%. In a single-phase system with LUM1 luminaires, the power losses are
greater than in a three-phase system. When operating with a minimum dimming (Uc =1 V) and for a
circuit with three luminaires, they are equal to 0.055% (I, = 30 m) and increase with increasing distance
lp = 45 m to 0.068%. With full dimming (Uc =10 V), APtotar ranges from 0.049% at [, = 30 m to 0.060%
at I, = 45 m. For installations with 30 LUM1 luminaires operating with Uc =1V, the calculated power
losses for I, = 30 m and [, = 45 m are equal to 1.856% and 2.757% respectively. In the case of work with
a full luminous flux, these losses are equal to 1.644% for I, = 30 m and 2.442% for [, = 45 m.
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Figure 8. Relative total power losses in relation to the distance between poles for circuit consisting of
three luminaires for LUMI.
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Figure 9. Relative total power losses in relation to the distance between poles for circuit consisting of
30 luminaires for LUMI.

Considering the influence of changing the distance between columns for a lighting installation
with LUM2 luminaires, similar dependencies are observed as for installations with LUM1 luminaires.
With a dimming voltage equal to 2 V, the percentage of power losses APto14;, are higher than for the
full-power luminaires (Uc = 10 V). For a three-phase circuit with three luminaires, the power losses
for this actuation range from 0.043% to 0.054% with the analyzed range of changes in the distance
between the poles /,. After increasing the power of the luminaire to the maximum value (Uc =10 V),
these losses are equal to 0.030% and 0.036% respectively. In a lighting installation with 30 LUM2
luminaires, the power losses AProrar, at Uc = 2 V range from 1.341% to 1.994% for I, = 30 m and
l, = 45 m. After increasing the power of luminaires (Uc = 10 V), these losses for the analyzed range
of changes I, are equal to 0.649% and 0.958%. In the case of a single-phase installation with three
luminaires, the percentage losses AProrar range from 0.122% to 0.152% for [, = 30 m and [, = 45 m and
Uc =2 V. Increasing the power of luminaires to the maximum value caused that the percentage values
of APtotsL are smaller and amount to 0.109% (I, = 30 m) and 0.152% (I, = 45 m). In an installation
consisting of 30 LUM2 luminaires, the calculated power losses range from 4.130% to 6.135% for
I, =30m and I, = 45 m and Uc = 2V, respectively. For Uc = 10 V (with full dimming), these losses
are equal to 3.689% and 5.480%. The dependencies of percentage power losses for installations with
LUM2 luminaires are shown in Figures 10 and 11.
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Figure 10. Relative total power losses in relation to the distance between poles for circuit consisting of
three luminaires for LUM2.
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Figure 11. Relative total power losses in relation to the distance between poles for circuit consisting of
30 luminaires for LUM2.

The results of calculations of power losses for road lighting installations with three LUM3
luminaires as a function of distance between the poles are shown in Figure 12. The smallest percentage
of power losses APtora1 occur for the three-phase installations and dimming D = 10%. They amount to
0.023% for I, = 30 m and increase to 0.028% for [, = 45 m. After changing the dimming, when D = 100%,
these losses are between 0.052% and 0.063%. Increasing the number of luminaires results, of course,
in the increase of power losses. For installations with 30 luminaires and D = 10%, they are equal to
0.546% (I, = 30 m) and 0.807% (I, = 45 m). Increasing the power of luminaires (D = 100%) results in
an increase in power loss to 1.168% and 1.724% respectively. The calculated values of power losses
AProt4L in the single-phase installation are much higher than in the three-phase system. They are for
D =10% and installations with three LUM3 luminaires, respectively, for [, = 30 m AProrar = 0.082%
and for [, =45 m AProrar = 0.103%. After increasing the power of luminaires to 100% of power,
power losses increase to 0.193% and 0.241%. In an installation with 30 LUMB3 luminaires (Figure 13),
the percentages of AProra, for the D = 10% dimming range from 2.850% to 4.236% for I/, = 30 m and
45 m respectively. As can be expected, the increase in the power of luminaires (D = 100%) caused the
losses increase up to 6.689% and 9.942%.
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Figure 12. Relative total power losses in relation to the distance between poles for circuit consisting of
three luminaires for LUM3.
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Figure 13. Relative total power losses in relation to the distance between poles for circuit consisting of
30 luminaires for LUM3.

Summarizing the results of the calculations, it can be concluded that the dependence of active
power losses on the distance between the poles, i.e., the length of the lighting circuit, is linear. For LUM1
and LUM2 luminaires, due to the increase in the value of generated higher harmonics current to the
power network, the percentages of power losses are greater at the lowest possible dimming.

3.5. Analysis of the Effect of Luminaire Dimming and Active Power Losses on CO, Emissions

In the Polish reality, electricity is generated mainly in thermal power plants fired with hard coal
or lignite. The production of electricity is inherently associated with the emission of greenhouse
gases, primarily CO,. The amount of CO, emissions to the atmosphere depends on the amount of
consumed electricity. In Poland, the guidelines contained in [22] are used to calculate CO, emissions.
The generation of 1 kWh of energy is accompanied by the emission of 0.781 kg of CO,. The analysis
of the effect of dimming and active power losses on the level of CO, emitted was made for road
lighting installations with 30 luminaires, respectively LED1, LED2 and LED2. The results of the
calculations are presented in Table 4. The calculations were made without taking into account active
power losses in energy bill (EZCOZ), for the case of three-phase (E3P co,) and single-phase (EP co,)
installation, taking into account the power losses. The CO; emission was determined for luminaires
with full luminous flux and for the installation working in accordance with the assumed schedule.
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A graphical presentation of this schedule is shown in Figure 14. The times of switching on (¢,,) and
off (o) the luminaires were determined using astronomical tables of sunrises and sunsets for Poland.
For simplicity, the mean values of these times were assumed for months. Based on these calculations,
the annual lighting time of luminaires equals 3950 h. It was assumed that between hours 23 and 4,
the luminaires may glow with a reduced value of luminous flux. D1 means the first level of dimming
equals 100% and D is the second level. Calculations were made for whole available range of dimming
for all considered luminaires.

For installations with luminaires with the lowest power of 32 W (LUMS3), the value of CO,
emissions changes from 3.006 tons for variant—without dimming to 1.889 tons for dimming variant 1.
For this case, the impact of active power losses on the CO, emissions can be neglected. For installations
with LUM2 luminaires, the value of CO, emissions changes from 7.750 tons for without dimming
variant to 4.895 tons for dimming variant 1. Analyzing the obtained results, it can be concluded
that not taking into account active power losses causes underestimated emissions by several percent.
For a three-phase system and without dimming variant, this underestimate is 0.05 tons and for a
single-phase installation is 0.27 tons, respectively. The amount of CO; emissions for road lighting
installations with LUM3 luminaires varies from 13.370 tons for without dimming variant to 8.854 tons
for dimming variant 1. The underestimation of CO; emissions due to the omission of power losses for
the considered installation may exceed 1% for a three-phase and 7% for a single-phase installation.

Table 4. Calculated CO, emission.

CO; Emission

Luminaire Dimming Variant ®)

EZco, Eco,  EYco,

Without dimming  D; =10V 3.006 3.012 3.040

Diming variant 7 D;=10V,D, =7V 2.830 2.835 2.860

Diming variant 6 D;=10V,D, =6V 2.664 2.669 2.692

Diming variant 5 D;=10V,D, =5V 2.501 2.506 2.537

LUML Dimingvariant4 Dy =10V, D, =4V 2328 2332 2352
Diming variant 3 D;=10V,D, =3V 2.167 2.171 2.189

Diming variant 2 D;=10V,D, =2V 2.004 2.008 2.026

Diming variant 1 D;=10V,D,=1V 1.886 1.890 1.907

Without dimming  D; =10V 7.750 7.798 8.018

Diming variant 8 D;=10V,D, =9V 7.385 7.428 7.630

Diming variant 7 D;=10V,D, =8V 7.010 7.049 7.233

Diming variant 6 D;=10V,D, =7V 6.656 6.692 6.861

LUM2 Diming variant 5 D;=10V,D, =6V 6.310 6.343 6.500
Diming variant 4 D;=10V,D, =5V 5.985 6.017 6.163

Diming variant 3 D;=10V,D, =4V 5.637 5.666 5.804

Diming variant 2 D;=10V,D, =3V 5.313 5.342 5.472

Diming variant 1 D;=10V,D, =2V 4.895 4.930 5.067

Without dimming ~ D; =100% 13.370 13.543 14.358

Diming variant 9 D; =100%, Dy = 90% 13.010 13.173 13.943

Diming variant 8 D; =100%, D, = 80% 12.619 12.773 13.501

Diming variant 7 D =100%, Dy =70% 12.187 12.332 13.021

Diming variant 6 Dy =100%, Dy = 60% 11.723 11.859 12.503

LUM3 Diming variant 5 Dy =100%, Dy = 50% 11.219 11.347 11.950
Diming variant 4 D =100%, Dy = 40% 10.662 10.782 11.349

Diming variant 3 D1 =100%, Dy = 30% 10.068 10.182 10.716

Diming variant 2 Dy =100%, Dy =20% 9.376 9.482 9.980

Diming variant 1 D1 =100%, Dy = 10% 8.854 8.956 9.437
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Figure 14. Work schedule accepted for calculation.

4. Discussion

In the preceding Sections the dependences which describe the losses of active power in the
elements of the lighting network were depicted. For the specific configuration of the lighting circuit,
power losses calculations were performed, and the losses dependence of the system parameters was
analyzed. The analysis included the individual sources of losses irrespective of their share of the overall
balance. Assumptions for this type of calculation in engineering practice can be ascribed initially to
the accuracy (underestimation of up to 10%) and then selected for further analysis based merely on the
components of the losses that are dominant. In this way, the calculation is simplified while preserving
their accuracy. It has been assumed that the following factors have a decisive influence on the network
losses: Level of luminaries dimming, network configuration (single or three phases) and number of
light points.

With this assumption, total losses in the lighting system, as defined by the Equation (3), can be
expressed as:

AProtar = f(keonf, kn, D). (23)

Based on the calculations, it is assumed (Sections 3 and 4) that the total losses from the single-phase
and three-phase systems are virtually linear. The concept of a reduction coefficient k.4, as the ratio of
the power losses at the drive level to losses at full power was introduced as:

APTOTALred (24)

kog = .
red AProraL

When the dimming characteristics of the luminaries are known (the relation of the active power
of the luminaire to the degree of dimming), the reduction factor k,; is the coefficient of slope of the
dimming characteristic. The dependence of active power losses on the number of light points can be
referred to two cases: One if the number of light points is < 3 and second if the number of light points
is >3. Total power losses for the three-phase network can be estimated from Equations (25) and (26).

3l Iop +1 nn—-1)2n -1 21

3l l l —-1)2n—-1
AProTar = kyed - S [nz( ol l+ ) + nin )2( e )} ILumzfornp > 3. (26)
Ycoc
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In the case of single-phase networks, respectively:

2] I nn—1)2n—-1) 2lpw
AP > ko - 2( ™ Ium? + —2Y 1 w? | forn, <3. (27
TOTAL = Kred {'}’CSC [Tl ( ] >+ 6 Lum” + oy Sy om ornp <3.  (27)

AProTAL = Kppg - —2 [nZ (101) = 1)@n = 1)} I ym2forn, > 3. (28)
YcSc ! 6

The main components of active power losses are losses in the feeder wiring and in the wires in the
pole. Power losses in the rest of the circuit are of lesser importance, but with low levels of dimming,
and fewer luminaires, can have a significant impact. In the single-phase installations, the losses of
active power are several times higher than in a three-phase installation, which can achieve values that,
in the general balance of losses, are not to be ignored. On this basis, you can look for potential ways to
reduce losses and thus improve the energy efficiency of the installation. The first stage of the design
of a lighting installation is always a well-designed lighting project. Errors can be caused by the form
of incorrect selection of lighting installation elements, for example - improper selection of luminaires
are source of losses in the form of unjustified oversizing of installation elements or illumination of
irrelevant areas. In this situation, even the best design and installation will not ensure the expected
energy efficiency.

When calculating the electricity consumption of road lighting installations, power losses are
usually neglected. As shown in this paper, this may cause a decrease in the value of CO; emitted to
the atmosphere by up to 7%. The same will also be the underestimation of electricity consumption,
which in turn affects the economic efficiency (investment return time). If a single installation is
considered, the effect of omitting active power losses seems to be inconsiderable. By overseeing such
an analysis, for example for the entire city, the omission of power losses will underestimate the CO,
emissions calculated, even in tens of tons. In the opinion of the authors, power losses should be
included in the calculations of energy efficiency and greenhouse gas emission levels. In particular,
this applies to single-phase installations.

5. Conclusions

Active power losses occur at every electrical installation. The paper presents a detailed analysis
of active power losses for the three-phase and single-phase road lighting systems. It describes a
general dependence whereby total losses of active power can be determined, taking into account a
certain number of luminaires and the level of dimming. These dependencies can be helpful in the
design of road lighting installations and in calculating the energy efficiency of lighting installations.
Typically, such projects are executed as multivariate, and the presented methods allow the right
choice. The investment costs for the three-phase installation will always be higher than for the
single-phase. Therefore, the selection of the installation (single- or three-phase) should be based on
technical assumptions and economic analysis.
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List of Variables
Dp power density indicator, (W/ Ix-m?)
Prs power of the lighting system used to illuminate a specific area, (W)

E; average illumination density on the i-th surface of the specific area, (Ix)
A; the i-th area of the specific area that is illuminated by the lighting system, (m?)
n the number of surfaces to be illuminated in particular area
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Py active power of the k-th luminous point (light source, lamp device, and any other device
such as a spot light dimming unit, switch or photocell, and the component associated with
the luminous point and necessary for its operation), (W)

P total active power of all devices not included in Py but necessary to operate a road
installation, such as a remote switch or photocell, centralized light dimming or centralized
management system, etc. Total P,; power should be determined for the total number of
luminaires in a lighting installation and determined in proportion to the number of
luminaires in the specified area to be analyzed, (W)

ny, number of lighting points (luminaires) in a lighting system in a specific area taken for
analysis

Prum luminaire active power, (W)

Qrum luminaire reactive power, (var)

PFp displacement power factor

PFpp distorted power factor

THD; current total harmonic distortion factor, (%)

tgp tangens ¢

Drum luminaire luminous flux, (Im)

HLum luminaire luminous efficiency

APTOTAL total losses of active power, (W);

APcaBLE losses of active power in three (one) phase feeder wiring, (W);

APNEUTRAL losses of active power in neutral conductor, (W);

APwiRE losses of active power in wire in the pole, (W);

APppp losses of active power in protection in the lighting panelboard, (W);

APpporE losses of active power in protection in the pole, (W);

APRELAY losses of active power in relay, (W).

n number of luminaires per phase

I distance of the first luminaire from the lighting switchboard, (m);

I distance between poles, (m);

Yc electrical conductivity of feeder wiring, (m/ Omm?);

Sc cross-section of feeder wiring, (mm?);

It um RMS value of luminaire current, (A);

Intum zero sequence harmonic current forh =3,9,15... , (A);

INLum RMS value of current flowing in the neutral conductor, (A).

Ipw the length of the wire that connects the pole switchboard to the luminaire, (m);

Yrw electrical conductivity of the wire connects the pole switchboard to the luminaire
(m/Omm?);

Spw cross-section of the wire connecting the pole switchboard to the luminaire, (mm?);

Rpw resistance of the wire connecting the pole switchboard to the luminaire, ());

Ity total current taken by the lighting installation, (A);

Rppp resistance of one phase of the safety device, (Q2).

Ryics resistance of miniature circuit breaker, (Q0).

Rpprp resistance of fuse carrier; (Q});

Rpgr resistance of fuse, (QQ).

APpprp active power losses in fuse carrier for rated current; (W);

IpBEB rated current of fuse carrier, (A).

APpgp active power losses in fuse for rated current, (W);

Ippr rated current of fuse, (A).

Rppole resistance of protection device, ((0).

APyicB rated active power losses of the miniature circuit breaker, (W)

Ivcs rated current of the miniature circuit breaker, (A)

APRErAY rated active power losses of the relay, (W)

Rr resistance of the single phase of relay, (Q2).

Ir rated current of relay, (A)

1y number of lighting points (luminaires)

Py, circuit power, (W)
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D dimming

Keonf factor for network configuration (single-phase or three-phase);

kn factor taking into account the number of light points.

APTOTALred total losses of active power during luminaire power reduction, (W)
Kyed the reduction factor

E ZCOZ CO; emission without active power losses, (t)

ESP CO, CO, emission with active power losses for three-phase installation, (t)
EP CO, CO, emission with active power losses for single-phase installation, (t)
Appendix A

Calculation results of three-phase road lighting installation.

Table A1. Relative percent of losses of active power in the lighting circuit elements referred to total
losses APtoTaL and the share of total losses AP1oT141 in active power per circuit for three luminaires

of LUMI.
Dimming  APcapre  APNeurrar  APpgp APrpray  APwire  APppore  AProrar  AProrar/Pic

Uc (V) (%) (%) (%) (%) (%) (%) W) (%)
10 37.885 1.278 2.438 2.384 44.900 11.115 0.003 0.013
9 37.884 1.279 2.438 2.384 44.900 11.115 0.004 0.013
8 37.895 1.251 2.438 2.384 44913 11.118 0.004 0.013
7 37.864 1.333 2.436 2.382 44.876 11.109 0.005 0.012
6 37.850 1.368 2.435 2.382 44.860 11.105 0.006 0.011
5 37.898 1.244 2.438 2.384 44916 11.119 0.008 0.010
4 38.024 0.915 2.447 2.392 45.066 11.156 0.010 0.009
3 37.168 3.145 2.392 2.339 44.051 10.905 0.013 0.010
2 35.354 7.872 2.275 2.224 41.901 10.373 0.013 0.014
1 35.933 6.364 2.312 2.261 42.588 10.543 0.013 0.016

Table A2. Relative percent of losses of active power in the lighting circuit elements referred to total
losses AP1oTaL and the share of total losses APtoTa1 in active power per circuit for 30 luminaires

of LUMI.
Dimming  APcapre  APnpurtrar  APpggp APrpray  APwire  APppore AProrar  AProtai/Pie

Uc (V) (%) (%) (%) (%) (%) (%) W) (%)
10 91.294 3.944 1.114 1.089 2.051 0.508 2.851 0.293
9 91.292 3.946 1.114 1.089 2.051 0.508 2.851 0.293
8 91.371 3.863 1.115 1.090 2.053 0.508 2.851 0.292
7 91.139 4.108 1.112 1.087 2.048 0.507 2.276 0.268
6 91.039 4.213 1.110 1.086 2.045 0.506 1.797 0.245
5 91.392 3.842 1.115 1.090 2.053 0.508 1.385 0.223
4 92.339 2.845 1.126 1.101 2.075 0.514 1.018 0.204
3 86.170 9.336 1.051 1.028 1.936 0.479 0.859 0.223
2 74.781 21.319 0.912 0.892 1.680 0.416 0.940 0.346
1 78.193 17.729 0.954 0.933 1.757 0.435 0.726 0.386

Table A3. Relative percent of losses of active power in the lighting circuit elements referred to total
losses APtot4r and the share of total losses APror41 in active power per circuit for three luminaires

of LUM2.
Dimming  APcapie  APNeutrRar  APpgp APrpray  APwire  APppore AProrar  AProtar/Pic

U (V) (%) (%) (%) (%) (%) (%) W) (%)
10 38.024 0.916 2.447 2.392 45.065 11.156 0.075 0.030
9 38.001 0.977 2.445 2.391 45.038 11.149 0.061 0.027
8 37.951 1.105 2.442 2.388 44979 11.135 0.048 0.024
7 37.928 1.165 2.440 2.386 44.952 11.128 0.037 0.021
6 37.864 1.333 2.436 2.382 44 876 11.109 0.028 0.019
5 37.765 1.591 2.430 2.376 44.758 11.080 0.021 0.016
4 37.569 2.100 2.417 2.364 44 527 11.023 0.014 0.014
3 37.467 2.366 2411 2.357 44.406 10.993 0.009 0.011
2 29.894 22.102 1.923 1.881 35.430 8.771 0.022 0.043
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Table A4. Relative percent of losses of active power in the lighting circuit elements referred to total
losses AP1oTar and the share of total losses APtoTa1, in active power per circuit for 30 luminaires

of LUM2.
Dimming  APcapre  APnpurrar APpggp APgrpray  APwire  APppore AProrar  AProtar/Pie

Uc (V) (%) (%) (%) (%) (%) (%) W) (%)
10 92.336 2.848 1.126 1.101 2.075 0.514 16.308 0.649
9 92.161 3.032 1.124 1.099 2.071 0.513 13.290 0.589
8 91.791 3.422 1.120 1.095 2.062 0.511 10.477 0.526
7 91.618 3.604 1.118 1.093 2.058 0.510 8.149 0.467
6 91.140 4.107 1.112 1.087 2.048 0.507 6.152 0.410
5 90.407 4.878 1.103 1.078 2.031 0.503 4.528 0.355
4 88.989 6.369 1.085 1.061 1.999 0.495 3.104 0.302
3 88.261 7.136 1.077 1.053 1.983 0.491 2.036 0.254
2 50.032 47.359 0.610 0.597 1.124 0.278 6.828 1.341

Table A5. Relative percent of losses of active power in the lighting circuit elements referred to total
losses APtot4r and the share of total losses APrpor41 in active power per circuit for three luminaires

of LUM3.
Dimming  APcapre  APneurraL  APppp APrpray  APwire  APppore  AProrar  AProtar/Pre

(%) (%) (%) (%) (%) (%) (%) (W) (%)

100 39.351 0.701 2.402 2.349 44.244 10.953 0.227 0.052
90 39.350 0.705 2.402 2.349 44243 10.952 0.200 0.049
80 39.329 0.757 2.401 2.348 44.219 10.947 0.175 0.046
70 39.299 0.832 2.399 2.346 44.186 10.938 0.151 0.043
60 39.263 0.924 2.397 2.344 44145 10.928 0.124 0.039
50 39.217 1.039 2.394 2.341 44.094 10.915 0.100 0.035
40 39.051 1.458 2.384 2.331 43.907 10.869 0.078 0.032
30 38.899 1.843 2.374 2.322 43.735 10.827 0.059 0.029
20 38.622 2.540 2.358 2.305 43.425 10.750 0.037 0.024
10 38.136 3.769 2.328 2.276 42.877 10.614 0.027 0.023

Table A6. Relative percent of losses of active power in the lighting circuit elements referred to total
losses AP1oTaL and the share of total losses APtoTa1 in active power per circuit for 30 luminaires

of LUM3.

Dimming  APcapre APneurrar  APppp APreray  APwire  APppore  AProtar  AProtar/Pie
(%) (%) (%) (%) (%) (%) (%) (W) (%)
100 93.258 2.128 1.079 1.055 1.988 0.492 50.608 1.168
90 93.248 2.138 1.079 1.055 1.988 0.492 44.575 1.092

80 93.099 2.295 1.077 1.053 1.984 0.491 38.984 1.024
70 92.885 2.519 1.075 1.051 1.980 0.490 33.782 0.964
60 92.625 2.792 1.072 1.048 1.974 0.489 27.786 0.874
50 92.303 3.130 1.068 1.044 1.967 0.487 22.377 0.792
40 91.134 4.357 1.055 1.031 1.942 0.481 17.700 0.727
30 90.078 5.465 1.042 1.019 1.920 0.475 13.505 0.670
20 88.207 7.428 1.021 0.998 1.880 0.465 8.561 0.559
10 85.034 10.759 0.984 0.962 1.812 0.449 6.358 0.546
Appendix B

Calculation results of single-phase road lighting installation.
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Table A7. Relative percent of losses of active power in the lighting circuit elements referred to total
losses APtoTaL and the share of total losses AP1oTy41, in active power per circuit for three luminaires

of LUMI.
Dimming  APcapre APppg  APrpray APwire  APppore AProrar  AProtar/Prc
U (V) (%) (%) (%) (%) (%) (W) (%)
10 0.047 0.049
9 0.047 0.049
8 0.047 0.049
7 0.038 0.044
6 0.030 0.041
5 48.556 2.008 3.282 36.995 9.158 0.023 0.037
4 0.017 0.034
3 0.013 0.035
2 0.013 0.047
1 0.010 0.055

Table A8. Relative percent of losses of active power in the lighting circuit elements referred to total
losses AP1oTaL and the share of total losses APtoT41 in active power per circuit for 30 luminaires

of LUM1.
Dimming  APcapre APppg APgrpray APwire  APppore  AProral AProtaL/Prc
Uc (V) (%) (%) (%) (%) (%) W) (%)
10 16.023 1.644
9 16.023 1.644
8 16.035 1.644
7 12.770 1.501
6 10.070 1.371
5 97.068 0.595 0.971 1.095 0.271 7794 1.256
4 5.789 1.161
3 4.555 1.182
2 4.325 1.594
1 3.496 1.856

Table A9. Relative percent of losses of active power in the lighting circuit elements referred to total
losses APtoTaL and the share of total losses AP1oT41 in active power per circuit for three luminaires

of LUM2.
Dimming  APcapre APpgg APgrpray  APwire  APppore AProrar AProrar/Pre
U (V) (%) (%) (%) (%) (%) (W) (%)
10 0.274 0.109
9 0.223 0.099
8 0.175 0.088
7 0.136 0.078
6 48.556 2.008 3.282 36.995 9.158 0.102 0.068
5 0.075 0.059
4 0.050 0.049
3 0.033 0.041
2 0.062 0.122

Table A10. Relative percent of losses of active power in the lighting circuit elements referred to total
losses AP1oTar, and the share of total losses APtorar in active power per circuit for 30 luminaires

of LUM2.
Dimming  APcapie  APpp APreray  APwire  APppore AProrar  AProtai/Pc
Uc (V) (%) (%) (%) (%) (%) W) (%)
10 92.687 3.689
9 75.389 3.342
8 59.195 2971
7 45.955 2.635
6 97.068 0.595 0.971 1.095 0.271 34.514 2.299
5 25.199 1.978
4 17.000 1.651
3 11.059 1.378
2 21.026 4.130
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Table A11. Relative percent of losses of active power in the lighting circuit elements referred to total
losses APtoTaL and the share of total losses AP1oTy41, in active power per circuit for three luminaires
of LUM3.

Dimming  APcape APpgs APreray APwike  APppore AProrar AProrai/Pre

(%) (%) (%) (%) (%) (%) (W) (%)

100 0.836 0.193
90 0.736 0.180
80 0.643 0.169
70 0.556 0.159
60 0.456 0.143
50 49.962 1.784 3.203 36.112 8.940 0.366 0.129
40 0.286 0.117
30 0.215 0.107
20 0.134 0.087
10 0.096 0.082

Table A12. Relative percent of losses of active power in the lighting circuit elements referred to total
losses APtoTaL and the share of total losses AP1oT41, in active power per circuit for three luminaires
of LUM3.

Dimming  APcapre APppp  APgrepray APwire  APppore AProraL APtoTAL/ Pk
(%) (%) (%) (%) (%) (%) (W) (%)
100 289.914 6.689
90 255.330 6.256
80 222.942 5.857
70 192.750 5.501
60 158.098 4974
50 97.264 0.514 0.923 1.041 0.258 126.876 4.492
40 99.085 4.071
30 74.726 3.705
20 46.386 3.029
10 33.211 2.850
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