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Abstract: Land take is one of the most studied phenomena in land use science. The increased attention
to the issue of urban growth from both scientists and decision makers is justified by the dramatic
negative effects on land use caused by anthropogenic activities. Within this context, researchers
have developed and explored several models to forecast land use changes, some of which establish
excellent scenario-based predictions of urban growth. However, there is still a lack of operative and
user-friendly tools to be integrated into standard urban planning procedures. This paper explores the
features of the recently published model FUTure Urban-Regional Environment Simulation integrated
into the GRASSGIS environment, which generates urban growth simulation based on a plethora
of driving variables. Specifically, the model was applied to the case study of urbanization in the
Italian national territory. Hence, the aim of this work is to analyze the importance of population
dynamics within the process of urban growth. A simulation of urban growth up to the year 2035 was
performed. Results show that, despite the importance given to demographic aspects when defining
urban policies over the last several decades, additional factors need to be considered during planning
processes to overcome the housing issues currently experienced in Italy.
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1. Introduction

One of the main purposes of urban and regional planning is the development of proper tools
to support the scientific debate related to the overexploitation of natural resources, such as soil and
natural lands, by humankind [1,2]. As with water and other natural resources, soil has to be considered
as a common good, especially because of its scarce reproducibility [3,4]. Therefore, there is a growing
interest in establishing tools to achieve a sustainable balance between human needs and the capacity
of natural ecosystems to sustain human activities [5–7].

Today, more than half the world’s population (55%) lives in urban areas. This proportion was only
30% in 1950, and estimates indicate that it will rise to 68% by 2050 [8]. Rapid urbanization has been
accompanied by drastic changes in the social sphere [9]. The average life expectancy has grown in
recent decades, resulting in an aging population, while a decreasing fertility rate continues. Estimates
by the United Nations indicate that the older population is growing faster in urban areas than in rural
areas: between 2000 and 2015, people over 60 years of age increased by 68% in urban areas, compared
with 25% in rural areas. In addition, in 2050, people over 60 years of age will be double in number
compared to their population in 2015 [10]. Moreover, countries are experiencing significant internal
migration fluxes, resulting in a high demand for housing in major urban areas. These patterns are
recognizable in both developed and developing countries [11]. These data highlight how population
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dynamics will play a primary role in urbanization processes over the next decades. Paradoxically,
while intense human-related land use is threatening most of the primary functions of soils (such as
their capacity to host biological life, absorb water, and stock carbon) and using from one-third to
one-half of the global ecosystem production, the tremendous growth in urban population over the last
century is generating an even greater dependence on the so-called ecosystem services, especially by
those connected to agricultural production [12].

This ironical situation has become a true challenge for urban planners, who are called upon to
reshape the way humans interact with our planet [13]. Indeed, while many land use activities are
essential to humanity for ensuring necessities such as food, shelter, and water, the degradation of
natural ecosystems is threatening several ecosystem services, including some that are important for
agriculture. The impact of anthropogenic activities on land cover can entail negative consequences in
relation to natural ecosystem functionality [14,15]. These are generally divided into four main fields
of effects: on the hydrological cycle, on the carbon cycle and the climate, on air quality, and on the
food chain [16]. The described scenario highlights the importance of urban and regional planning
in designing plans that are able to deal with a complex, contingent situation and to anticipate the
long-term consequences of each choice—both negative and positive [17–20].

This paper focuses on the analysis of land use dynamics, specifically of urban growth, in Italy.
Among the European countries, Italy represents an interesting case study, as the land use dynamics
in this country are representative of behavior that is recognizable in most European Mediterranean
countries [21]. The strong growth experienced after the end of World War II both in the resident
population and in the economic drivers of the country are the main factors explaining the impressive
growth in urbanization processes experienced in Italy. Since this period, the Italian landscape
has been directly or indirectly modified by human actions in an unprecedented way [22]. Recent
studies have shown that these transformations can be organized into three categories: urban growth,
renaturalization processes, and the abandonment of agricultural areas [23,24]. Specifically, in the
period from 2008 to 2013, the most consistent share of transformation was due to urban growth. While
the growth in forest and woodland areas amounts to about +1% in the considered period, the increase
in urban areas is about +4.7%. Over the same period, the abandonment of agricultural areas reached
almost −2.2%. This value confirms the overall trend already registered over the time period 1990–2008,
with a mean reduction in agricultural areas of 25,000 hectares per year across the country [25–27].

In a previous work published in 2018, two of the authors of this paper investigated the loss of
natural and agricultural land due to urbanization in two scenarios for the year 2030 [28]. The result
of the study highlighted the importance of using effective policies to protect natural values and
biodiversity from rapid urban growth. Moreover, the inadequacy of current planning policies adopted
so far in Italy has been questioned [29]. In this paper, future land cover changes are predicted
considering only the growth of built-up areas, without analyzing the transitions between all the
other land cover classes. In a lot of planning activities, socioeconomic analyses are completely
separated from other simulations. Today, aspects such as demographic dynamics are crucial in spatial
planning, not least because trends are more variable than in the past. This is very important in Italy,
which represents a crossroads of migratory flows and, at the same time, is a country that currently
experiences significant emigration flows to foreign destinations. The simulation was performed using
the FUTure Urban-Regional Environment Simulation (FUTURES) cellular automata model, available
under GRASSGIS. To our knowledge, this is the first application of this model to the Italian case study
of urban growth. Simulations developed with this model can also be fundamental to updating Italian
Master Plans, most of them being very old, with an overabundance of new development zones which
in large part will never be implemented. The FUTURES model analyzes urban growth considering
numerous driving variables. However, the main driver considered in the simulation process is the
variation in population at the regional scale. Hence, the simulated scenario represents the share
of urban growth that is exclusively due to a real demand for new housing, excluding the share of
urbanization due to other phenomena, such as real estate market dynamics.
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2. Materials and Methods

FUTURES is a model for multilevel simulations of emerging urban and rural landscape
structures [30]. Originally developed to perform regional projections of landscape patterns, in this
study, FUTURES was used to forecast only urban growth. This model was selected among a variety of
land use/cover change models discussed in the literature because of its open-source nature and its
ability to integrate with the GRASSGIS framework [31–35]. This latter characteristic makes FUTURES
particularly useful for professionals in the field of urban and regional planning. Most of the popular
models used by academics to perform spatial simulations of land use change are quite complex and
require some programming skills [36–39]. Conversely, thanks to its integration with the popular
GRASSGIS environment, FUTURES supports a user-friendly graphical interface, allowing planners to
use the model in their everyday professional activities [40].

2.1. Model structure

FUTURES is a cellular automata model [41–43]. It comprises three submodels [44]:

• POTENTIAL, which represents the transition potential model, defining the suitability of each cell
to be affected by a transition between land cover classes;

• DEMAND, which represents the change demand model, defining the number of changes expected
within each land cover class;

• PGA, or Patch-Growing Algorithm, which represents the change allocation model, defining the
location of the expected changes by combining, through a stochastic algorithm, the results of the
POTENTIAL and of the DEMAND submodels.

The POTENTIAL submodel uses a multilevel logistic regression technique to generate a map
describing the likely positions of future development. This map is used to predict the conversion of
a cell from undeveloped to developed. The multilevel logistic regression considers a set of predictive variables
which are considered to be relevant for the land cover change dynamics in the study area. These predictive
variables can be divided into environmental, infrastructural, and socioeconomic drivers.

The submodel was calibrated based on values detected from a consistent number of randomly
sampled points over the study area. Firstly, a seed for the initiation of a patch was allocated randomly
across the POTENTIAL probability gradient. The seed survives only if the probability value in
POTENTIAL is larger than a random number chosen in the range 0–1. Subsequently, a binary variable
was considered, and the probability of the generic cell i changing its state from undeveloped to developed
was measured as [45]:

pi =
esi

1 + esi
, (1)

where si is the composite suitability score, expressed as:

si = s′id
−a. (2)

Specifically, in the equation, si’ is a function of the original development potential, d is the distance
of the ith cell from the seed, and a represents the patch compactness. Hence, when a increases, the cells
nearest to the seed become more attractive.

However, the original development potential also depends on the set of environmental,
infrastructural, and socioeconomic predictive variables chosen by the user as input for the model.
The contribution of these driving forces is measured through the relationship:

s′i = aji +
n

∑
k=1

Bjihxih + Bjih p′i, (3)
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where, within the jth group, h is a predictive variable, aji is the intercept, n is the number of predictive
variables, xih is the value of h connected to i, p′i is the dynamic development pressure variable, and B
is the regression coefficient.

The dynamic development pressure variable is measured as:

p′i =
∑ni

k=1 Statek

dg
ik

, (4)

in which Statek is a binary variable representing whether the considered cell is developed or not, dik is
the distance between the kth neighbor cell and the current cell, and g is a coefficient controlling for the
influence of the distance dik and is included in the range 1–100.

Through the multiple regression technique, the POTENTIAL submodel returns for each cell a value
included in the range 0–100. These are probability values; higher values indicate that the cell is more
likely to change its status from undeveloped to developed. The user can test different combinations
and numbers of predictive variables to be included in the regression. An Akaike Information Criterion
(AIC) is computed for each combination [46]. This index is used to compare two models, supporting
the selection of the one that ensures a better trade-off between model fit and complexity, thus achieving
the best predictive ability.

The DEMAND submodel estimates the amount of future development expected in each region of
the study area based on population dynamics and urban growth trends. Using the least squares
regression technique, the relationship between urban growth and the population variation in
each region is considered in terms of the number of inhabitants, generating linear or logarithmic
relationships. Specifically, this approach leads to two outputs:

• The relationship between population growth and new development,
• The number of cells that will change their status from undeveloped to developed over the years.

Hence, this is the upper limit in the growth of patches during the simulation and, together with
the transition potential which is defined as the output of the POTENTIAL submodel, serves as an
input file for the PGA submodel.

The PGA submodel simulates the future land cover changes on the basis of an iterative and
stochastic selection process, applying a region growing mechanism to change the status of the cells
from undeveloped to developed. Hence, this submodel allocates the quantities of changes defined in
the DEMAND submodel depending on the suitability of each cell measured through the POTENTIAL
submodel. Specifically, only the cells with a suitability value higher than a predefined threshold
are considered for the urbanization process. The transition from undeveloped to developed is first
experienced by the seeds. Subsequently, the newly urbanized seeds can become the center of new
urban patches. This growth continues until the patch reaches a dimension equal to the maximum
value defined by the user on the basis of the historical trends of land use changes in the area.

2.2. Study Area and Data Preparation

In this study, FUTURES was applied to the case study of urbanization in the Italian national
territory (Figure 1).
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Figure 1. The flowchart of the application proposed in this paper.

This is a challenging application, especially because of the wide dimension of the study area
and of the country-wide spatial variability in the main drivers that affect urban growth. The analyst,
together with the starting conditions of the model, establishes the input data. This is considered the
layer to which the growth rules are applied. All data must have the same spatial extension and the
same resolution. In this application, a resolution of 100 m was chosen for all the input raster data.
The rasters were projected onto the ETRS89 LAEA reference system (EPSG: 3035).

The main input for the model was a collection of time-series maps representing the evolution of
urban settlements. Urban areas were extracted from the CORINE land cover maps for the years 1990,
2000, and 2012 [47,48]. These urban extent maps were used in all the three submodels.

For the DEMAND submodel, the historical trends of the population dynamics and their projection
to future scenarios are required. For the application in this research, population data were extracted
from the Italian National Census database (ISTAT). Specifically, historical data refer to the 2011 census,
while the projections were provided by [49].

Finally, to run the DEVELOPMENT submodel, a set of predictive variables must be defined as
inputs. In this work, the following rasters were used as predictive variables:

• Slope and aspect. These maps were derived from the DTM available through the Copernicus
website [50];

• Distance from water bodies. The water bodies were extracted from the CORINE land cover maps,
while the distances were calculated through the GRASSGIS algorithm r.grow.distance;
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• Distance from protected areas. The protected areas considered in this application are the assets
protected by the Italian National Law 394/1991 on protected areas [51], together with the areas
belonging to the Natura 2000 Network regulated by the European directive 92/43/CEE [52].
Data are freely available at [53]. The distance from these areas was measured with the same
algorithm used for the distance from water bodies;

• Forests and woodlands. These were extracted from the CORINE land cover maps;
• Travel time from/to the main cities. This predictive variable measures the travel time from/to

the cities with higher populations in the country. Travel time is considered as a cumulative cost
depending on the distance between two nodes (i.e., two cities) and the maximum speed allowed
on the arch (i.e., the road) connecting them. The road network, consisting of highways, national
roads, and provincial roads, is available on the Italian National Geoportal [53];

• Road density and distance from the nodes. While the other predictive variables represent a
restriction of urbanization, these two predictors favor urban expansion;

• Urban development pressure. This predictor is based on the number of urbanized neighbors of a
seed. Higher values of the pressure correspond to a higher probability of a cell being urbanized in
the next cycle.

2.3. Spatial Autocorrelation Techniques

In order to verify the simulated data, spatial autocorrelation techniques were adopted based on
a measure of the level of similarity between neighboring features to substantiate the geographical
reliability of the results. The concept of spatial autocorrelation is based on Waldo Tobler’s first law of
geography, “All things are related but nearby things are more related than distant things” [54]. Although
this definition is very simple and intuitive [55] and it is a cornerstone of several disciplines, it has
not been applied for more than two decades [56]. Only recently has this law been considered again,
owing to the spread of spatial models and geographical information systems. The main aim of
spatial autocorrelation techniques is to investigate the effects of surrounding objects on a spatial
element. There are two main components defining the main geographical object features: location and
attributes. In most cases, these components are analyzed separately. Spatial autocorrelation techniques
simultaneously analyze the properties and the location of spatial objects [57]. Considering N objects,
spatial autocorrelation (SAC) can be formalized by the following equation [58]:

SAC =
∑N

i=1 ∑N
j=1 cijwij

∑N
i=1 ∑N

j=1 wij
, (5)

where:

• i and j are two objects,
• cij is the degree of similarity of attributes i and j,
• wij is the degree of similarity of location i and j.

From this equation, it is possible to determine two global indicators of spatial autocorrelation:
the Geary C Ratio [59] and the Moran Index I [60]. The first one computes cij as the direct difference
between the attributes (xi − xj), while the second considers cij as the difference between the single
attributes (xi and xj) and the mean:

C =
(N − 1)∑i ∑j wij(xi − xj)

2

2(∑i ∑j wij)∑i(xi − x)2 , (6)

I =
N ∑i ∑j wij(xi − x)(xj − x)

∑i ∑j wij ∑i(xi − x)2 . (7)
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These indicators are weak because they only provide information on whether autocorrelation
occurs. In order to determine where the highest values of autocorrelation are clustered, it is necessary
to adopt local indicators of spatial autocorrelation. There are several indexes for performing such an
analysis; in this research, the Local Indicator of Spatial Association (LISA) [61] was adopted according
to the following formulation:

Ii =
(Xi − X)

S2
X

N

∑
j=1

(wij(XJ − X)). (8)

LISA is often defined as the local Moran and provides a measure of local autocorrelation for each
geographic object Ii. The Moran index is proportional to the sum of LISA indexes for each observation:

∑
i

Ii = Γ ∗ I. (9)

The spatial properties of global and local indicators of spatial autocorrelation were analyzed using
a weight matrix wij [62], defined as the formal expression of dependence between observations [63].
This matrix is based on the contiguity concept and, according to O’ Sullivan and Unwin [64], it is
possible to consider the chess metaphor with respect to the rook, bishop, and queen movements.

3. Results and Discussion

3.1. Potential

Within the POTENTIAL submodel, a set of 12,000 sampling locations have been used to analyse
predictors and estimate proper coefficients for the multilevel logistic regression. The boundaries
of Italian regions have been included as group level indicator to consider the different behaviours
among the different jurisdictional areas of the country. By using a backwards elimination stepwise
analysis [65,66], only significant and uncorrelated predictors have been included in the final model,
i.e., the one resulting in a lower AIC. A Monte Carlo approach has been used to verify the robustness
of this procedure, repeating both the sampling and the model selection 100 times. The fixed effects
calculated for the best model are reported in Table 1.

Table 1. Results of the selected generalized linear mixed model fit by maximum likelihood
(Laplace Approximation)—fixed effects.

Estimate Std. Error p-Value

Intercept (varies by region) −4.558 0.137 <0.001
Development pressure 0.270 0.006 <0.001

Slope −0.049 0.009 <0.001
Percentage of Forests 0.005 0.002 0.050
Distance from nodes 0.092 0.032 0.004

Travel time 0.039 0.008 <0.001

3.2. Demand

The DEMAND submodel returns the output as a graph representing the relationship between
population and urban growth. This relationship was measured for each of the 20 Italian regions
through linear regression based on the number of developed cells in the raster maps for the years 1990,
2000, and 2012; the population for the same years; and a projection of the population in each region
(Figure 2) up to the year 2035. Hence, the linear regression estimates the number of new developed
cells expected in the future scenario. In those regions where the Census projections indicate a reduction
in the resident population, the number of expected new developed cells was set to zero. Therefore,
in those regions, the model did not generate any simulations, which highlights that this model is
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specifically useful for estimating the share of urban growth due to the real demand, even if this means
not considering a number of other phenomena, such as real estate market dynamics.

Figure 2. The study area and the subnational boundaries of the regions.

Sicily, Sardinia, Puglia, Calabria, Basilicata, Molise, and Liguria are therefore totally or almost
totally excluded from the simulation. Specifically, the last four regions are expected to have no urban
growth at all. This means that, as estimated by this model, there will be no new land development
in most of the southern areas of Italy. This is because these regions are characterized by an inversely
proportional relationship between the number of inhabitants and the number of developed cells due
to a decrease in the resident population. However, an analysis of past trend data highlights the strong
push toward the extension of the urbanized areas that has occurred in Southern Italy, particularly
in Basilicata (7.9%), Molise (7.8%), and Apulia (8.1%), during the period 2001–2011 [67]. Moreover,
a recent analysis by the Italian Institute for the Protection and Environmental Research (ISPRA) showed
further increases in the urbanized areas in these regions of 0.1%, 0.21%, and 0.25%, respectively, in the
2016–2017 period alone [68].

Figure 3 shows the projection of both the urbanized cells and the resident population for the
period 2012–2035. The latter was measured for three scenarios based on low, medium, and high rates
of population growth. Only the high scenario was tested to calibrate the model to emphasize the
relationships between urban growth and population dynamics as considered by the FUTURES model.
According to this high scenario, the global population in Italy will reach 67.3 million by 2051, which
implies an increase of 8.2 million since 2007. Figure 3 also shows the high correlation between urban
and population growth as indicated by the application of FUTURES. Despite being an expected output,
as both urban and population growth are specified to be correlated in the input space of the model,
this evidence shows once again how FUTURES overestimates the importance of population dynamics
in the simulation process, while there are plenty of other socioeconomic variables that the model does
not consider or whose contribution is underestimated. As an example, between 2001 and 2009, new
building permits in Italy increased by 6.7%, while the population only grew by about 5.3%.
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Figure 3. Projection of urban growth made through FUTURES compared to the projections of
population growth made by the Italian National Census Institute (ISTAT). Only the high-population
scenario was considered in the simulation.

3.3. Patch-Growing Algorithm

The main output of the model is a map representing urbanized areas for future scenarios; this
map is produced through the Patch-Growing Algorithm, which stochastically combines the output
of the DEMAND and POTENTIAL submodels. In this application, the two parameters discounted
factor and compactness (mean) have been selected through the procedure described in [30], resulting
in values of 0.3 and 0.2, respectively. It is important to highlight that the stochastic behaviour of PGA
is taken into account by reporting the mean value measured over several independent model runs.

A map of urban areas for the year 2035 was produced. For the period 2012–2035, FUTURES
envisages an overall development of urban areas of 3316 km2. Five Regions exceed 300 km2 of
new urban areas. The region with the highest quantity of land take is Tuscany with 469.190 km2,
corresponding to 14.15% of the entire urban area. Tuscany is followed by Lombardy, with an estimated
development of 423.910 km2, Emilia Romagna with 414.990 km2, Veneto with 374.000 km2, and, finally,
Piedmont with 304.720 km2 of new urban areas (Figure 4). A significant development is also expected
in Lazio, whose development covers 8.87% of the total projected development. In Southern Italy,
Apulia stands out with 247.470 km2, corresponding to 7.76% of total expected development.



Sustainability 2018, 10, 4838 10 of 21

Figure 4. Variation in the extension of urban areas for the period 2012–2035 at the regional scale.

The analysis of the results at the Provincial/Metropolitan scale is also interesting (Figure 5).
With 146.700 km2, the Metropolitan Area of Rome is the one in which the highest urbanization is
expected, covering 4.42% of the total development expected for the period 2012–2035. The Metropolitan
Area of Rome is followed by the Metropolitan Area of Turin with 106.56 km2, i.e., 3.21% of the projected
total development. The development is estimated to be between 80 km2 and 73 km2 in the Metropolitan
Area of Florence; the Provinces of Verona, Bologna, and Vicenza; and the Metropolitan Area of Milan.
This is followed by the Provinces Treviso, Udine, Perugia, Lucca, Lecce, Brescia, and Bari, ranging
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from 70 km2 to 60 km2. Many provinces of Southern Italy, such as Potenza and Matera, are completely
excluded from the simulation due to their declining populations.

Figure 5. Variation in the extension of urban areas in the period 2012–2035 at the Provincial/Metropolitan
Area scale.

Considering the single municipalities, Rome is estimated to have the largest area of new
urbanization at 59.170 km2, which covers as much as 4.602% of the municipal area (Figure 6). Another
very widespread municipality is Ravenna, currently 653.259 km2, which will grow by about 12.920 km2,
occupying an extra 1.978% of the municipal territory. It is also worth noting that some minor
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municipalities, such as Castelmarte in the Province of Como, which extends for only 1.974 km2

and is expected to develop 0.780 km2, corresponding to 39.714% of the municipal territory. A similar
situation is found for the municipality of Casandrino in the Province of Naples, which is expected to
develop 26% of the total municipal area (Figure 7).

The application of FUTURES is of great interest in the urban and spatial planning field, as it
integrates demographic features into the scenario-building process for territorial physical aspects.
This approach is fundamental in Italy; on the one hand, Italy is very close to the origin of migration
and, on the other hand, it has an interest in the important phenomenon of emigration to foreign
countries. Today, these analyses are of great significance because they take into account the rapid
evolution of demographic dynamics. While in the past, Italy has been considered a destination in
migratory phenomena, today there are also other types of dynamics [69,70]. According to the 2018
annual report of the Italian Institute of Statistics [71], “the situation of the country”, immigration from
abroad decreased from 527,000 in 2007 to 337,000 in 2017, while emigration abroad has tripled, going
from 51,000 to 153,000, with estimated values of 250,000 for 2018. The same report also highlights
internal migratory flows. In the period between 2012 and 2016, the internal migration from Southern
Italy to the central-northern regions decreased from 132,000 to 108,000; on the contrary, the intensity
of migratory flows from southern regions to foreign destinations has almost doubled, from 25,000
to 42,000. Several models do not take into account this kind of data, while, in this case, the results
contain demographic aspects. For instance, several regions located in the south are excluded from the
simulation because of the reduction in population. This means that urban growth is highly unlikely.
Indeed, the increase in urban areas is mainly concentrated along the coastline, in metropolitan areas,
and in the most competitive places in the country. These analyses are very useful for supporting
decision processes arising from all kinds of plans at the regional and municipality levels. They are also
important for analyzing rent and urban land values in the real estate field [72]. Another important
aspect to consider is how this approach can support planning activities. The Italian experience is
particularly suitable for analyzing the relationship between this simulation and planning documents
because master plans are still oversized in terms of new development zones. More specifically, many
plans have demographic projections calculated based on the period of the greatest population growth,
occurring during the most massive migration from rural to urban areas [73]. The result is a huge
availability of development areas in which development has not been implemented at all for more
than 20 years. On one hand, this situation forces landowners to pay higher taxes for development
rights that probably will never be used. On the other hand, in the most developed areas of the country,
these lands are owned by big companies which use these goods to inflate their accounting budget,
assigning real estate values higher than reality dictates. The application of this model can be useful in
order to support decisions by policymakers to reduce the development zones. This activity is not at all
simple because, in the past, the ownership of transformable land has allowed rapid and substantial
gains. The adoption of this model can support this process, highlighting in a more objective way where
it is better to reduce the development zones and where it is better to keep these areas. These plans
also provide an overabundance of infrastructures in all directions. The potential to identify areas of
possible expansion can allow for the better management of territory, optimizing services.
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Figure 6. Variation in the extension of urban areas in the period 2012–2035 on the municipal scale.
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Figure 7. Urban growth expected through the simulation during the period 2012–2035 in the main
Italian municipalities (from top to bottom and from left to right) Rome, Bari, Milan, Naples, Venice
Padua and Treviso, Florence, Bologna, and Ravenna.

3.4. Local Indicator of Spatial Association

To further understand the significance of the output of the model from a geographical point of
view, a spatial autocorrelation was measured at the municipality level using the LISA. This index
represents a disaggregated measure of the spatial autocorrelation, and it is used to describe the
similarity or the dissimilarity of an areal element in comparison with its neighbors.

The use of local spatial autocorrelation indicators does not highlight the concentration of a
phenomenon, but the extent of homogeneity of a spatial element compared to the contiguous
geographic elements. These indicators are effective in capturing detailed variations in the
analyzed variables.
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Positive values of the LISA index indicate that both the considered element (in this case,
corresponding to a municipality) and its neighbors have high values (H-H) or low values (L-L)
of the attribute for which the LISA was measured. On the other hand, negative values indicate
behaviors of the areal feature that are different from those of its neighbors: the former has a high value
of the attribute while the latter has a low value (H-L combination), or the reverse (L-H). In this case, as
the attribute, we used the variation in urbanized soil for each municipality in the period 2012–2035,
measured in km2. Hence, neighboring municipalities showing similar tendencies toward urbanization
will have positive values of the LISA and will become part of a cluster. Figure 8 shows the result of this
analysis, using a p-value of 0.05 and a z-score < −1.96 or > +1.96 (a mapping of the p-values is provided
in Supplementary material) .

Figure 8. Local Indicators of Spatial Association index measurement of the variation in the extension
of urban areas in the period 2012–2035 at the municipal scale.
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Central Italy shows a high number of clusters having high rates of urbanization (the H-H
combination). On the contrary, the Northern part of the country is mainly unclustered, while the Milan
area is represented by an H-L combination, showing a tendency of having a huge concentration of its
development at the edge of the already existing metropolitan area of the city.

3.5. Model Uncertainty and Soft Classification

Uncertainty plays a primary role in determining the reliability of a model when used as
decision support tool. Several authors discussed the role of uncertainty in land suitability analysis,
landscape planning [74], environmental assessment [75–77], ecosystem services [78] and environmental
changes [79]. Two main issues can be identified when dealing with spatial modelling.

Firstly, the combination of the recent technological advances and of the interdisciplinary approach
typical of urban and spatial planning can lead to an improper use of data. In numerous cases,
geographical analyses are developed using heterogeneous and multi-scale spatial information,
generating high uncertainty in the results. This causes a low reliability of the produced informations
and a weak support in decision-making [80]. For instance, combining data with different accuracy can
produce an error propagation and results can be meaningless or potentially dangerous [81].

Figure 9. Soft classification expressed in terms of development pressure for Italy (left) and a zoom on
the Milan metropolitan area (right). Low values correspond to a lower susceptibility to urbanisation,
while higher values correspond to higher probabilities.

Secondly, uncertainty is intrinsically present in every modelling activity [82]. According to
Molenaar [83], data model processing stage is based on an interaction between models and processes.

Considering the previously-discussed issues, it is clear the role that uncertainty analysis plays in
evaluating the simulation carried out in this paper. The uncertainty in the proposed model is related
to two aspects. On the one hand, the driving variables used to calibrate the model have been taken
from different sources. On the other, the urban maps resulting from the PGA model are the output
of a stochastic hard classification model. For these reasons, it can be extremely useful to consider the
output in terms of probability of urbanisation. This soft classification allows keeping into account
the uncertainty related to the prediction. The use of this approach to measure uncertainty in Land
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Use-Land Cover Change Models is a very common approach in literature [84]. Figure 9 shows the soft
classification in terms of development pressure resulting from the application of FUTURES.

Leung and Andersson [85] has described the relationship between uncertainty and classical
planning theory through four classes, going from a typical Rational Comprehensive kind of plan to a
Strategic one.

The first class is an ideal case where it is possible to build a plan with certain objectives based on
certain analyses. The result is a set of discrete representations of the physical space which correspond
to a set of different values, referring to areas considered homogeneous according to each disciplinary
point of view.

The second class is the case of a plan with crisp boundaries, based on fuzzy analyses. If data are
imprecise, human evaluation and experience are employed. A typical example is the need to give an
answer to a specific problem with certain economic resources.

The third class is very frequent in sector plans (e.g., transport) where the need to achieve widely
flexible results and the possibility to obtain several alternatives correspond to a certainty of data.

The fourth class is the case of the strategic plan that identifies the fundamental issues and purposes
driving the update process. This is a typical cyclic process where all original choices can be modified
and the policy is continually made and re-made, avoiding errors related to radical changes in policy.

Through the soft classification, a richer information is provided to decision-makers, as this map can be
interpreted in terms of susceptibility of a territory to urbanisation. This susceptibility map can be extremely
useful in the development of the Strategic planning as proposed by Leung and Andersson [85].

4. Conclusions

This paper presents the FUTURES model as a powerful cellular automata tool for estimating urban
growth for future scenarios. The main added value of this model when compared to other possible
solutions, which are widely discussed in the literature, is the allowance for deep integration with a
popular GIS tool, such as GRASSGIS. To ensure the proper execution of the model, homogeneous data
must be retrieved for the entire study area to avoid issues during the calibration procedure.

FUTURES could be used as a support tool for the definition of urban plans, as it defines quantities
of transformations consistent with the real demand dictated by the dynamics of the population and
the spatial dimension of the transformations. It also shows a good capacity for reading the prediction
patterns of changes defined according to the system of constraints, attractors, and the presence
of mobility infrastructures. These factors can be chosen by the user in the most appropriate way;
this represents an advantage, as different simulations can be carried out to investigate the consequences
of different scenarios based on a plethora of decision alternatives. As an example, planners could
decide whether or not to include protected areas in the constraint framework in order to compare the
two results of the simulations and understand the impacts of natural asset protection on urban growth.

The model is based on the real demand dictated by the dynamics of the population. In its
application to the Italian urbanization case study, this implies the exclusion of many regions from the
simulation. The trend in the population affects the development dynamics. However, it cannot be
considered the only driving force influencing urban growth, as there are many other factors that affect
development. In FUTURES, demographic trends represent a fundamental index for the estimate of
land take. The latter is a multidimensional concept that is influenced by the expansion of urban areas
and the loss of biodiversity on natural lands caused by land shifts from natural/woodland cover to
agricultural use and by the sealing of natural surfaces. Over the last several decades, these phenomena
have increased much more rapidly than the population in Italy, as well as in other European countries.
Hence, to estimate the land take and to simulate urban growth, it is not sufficient to consider only the
demographic trend as a driving variable. On the contrary, a synthetic index derived from an analysis
of all the social and economic factors affecting urban dynamics and settlement dispersion should be
used as the main predictive variables. Further studies should, therefore, outline ways to define that
index and use it in the simulations carried out using the FUTURES framework.
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