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Abstract: The control of an ultra-supercritical (USC) boiler–turbine power plant is critical in
maintaining the safety of the sustainable power grid. However, it is challenging due to the internal
nonlinearity, hard manipulation constraints, and widespread uncertainties. To this end, a fuzzy
extended state observer (FESO)-based stable fuzzy predictive control (SFPC) approach is developed
in this paper. First, the control difficulties of the USC boiler–turbine unit are analyzed. Then, based on
a Takagi–Sugeno (T–S) fuzzy model, a new FESO is developed for nonlinear systems to achieve a
more precise observation performance. The gain of FESO is determined by solving a series of linear
matrix inequalities, while guaranteeing the stability of FESO. Then, by combining the proposed FESO
with the SFPC, an integrated FESO–SFPC algorithm is devised. The disturbance rejection ability of the
FESO–SFPC algorithm is analyzed theoretically. Simulation results on a 1000 MW USC boiler–turbine
power plant model further validate the effectiveness of the proposed method.

Keywords: ultra-supercritical boiler–turbine unit; fuzzy extended state observer (FESO); stable fuzzy
predictive control (SFPC); uncertainty

1. Introduction

Ultra-supercritical (USC) power plants have been gaining increasing attention in modern coal-fired
power industry because of their high efficiency with low emission. A boiler–turbine coordinated
control system is of paramount significance in meeting the load demand and maintaining the safety
and efficiency of the power grid [1]. Moreover, the USC power plant is now bearing increasing
responsibilities in providing flexible power to the grid due to the increasing penetration of intermittent
renewables. To achieve a sustainable future for renewable energy, a conventional power plant is
required to be able to change its power output rapidly to balance the grid load in the presence of
intermittent renewable generation [2].

However, it is extremely challenging to control a USC boiler–turbine unit because of the
nonlinearity, the coupling among multi-variables, and the hard constraints on the manipulated
variables. To overcome these issues, various control strategies for a boiler–turbine system have been
studied, such as robust control [2], optimal control [3], intelligent control [4], sliding model control [5],
active disturbance rejection control [6], model predictive control (MPC) [7], etc. The aforementioned
methods have significantly improved the performance in some respects but also suffer from some
deficiencies. Robust control is often too conservative for the purpose of ensuring the performance
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in a critical case. The online computation cost of intelligent control methods is huge, which limits
their practical application. The chattering phenomenon of the sliding model control will damage
the protection of an actuator. On the other hand, MPC is regarded as the most promising control
approach because of the ability in dealing with the multi-variable constraint problems explicitly [8,9].
In recent years, MPC has been used in the dynamic stabilization of DC microgrids [10], control of
electric vehicles [11], load frequency control [12], and control of DC–DC converters [13], achieving
good simulation and experimental results.

Furthermore, some new challenges have appeared in the regulation of a boiler–turbine
unit, including time-varying unknown uncertainties caused by the stochastic and intermittent
power generation from renewable energy and time-varying unknown disturbances caused by the
variation of coal quality. Uncertainties, including parameter perturbations, un-modeled dynamics,
and disturbances, always have negative effects on the system’s performance and even threaten the
stability of the control system [14–16]. Thus, one of the foremost requirements for controllers is to
reduce the sensitivity to uncertainties.

To solve the aforementioned problems, reference [17] proposed an adaptive state feedback to
handle the unknown uncertainties of the boiler–turbine unit, where the input constraint is however
neglected. Reference [18] developed an extended state observer-based fuzzy MPC to overcome
the nonlinearity and disturbances simultaneously. However, its compensation action is directly
added to the input side, resulting in the destruction of the input constraints and overall optimality.
In reference [19], a fuzzy disturbance rejection predictive control approach is proposed; nevertheless,
the closed-loop system stability cannot be guaranteed.

In this paper, we aim to propose a control strategy that is able to regulate an input-constrained
nonlinear USC boiler–turbine unit to overcome the defects of the existing controls. The major
contributions of this paper are summarized as follows:

(1) The nonlinearity of a 1000 MW USC boiler–turbine unit model is analyzed visually by using the
V-gap metric.

(2) Based on a Takagi–Sugeno (T–S) fuzzy model, a novel FESO, which is suitable for both
single-input–single-output (SISO) and multi-input–multi-output (MIMO) systems, is proposed
for the nonlinear system. Compared to the standard extended state observer (ESO), the proposed
FESO can achieve a more precise observation performance. The advantages of the FESO are
easy to determine by solving a series of linear matrix inequalities, guaranteeing the stability of
the FESO.

(3) An integrated FESO–SFPC strategy is devised for input-constrained nonlinear systems with
unknown uncertainties, which brings a remarkable performance improvement. The disturbance
rejection property of the proposed FESO–SFPC strategy is analyzed theoretically and verified
through simulations. Simultaneously, the closed-loop stability is guaranteed.

The remainder of this paper is organized as follows. In Section 2, a 1000 MW USC boiler–turbine
unit model is described, and the control difficulties are analyzed. In Section 3, the discrete FESO and
FESO–SFPC strategy are established. Simulation results are given in Section 4. Finally, the paper is
summarized in Section 5.

Notations: For matrices X and Y, X > Y means that X − Y is a positive-definite matrix; <n

represents the n-dimensional Euclidean norm; A−1 and AT are the inverse and transpose of matrix A,

respectively; ∗ in the matrix represents a symmetric block, for example,

[
A B
BT C

]
=

[
A ∗
BT C

]
;

0 and I represent the zero matrix and the unit matrix, respectively; diag{· · · } denotes a block-diagonal
matrix; ‖ A ‖∞ represents the infinite norm of matrix A;

_
x k+i|k is the predicted state value at time k + i

based on the current state
_
x k. For a matrix, if the dimension is not specified, it is considered to have a

compatible dimension in order to facilitate algebraic operations.
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2. Problem Formulation

2.1. System Description

A USC boiler–turbine unit is an energy-conversion device that transforms the chemical energy of
fuel to steam thermal energy. The USC boiler–turbine unit consists of a boiler and a turbine; a schematic
diagram of the USC boiler–turbine unit is shown in Figure 1.
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Figure 1. Schematic diagram of an ultra-supercritical (USC) boiler-turbine unit.

The boiler–turbine unit used in this paper represents the dynamics of a 1000 MW coal-fired power
plant and has been modeled as a third-order nonlinear mathematical model [20]:

.
rB = −0.0056rB + 0.0056e−17suB
.
pm = f (pm)×(500−1.31hm)

1060000(1.31hm−1205)ut + 0.0157r1.031
B + 0.000665D f w

.
hm = f (pm)×(3000−1.31hm)

59830(1.31hm−1205) ut + 0.278r1.031
B − 0.03D f w

pst = hm − 0.13h0.882
m

hm = hm

Ne = 0.00055ut f (pm)

(1)

where
f (pm) = (43.22pm − 5.62p0.882

m − 31.84)× (−8.96pm + 1.165p0.882
m + 2512.4) (2)

The symbols in Equations (1) and (2) for the 1000 MW USC boiler–turbine unit model are listed in
Table 1.

Table 1. Symbols in the equations relative to the 1000 MW USC boiler-turbine unit model.

Parameter Representation Unit

rB
Pulverized coal flow rate that

enters the boiler kg/s

pm Separator steam pressure MPa
hm Enthalpy kJ/kg
pst Throttle steam pressure MPa
hm Separator steam enthalpy kJ/kg
Ne Active electric power MW
uB Fuel flow rate kg/s

D f w Feed water flow rate kg/s
ut Turbine throttle valve opening %
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The manipulated variables and the rate are constrained by the physical limitations of the actuators:

40 kg/s ≤ uB ≤ 100 kg/s
350 kg/s ≤ D f w ≤ 800 kg/s
0 ≤ ut ≤ 100%
|∆uB| ≤ 10 kg/s∣∣∣∆D f w

∣∣∣ ≤ 40 kg/s

|∆ut| ≤ 1%

(3)

Hence, an input-constrained nonlinear model can be obtained from (1) and (2):{ .
x = g(x, u)
y = h(x, u)

(4)

where x =
[

rB pm hm

]T
, y =

[
pst hm Ne

]T
, u =

[
uB D f w ut

]T
.

Typical equilibrium operating points of the USC boiler–turbine unit are shown in Table 2.

Table 2. Equilibrium operating points of the USC boiler–turbine unit.

pst (MPa) hm (kJ/kg) Ne (MW) uB (kg/s) Dfw (kg/s) ut (%)

#1 13.68 2786.1 547.56 52.9 407.03 74.47
#2 16.3 2751.5 650 62.48 492.31 74.25
#3 18.23 2729 728.33 69.77 558.50 74.56
#4 20.0 2710.0 800.0 76.422 619.97 74.88
#5 22.54 2701.3 901.49 85.81 702.04 75.28
#6 22.6 2698.0 1000 94.89 780.20 83.3

2.2. Control Difficulties

In this section, the control difficulties of the USC boiler–turbine unit will be analyzed in detail. The
step response of the USC boiler–turbine unit is shown in Figure 2. From this figure, we can easily conclude
that the USC boiler–turbine unit presents a strong coupling among multi-variables and has great inertia.

Sustainability 2018, 10, x FOR PEER REVIEW  4 of 21 

The manipulated variables and the rate are constrained by the physical limitations of the 
actuators: 

40 / 100 /
350 / 800 /

0 100%
10kg/s

40kg/s

1%

B

fw

t

B

fw

t

kg s u kg s

kg s D kg s

u

u

D

u

≤ ≤
 ≤ ≤
 ≤ ≤
 Δ ≤
 Δ ≤

 Δ ≤  

(3) 

Hence, an input-constrained nonlinear model can be obtained from (1) and (2): 
( )
( )

,

,

x g x u

y h x u

 =


=



 
(4) 

where [ ]TB m mx r p h= , [ ]Tst m ey p h N= , 
T

B fw tu u D u =   . 

Typical equilibrium operating points of the USC boiler–turbine unit are shown in Table 2. 

Table 2. Equilibrium operating points of the USC boiler–turbine unit. 

 stp  (MPa) mh  
(kJ/kg) 

eN  
(MW) 

Bu  
(kg/s) 

fwD  
(kg/s) 

tu  
(%) 

#1 13.68 2786.1 547.56 52.9 407.03 74.47 
#2 16.3 2751.5 650 62.48 492.31 74.25 
#3 18.23 2729 728.33 69.77 558.50 74.56 
#4 20.0 2710.0 800.0 76.422 619.97 74.88 
#5 22.54 2701.3 901.49 85.81 702.04 75.28 
#6 22.6 2698.0 1000 94.89 780.20 83.3 

2.2. Control Difficulties 

In this section, the control difficulties of the USC boiler–turbine unit will be analyzed in detail. 
The step response of the USC boiler–turbine unit is shown in Figure 2. From this figure, we can easily 
conclude that the USC boiler–turbine unit presents a strong coupling among multi-variables and has 
great inertia.  

 
Figure 2. Open-loop step response of the boiler–turbine unit.

To quantitatively measure the nonlinearity of the USC boiler–turbine unit, the Vinnicombe gap
(V-gap) metric [21,22] between two linearized systems is used, which is defined as

δg(P1, P2) = max
{→

δ (P1, P2),
→
δ (P2, P1)

}
(5)
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where P1 and P2 are two linear models obtained by linearization at any two operating points of the

nonlinear model (1), and
→
δ (P1, P2) and

→
δ (P2, P1) are directed gaps between the linear systems P1

and P2. Using normalized coprime factorizations, these two linear systems can be represented as

P1 = N1M−1
1 and P2 = N2M−1

2 . Then, the directed gap
→
δ (P1, P2) can be calculated by

→
δ (P1, P2) = inf

Q1∈H∞
‖
[

M1

N1

]
−
[

M2

N2

]
Q‖

∞

(6)

where Q is a matrix parameter which has finite H-infinity norm.
For the USC boiler–turbine unit, the linearized model at the operating point #6 in Table 2 is selected

as the nominal model. The nonlinearity investigation results are shown in Figure 3. The results indicate
that the disturbance between two linearized systems increases as the distance between the operating
points increases. Therefore, we can reach the conclusion that the USC boiler–turbine unit has a
strong nonlinearity.
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On the basis of the aforementioned analysis, the control difficulties mainly consist of great inertia,
strong coupling, strong nonlinearity, input constraints, as well as unknown uncertainties.

3. Fuzzy ESO-Based Stable Fuzzy Predictive Control

In this section, a novel T–S fuzzy model-based FESO is proposed, and the stability of the FESO is
proved. Then, based on the proposed FESO, an integrated FESO–SFPC strategy is proposed. In the
end, the disturbance rejection property of the proposed strategy is analyzed theoretically.
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3.1. Fuzzy Extended State Observer

The performance of the ESO-based control systems depends upon the accuracy of the state and
the uncertainty estimation [23–26]. To this end, a novel FESO is developed in this section.

The T–S fuzzy models are extensively employed to represent nonlinear systems [27–29]. A discrete
affine T–S fuzzy model is used to capture the dynamics of the USC boiler–turbine system:

Rl : IF ξ1(k) is Ml
1 and · · · ξr(k) is Ml

r, then{
xk+1 = Al xk + Bluk + Eldk
yk = Cl xk + Dluk + Fldk

, l = 1, 2, · · · , S (7)

where Rl denotes the l-th fuzzy inference rule, S is the number of fuzzy rules, ξ(k) ∈ <r represents
some measurable variables, Ml

j represents fuzzy sets, xk ∈ <n denotes the state variable, yk ∈ <p is
the output variable, uk ∈ <m is the input variable, dk ∈ <q represents the uncertainties, including
plant–model mismatches and all disturbances, and (Al , Bl , Cl , Dl , El , Fl) represents the l-th local model
of the fuzzy system.

By using a singleton fuzzifier, the product inference, and the center-average defuzzifier, the fuzzy
model (7) can be expressed as follows:{

xk+1 = Azxk + Bzuk + Ezdk
yk = Czxk + Dzuk + Fzdk

(8)

where Az =
S
∑

l=1
zl(ξ(k))Al , Bz =

S
∑

l=1
zl(ξ(k))Bl , Cz =

S
∑

l=1
zl(ξ(k))Cl , Dz =

S
∑

l=1
zl(ξ(k))Dl , Ez =

S
∑

l=1
zl(ξ(k))El , Fz =

S
∑

l=1
zl(ξ(k))Fl , zl(ξ(k)) represent the normalized membership function of the

inferential fuzzy set Ml , Ml =
r

∏
j=1

Ml
j , and

S
∑

l=1
zl(ξ(k)) = 1.

Assumption 1. Disturbance dk is unknown at each time constant k but it is bounded.

Assumption 2. The output trajectory reference yr and the corresponding desired reference input ur

are known.

The new augmented variables {
xn+1 = dk,
xn+2 = ∆dk = dk − dk−1

(9)

are introduced into the system (7), where ∆dk is the difference of a disturbance dk.
Combining (7) and (9), a novel extended state-space model can be written as{

xk+1 = Azxk + Bzuk + G(∆dk+1 − ∆dk)

yk = Czxk + Dzuk
(10)

where xk =

 xk
dk
∆dk

 is the extended state vector, Az =

 Az Ez 0
0 I I
0 0 I

, Bz =

 Bz

0
0

, G =

 0
0
I

,

Cz =
[

Cz Fz 0
]
, and Dz = Dz are system matrices.

In order to obtain the estimation of the state variables of the extended state-space model (10), the
following FESO is designed: {

x̂k+1 = Az x̂k + Bzuk + L(ŷk − yk)

ŷk = Cz x̂k + Dzuk
(11)
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where x̂k =
[

x̂k d̂k ∆d̂k

]T
is the estimation of xk, and L is the observer gain to be designed.

Defining the extended state estimation error x̃k = x̂k − xk, then one has the following observer
error dynamic equation:

x̃k+1 =
(

A + LC
)

x̃k =
S

∑
i=1

zi(ξ(k))
(

Ai + LCi
)
x̃k (12)

Theorem 1. The observer error dynamic system (12) is stable if there exist positive symmetric matrix P,
matrix H, and matrix G satisfying the following set of linear matrix inequalities (LMIs): P ∗ ∗

HAi + GCi H + HT − P ∗
Q1/2

0 0 I

 > 0, i = 1, 2, · · · , S (13)

where Q0 ≥ 0 is a given positive matrix parameter. Thus, the FESO gain is L = H−1G.

Proof. The demonstration of the theorem is given in Appendix A. �

Remark 1. The convergence rate of the FESO is adjusted by changing the norm of the matrix Q0.

3.2. Fuzzy ESO-Based Stable Fuzzy Predictive Control

To eliminate the effect of unknown uncertainties, a constrained targets calculator is used to
determine the steady-state and input target value (xt, ut) by solving the following quadratic programing
problem at each sampling time k:

min
xt ,ut

(ut − ur)
T R(ut − ur) (14)

s.t.


[

I − Ak −Bk
Ck 0

][
xt

ut

]
=

[
Ek d̂k
yr − Fk d̂k

]
umin ≤ ut ≤ umax

(15)

where ur and yr are the desired input and output set points, (umin, umax) is the input constraints.
When the steady-state set point (xt, ut) is obtained, one has{

xt = Akxt + Bkut + Ekdk
yt = Ckxt + Dkut + Fkdk

(16)

Subtracting system (16) from system (7) yields
_
x k+1 = Ak

_
x k + Bk

_
u k + Ek

_
d k

_
y k = Ck

_
x k + Dk

_
u k + Fk

_
d k

(17)

where
_
x k = xk − xt,

_
u k = uk − ut,

_
y k = yk − yt, and

_
d k = dk − dt.

Then, we can use the following nominal model of system (17) as the prediction model{ _
x k+i+1|k = Ak

_
x k+i|k + Bk

_
u k+i|k

_
y k+i|k = Ck

_
x k+i|k + Dk

_
u k+i|k

(18)

where
_
x k+i|k denotes the predicted state of the plant at time k + i,

_
u k+i|k the future control move at

time k + i,
_
y k+i|k the future output at time k + i.
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The objective is to minimize the infinite horizon objective function

min
_
u k+i|k ,i≥0

max
[Ak |Bk |Ck |Dk |Ek |Fk |]∈Ω,i≥0

J∞
0 (k) (19)

subject to
umin − ut ≤

_
u k+i|k ≤ umax − ut, i ≥ 0 (20)

where

J∞
0 (k) =

∞

∑
i=0

_
y

T
k+i|kQ1

_
y k+i|k +

_
u

T
k+i|kR1

_
u k+i|k, (21)

with Q1 = QT
1 > 0 and R1 = RT

1 > 0 are the symmetric positive definite weighting matrices for output
and input variables, respectively.

We aim at finding a state feedback control law

_
u k+i|k = Fk

_
x k+i|k, i ≥ 0 (22)

that minimizes the objection function (19).
We define a quadratic function

Wi,k =
_
x

T
k+i|kPi,k

_
x

T
k+i|k (23)

Supposing W satisfies the following inequality

Wi+1,k −Wi,k ≤ −
_
y

T
k+i|kQ1

_
y k+i|k −

_
u

T
k+i|kR1

_
u k+i|k (24)

Summing (24) from i = 0 to i = ∞, and providing W∞,k = 0, it follows that

J∞
0 (k) ≤Wi,k =

_
x

T
k+i|kPi,k

_
x

T
k+i|k = γ (25)

Obviously, (19) is equivalent to
min

_
u k+i|k ,i≥0

γ (26)

According to Schur Complement Lemma, (25), (24), and (20) can be transformed to (29), (30)
and (31), (32).

Summarizing the above arguments, we can obtain the following theorem.

Theorem 2. For the discrete affine T–S fuzzy model (7) under input constraint umin ≤ u ≤ umax with the
FESO (11), whose observer gain is determined by LMIs (13) and target generation procedure (14) and (15),
if there exist a series of symmetric positive matrices Qi(i = 1, 2, · · · , `) and matrices F, Y, such that following
LMI is feasible

min
γ,F,Y,Q1,··· ,Q`

γ (27)

subject to (29)–(32), then, at every sampling time k, by minimizing the upper bound of the infinite horizon
objective function γ, a control action

uk = YF−1_x k + ut (28)

is applied to track the reference, while guaranteeing the stability of the closed-loop system and satisfying the
input constraints, and [

1 ∗
_
x k Qi

]
≥ 0, i = 1, 2, · · · , ` (29)
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
F + FT + Qi ∗ ∗ ∗
AiF + BiY Qi ∗ ∗

Q0.5
1 (CiF + DiY) 0 γI ∗

R0.5
1 Y 0 0 γI

 ≥ 0, i = 1, 2, · · · , ` (30)

[
U ∗
YT F + FT + Qi

]
≥ 0, i = 1, 2, · · · , ` (31)

Uj ≤
[
min

(∣∣uj,min − uj,t
∣∣, ∣∣uj,max − uj,t

∣∣)]2, j = 1, 2, · · · , m (32)

where
_
x k = x̂k − xt.

Remark 2. The equality (29) guarantees that the infinite horizon objective function is minimum at sampling
time k. The equality (30) guarantees the closed-loop stability. Input constraint is ensured by (31) and (32).

On the basis of the proposed FESO strategy, a FESO-based SFPC algorithm is summarized in
Algorithm 1.

Algorithm 1: Proposed FESO–SFPC algorithm.

1: Initialize:
At k = 0, Initialize system states xk,0, inputs uk,0 and observer states x̂k,0;
2: while k ≤ kend do
3: Solve problem (27) online with estimated states x̂k to obtain the optimal control input uk;
4: Apply the optimal control input uk to the system;
5: Measure the current output yk+1;
6: Estimate x̂k+1 based on x̂k, uk and yk+1 by the proposed FESO (11);
7: k = k + 1;
8: end while
kend is the final time of running the algorithm.

The schematic diagram of the proposed FESO–SFPC is shown in Figure 4.
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3.3. Disturbance Rejection Analysis

Theorem 3. Supposing that d is bounded and has a constant valve at the steady state, then lim
t→∞

∆d = 0, and

lim
t→∞

d = c, where c is a constant. If
(

Az, Cz
)

is observable, with FESO (11), target generation procedure

(14) and (15), and the control law (28), unknown uncertainties can be removed from the output channels in
steady state.

Proof. The demonstration of the theorem is given in Appendix A. �

4. Simulation Results and Discussions

In this section, the FESO–SFPC strategy is applied to control the input-constrained nonlinear
USC boiler–turbine unit model with uncertainties and disturbances. First, the T–S fuzzy model of the
boiler–turbine system is established. Then, four simulation scenarios are presented to evaluate the
proposed FESO–SFPC strategy.

4.1. Modeling of the Boiler–Turbine System

Using the Taylor series expansion, selecting power as the switching variable α and choosing the
membership function shown in Figure 5, we can easily get the following T–S fuzzy model{

xk+1 = Akxk + Bkuk
yk = Ckxk + Dkuk

(33)

where Ak = ∑3
i=1 αi(z)Ai, Bk = ∑3

i=1 αi(z)Bi, Ck = ∑3
i=1 αi(z)Ci, Dk = ∑3

i=1 αi(z)Di. Matrices
(Ai, Bi, Ci, Di, i = 1, 2, 3) are given in Appendix B.
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To observe the accuracy of the fuzzy model (33), random inputs shown in Figure 6 are added
to the T–S fuzzy model (33) and the original nonlinear model (1), with the results shown in Figure 7.
It can be seen that the T–S fuzzy model has satisfactory approximation precision.
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4.2. Performance Evaluations and Discussions

The turning parameters of the proposed FESO–SFPC for the USC boiler–turbine unit are
set as follows: the sample time Ts = 10 s, the weighting matrices Q1 = diag{3000, 100, 100},
R1 = diag{1, 1, 1}, the coefficient matrices Ei(i = 1, 2, 3) = diag{1, 1, 1}, Fi(i = 1, 2, 3) = diag{1, 1, 1},
the observer coefficient Q0 = diag{1, 1, 1, 1, 1, 1, 1, 1, 1}. Then, use Theorem 1 to get the gain L of the
FESO as follows:

L =



−0.9993 −0.0715 0.0269
−0.006 −0.0736 −0.0459
−0.0014 −1.8709 0.0938
−1.5533 −0.0258 0.0401
−0.0077 −0.1265 −0.0445
−0.0106 −1.0279 0.0116
−0.5544 −0.0045 0.0142
−0.0026 −0.0504 −0.0111

0.009 −0.1914 0.0012


.
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For comparison, two additional controllers are tested on the USC boiler–turbine system under the
same design parameters:

(1) The ESO-based fuzzy model predictive control (ESO–FMPC) [18].
(2) The stable model predictive tracking controller (SMPTC) [30].

4.2.1. Simulation of Disturbance Rejection

In order to verify the disturbance rejection property of the three controllers, three simulation
scenarios are designed. We suppose that the USC boiler–turbine unit operates at the operating point
#5 (22.54MPa, 2701.3kJ/kg, 901.49MW) in Table 2. Then, the unknown disturbances are added to
the input in three different forms, i.e., step-type disturbance, ramp-type disturbance, and curve-type
disturbance:

Case 1: A step-type disturbance d3 = 2.5%(2000 s ≤ t ≤ 3000 s) on the turbine throttle valve u3.
Case 2: A ramp-type disturbance d2 = 25− 0.01t(2500 s ≤ t ≤ 3500 s) on the water input channel

u2.

Case 3: A curve-type disturbance d1 =

{
0.000012t2 − 0.06t + 75(2500 s ≤ t < 3500 s)
12, t ≥ 3500 s

on the fuel

input channel u1.

Figure 8 shows the response result in Case 1. (a), (c) and (e) of Figure 8 show the output of
the system under the action of the three controllers, where it can be seen that all three controllers
can eliminate the effect of the step-type disturbance, but the proposed FESO–SFPC has the best
performance. (b), (d) and (f) of Figure 8 show the output of the three controllers, all of which satisfy
the actuator constraints. Figure 8g shows the observed disturbances, and the proposed method has
a faster disturbance observation speed. It is worth noting that the disturbances in Figure 8g are not
true disturbances and can be understood as the sum of all uncertainties. It can be seen from Figure 8h
that the γ under the adjustment of the two controllers becomes 0 with time, which indicates that the
closed-loop system has converged. In addition, the proposed method converges faster, which indicates
that the performance of the proposed method is better. Compared with ESO–FMPC, the proposed
method not only has a better performance, but also ensures the stability of the closed-loop system.

Case 2 is designed to test the performance of the controller for ramp-type disturbance rejection.
It can be seen from Figure 9 that the SMPTC method cannot compensate for the ramp-type
disturbance. Both FESO–SFPC and ESO–FMPC methods can offset the ramp-type interference.
However, the ESO–FMPC method has a large overshoot and does not guarantee the stability of
the closed-loop system.

It can be seen from Figure 10 that when the curve-type disturbance occurs at the input end,
the control performance of the SMPTC drops sharply, but the proposed method can still achieve a
better control and is superior to the ESO–FMPC algorithm.
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Figure 8. Case 1: Responses to a step-type disturbance applied to the turbine throttle valve.
(a,c,e) Output disturbance response; (b,d,f) Input disturbance response; (g) Disturbance estimation;
(h) Upper bound γ of the objective function, showing the performance of the controllers; SMPTC:
stable model predictive tracking controller; ESO–FMPC: ESO-based fuzzy model predictive control;
FESO-SFPC: fuzzy ESO-based stable fuzzy predictive control.
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Figure 9. Case 2: Responses to a ramp-type disturbance applied to the water input channel.
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Figure 10. Case 3: Responses to a ramp-type disturbance applied to the fuel input channel.
(a,c,e) Output disturbance response; (b,d,f) Input disturbance response; (g) Disturbance estimation;
(h) Upper bound γ of the objective function, showing the performance of the controller.
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4.2.2. Simulation on Load Tracking

In addition, Case 4 is devised to test the property of load tracking with unknown time-varying
uncertainties. The USC boiler–turbine unit operates at the operating point #5 (22.54MPa, 2701.3kJ/kg,
901.49MW) in Table 2 and then ramps to the operating point #1 (13.68MPa, 2786.1kJ/kg, 547.56MW).
After keeping constant for a period, it ramps to the operating point #6 (22.6MPa, 2698kJ/kg, 1000MW).
Finally, it arrives at a steady state. Meanwhile, continuous uncertainties are added into the nonlinear
model of the USC boiler–turbine unit by making the output y1 in nonlinear model change according to
the following function, which is unknown to the controller:

y1 = x2 − 0.13x0.882
2 , t ≤ 1000 s

y1 = x2 − 0.13x0.00030871t+0.5733
2 , 1000 s < t < 1700 s

y1 = x2 − 0.13x1.0981
2 , 1700 s ≤ t ≤ 2300 s

y1 = x2 − 0.13x−0.0002t+1.4614
2 , 1700 s < t < 3000 s

y1 = x2 − 0.13x0.8203
2 , t ≥ 2300 s

Figure 11 shows the response under Case 4. The closed-loop system is diverged under the control
of the ESO–FMPC, so the curve is not drawn in Figure 11. The main reason is that feed forward
destroys the stability of the system. Compared with the SMPTC method, the FESO–SFPC strategy has
a shorter recovery time and a smaller overshoot. From an overall perspective, the overall performance
of the proposed FESO–SFPC strategy is better than those of the ESO–FMPC and SMPTC methods.

The integrated absolute errors (IAEs) of the controllers in Case 1 to Case 4 are listed in Table 3.
In the four cases, the proposed method has the smallest IAE.

Table 3. Integrated absolute errors (IAE) under Cases 1–4.

Case Method IAE (pst) IAE (hm) IAE (Ne)

Case 1 FESO–SFPC 18.8 80.6 271.5
ESO–FMPC 63.7 846.6 1350.7

SMPTC 31.2 99.4 316.6

Case 2 FESO–SFPC 0.4 2.6 9.8
ESO–FMPC 12.5 314.7 490.7

SMPTC 0.5 3.1 11.3

Case 3 FESO–SFPC 0.51 2.2 8.9
ESO–FMPC 14.9 384.9 582.5

SMPTC 2.2 11.7 19.2

Case 4 FESO–SFPC 131.1 264.7 829.5
SMPTC 1036.6 5009.6 9286.8

4.3. Parameter Effects on Control Performance

The adjustment parameters of the proposed algorithm are Q0, Q1 and R1. The effects of the three
adjustment parameters on the performance of the closed-loop system were analyzed by changing the
parameters in simulation. However, these parameters do not have a large influence on the closed-loop
system when they vary within a certain range, which also indicates that the proposed controller’s
adjustment parameters are easy to set.



Sustainability 2018, 10, 4824 17 of 21

Sustainability 2018, 10, x FOR PEER REVIEW  16 of 21 

(g) (h) 

Figure 10. Case 3: Responses to a ramp-type disturbance applied to the fuel input channel. (a), (c) and 
(e) Output disturbance response; (b), (d) and (f) Input disturbance response; (g) Disturbance 
estimation; (h) Upper bound γ  of the objective function, showing the performance of the controller. 

4.2.2. Simulation on Load Tracking 

In addition, Case 4 is devised to test the property of load tracking with unknown time-varying 
uncertainties. The USC boiler–turbine unit operates at the operating point #5 (22.54MPa, 2701.3kJ/kg, 
901.49MW) in Table 2 and then ramps to the operating point #1 (13.68MPa, 2786.1kJ/kg, 547.56MW). 
After keeping constant for a period, it ramps to the operating point #6 (22.6MPa, 2698kJ/kg, 1000MW). 
Finally, it arrives at a steady state. Meanwhile, continuous uncertainties are added into the nonlinear 
model of the USC boiler–turbine unit by making the output 1y  in nonlinear model change according 
to the following function, which is unknown to the controller:  

0.882
1 2 2

0.00030871 0.5733
1 2 2

1.0981
1 2 2

0.0002 1.4614
1 2 2

0.8203
1 2 2

0.13 1000

0.13 ,1000 1700

0.13 2300

0.13 3000

0.13 2300

t

t

y x x t s

y x x s t s

y x x s t s

y x x s t s

y x x t s

+

− +

 = − ≤


= − < <
 = − ≤ ≤
 = − < <
 = − ≥

，

，1700

，1700

，

  

Figure 11 shows the response under Case 4. The closed-loop system is diverged under the 
control of the ESO–FMPC, so the curve is not drawn in Figure 11. The main reason is that feed forward 
destroys the stability of the system. Compared with the SMPTC method, the FESO–SFPC strategy 
has a shorter recovery time and a smaller overshoot. From an overall perspective, the overall 
performance of the proposed FESO–SFPC strategy is better than those of the ESO–FMPC and SMPTC 
methods. 

  
(a) (b) 

  
(c) (d) 

Sustainability 2018, 10, x FOR PEER REVIEW  17 of 21 

  
(e) (f) 

  
(g) (h) 

Figure 11. Case 4: Load tracking. (a), (c) and (e) Output disturbance response; (b), (d) and (f) Input 
disturbance response; (g) Disturbance estimation; (h) Upper bound γ  of the objective function, 

showing the performance of the controller. 

The integrated absolute errors (IAEs) of the controllers in Case 1 to Case 4 are listed in Table 3. 
In the four cases, the proposed method has the smallest IAE. 

Table 3. Integrated absolute errors (IAE) under Cases 1–4. 

Case Method IAE (pst) IAE (hm) IAE (Ne) 
Case 1 FESO–SFPC 18.8 80.6 271.5 

 ESO–FMPC 63.7 846.6 1350.7 
 SMPTC 31.2 99.4 316.6 

Case 2 FESO–SFPC 0.4 2.6 9.8 
 ESO–FMPC 12.5 314.7 490.7 
 SMPTC 0.5 3.1 11.3 

Case 3 FESO–SFPC 0.51 2.2 8.9 
 ESO–FMPC 14.9 384.9 582.5 
 SMPTC 2.2 11.7 19.2 

Case 4 FESO–SFPC 131.1 264.7 829.5 
 SMPTC 1036.6 5009.6 9286.8 

4.3. Parameter Effects on Control Performance 

The adjustment parameters of the proposed algorithm are 
0Q , 1Q  and 1R . The effects of the 

three adjustment parameters on the performance of the closed-loop system were analyzed by 
changing the parameters in simulation. However, these parameters do not have a large influence on 
the closed-loop system when they vary within a certain range, which also indicates that the proposed 
controller's adjustment parameters are easy to set. 

5. Conclusions  

d 
1

d 
2

d 
3

U
pp

er
 B

ou
nd

Figure 11. Case 4: Load tracking. (a,c,e) Output disturbance response; (b,d,f) Input disturbance
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5. Conclusions

The conventional coal-fired power plant is now facing more challenges because of the increasing
penetration of intermittent renewables. In order to solve the uncertainty of the ultra-supercritical
boiler–turbine unit, an SFPC method based on FESO is adopted. The FESO is designed to estimate and
compensate the total disturbance. The SFPC is used to handle the constraints and coupling, realizing
operation purpose optimally. The stability and disturbance rejection performance are theoretically
analyzed. The simulation results show that, compared to SMPTC and ESO–FMPC, the proposed
FESO–SFPC strategy has significant ability to deal with uncertainties as a result of the observation
performance of the FESO. The fast, stable, and flexible load-tracking performance of the power plant
depicts a promising prospect for the proposed strategy in facilitating the sustainability of the future
power grid.
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Appendix A. Proof of Theorem 1 and Theorem 3

Proof of Theorem 1. Consider a candidate Lyapunov function defined as

V
(

x̃k

)
= x̃k

T Px̃k (A1)

The difference of candidate Lyapunov function (A1) along a trajectory of system (12) is given by

∆V
(

x̃k

)
= V

(
x̃k+1

)
−V

(
x̃k

)
=

S
∑

i=1

S
∑

j=1
zi(ξ(k))zj(ξ(k))x̃k

T(Ai + LCi
)T P

(
Aj + LCj

)
x̃k − x̃k

T Px̃k
(A2)

In order to adjust the convergence rate of the FESO, suppose ∆V
(

x̃k

)
satisfies the inequality

∆V
(

x̃k

)
≤ −x̃k

TQ0 x̃k (A3)

Since 2XT RY ≤ infR>0
{

XT RX + YT RY
}

, the above inequality (A3) is satisfied if

S

∑
i=1

zi(ξ(k))x̃k
T(Ai + LCi

)T P
(

Ai + LCi
)
x̃k −

S

∑
i=1

zi(ξ(k))x̃k
T Ph x̃k ≤ −

S

∑
i=1

zi(ξ(k))x̃k
TQ0 x̃k (A4)

According to the Schur Complement Lemma, the above inequality (A4) is satisfied if P ∗ ∗
Ai + LCi P−1 ∗

Q1/2
0 0 I

 ≥ 0, i = 1, 2, · · · , S (A5)

Defining L = H−1G, we can achieve P ∗ ∗
HAi + GCi H + HT − P ∗

Q1/2
0 0 I

 ≥ 0, i = 1, 2, · · · , S (A6)
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from (A5) by multiplying (A6) from the left by diag(I, H, I) and, from the right, by diag
(

I, HT , I
)

and
using the equality 0 < H + HT − P ≤ HPHT .

Therefore, ∆V
(

x̃k

)
< 0 which means that the observer error system (12) is stable, and thus

Theorem 1 is proved. �

Proof of Theorem 3. Supposing that x̂(∞) and d̂(∞) bespeak the estimates of the system steady state
and lumped disturbance, respectively, u(∞) and y(∞) are the steady-state control inputs and outputs.
Thus, by FESO (11), we have

x̂(∞)− Aα x̂(∞)− Bαu(∞)− Eαd̂(∞)− L1

[
Cα x̂(∞) + Dαu(∞) + Fαd̂(∞)− y(∞)

]
= 0 (A7)

L2

[
Cα x̂(∞) + Dαu(∞) + Fαd̂(∞)− y(∞)

]
= 0 (A8)

in which L1, L2 are block matrices of L, meeting L =
[
LT

1 , LT
2 , LT

3
]T .

It has been proved by [31,32], that the FESO gain L2 is full-rank, while the number of the
disturbances are equal to the number of outputs. Thus, from (A8) and (A7), we get

y(∞) = Cα x̂(∞) + Dαu(∞) + Fαd̂(∞) (A9)

x̂(∞) = Aα x̂(∞) + Bαu(∞) + Eαd̂(∞) (A10)

If there exists a feasible result (xt, ut) to the target generation procedure (14) and (15), we have

yt = Cαxt + Dαut + Fαd̂(∞) (A11)

xt = Aαxt + Bαut + Eαd̂(∞) (A12)

Subtracting (A12) from (A10) yields

x̂(∞)− xt = Aα[x̂(∞)− xt] + Bα[u(∞)− ut] (A13)

Then, from (28), we can get

u(∞)− ut = YF−1(x̂(∞)− xt) (A14)

Then, one obtains from (A13) and (A14)(
Aα + BαYF−1 − I

)
[x̂(∞)− xt] = 0 (A15)

As the closed-loop system has been ensured to be stable, the eigenvalue of Aα + BαYF−1 is within
the unit circle, thus the only solution of (A15) is x̂(∞)− xt = 0.

Subtracting (A11) from (A9) yields

e = y(∞)− yt =
(

Cα + DαYF−1
)
[x̂(∞)− xt] = 0 (A16)

On the basis of the target generation procedure (14) and (15), we have yt = yr at steady state;
hence, unknown uncertainties can be removed from the output channels in steady state. �
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Appendix B. Local Linear Models for T–S Fuzzy Model

A1 =

 −0.0056 0 0
0.0183 −0.0816 0.0001
0.3241 −0.2981 −0.0065

; B1 =

 0.0056 0 0
0 0.0007 −1.6243
0 −0.03 −5.9366

;

C1 =

 0 0.9168 0
0 0 1
0 36.9028 0

; D1 =

 0 0 0
0 0 0
0 0 735.0034

;

A2 =

 −0.0056 0 0
0.0185 −0.0795 0.0002
0.3269 −0.2633 −0.0093

; B2 =

 0.0056 0 0
0 0.0007 −2.1781
0 −0.03 −72156

;

C2 =

 0 0.9195 0
0 0 1
0 35.7179 0

; D2 =

 0 0 0
0 0 0
0 0 978.6767

;

A3 =

 −0.0056 0 0
0.0186 −0.0779 0.0003
0.329 −0.2447 −0.0118

; B3 =

 0.0056 0 0
0 0.0007 −2.67
0 −0.03 −8.3861

;

C3 =

 0 0.9215 0
0 0 1
0 34.8875 0

; D3 =

 0 0 0
0 0 0
0 0 1195.5

.
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