
sustainability

Article

Complex Relationships of the Effects of Topographic
Characteristics and Susceptible Tree Cover on
Burn Severity

Hyun-Joo Lee 1, Yun Eui Choi 2 ID and Sang-Woo Lee 3,*
1 Graduate Program, Department of Environmental Science, Konkuk University, Gwangjin-gu, Seoul 05029,

Korea; hyunjoo-@nate.com
2 Graduate Program, Department of Environmental Science & Ecological Engineering, Graduate School,

Korea University, Seongbuk-gu, Seoul 02841, Korea; choiuni313@korea.ac.kr
3 Department of Forestry and Landscape Architecture, Konkuk University, Gwangjin-gu, Seoul 05029, Korea
* Correspondence: swl7311@konkuk.ac.kr

Received: 2 January 2018; Accepted: 22 January 2018; Published: 24 January 2018

Abstract: Forest fires and burn severity mosaics have profound impacts on the post-fire dynamics
and complexity of forest ecosystems. Numerous studies have investigated the relationship
between topographic variables and susceptible tree covers with regard to burn severity. However,
these relationships have not been fully elucidated, because most studies have assumed linearity in
these relationships. Therefore, we examined the linearity and the nonlinearity in the relationships
between topographic variables and susceptible tree covers with burn severity by comparing linear
and nonlinear models. The site of the Samcheok fire, the largest recorded forest fire in Korea, was used
as the study area. We generated 802 grid cells with a 500-m resolution that encompassed the entire
study area and collected a dataset that included the topographic variables and percentage of red
pine trees, which are the most susceptible tree cover types in Korea. We used conventional linear
models and generalized additive models to estimate the linear and the nonlinear models based on
topographic variables and Japanese red pine trees. The results revealed that the percentage of red
pine trees had linear effects on burn severity, reinforcing the importance of silviculture and forest
management to lower burn severity. Meanwhile, the topographic variables had nonlinear effects
on burn severity. Among the topographic variables, elevation had the strongest nonlinear effect on
burn severity, possibly by overriding the effects of susceptible fuels over elevation effects or due to
the nonlinear effects of topographic characteristics on pre-fire fuel conditions, including the spatial
distribution and availability of susceptible tree cover. To validate and generalize the nonlinear effects
of elevation and other topographic variables, additional research is required at different fire sites
with different tree cover types in different geographic locations.
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1. Introduction

Forest fires significantly impact forest ecosystems by creating unique burn mosaics and are
considered key components of the spatiotemporal dynamics and complexity of forest ecosystems [1–4].
Forest fires are significantly associated with landslides [5], soil microbial processes [6], seed germination
and sprouting [7], live and dead vegetation structure [8,9] and composition [10] and carbon
budgets [11]. In particular, burn severity is a critical factor in understanding the degree of influence
of forest fires on forest ecosystems, post-fire vegetation responses and heterogeneity of vegetation
composition and configuration in burned areas by affecting the availability of seed sources, sprouting
rates, soil humidity, soil nutrients, lights, wind speed, alien plant invasion, tree mortality, animal
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populations and community dynamics [10,12–15] at various spatial and temporal scales. Therefore,
burn severity is the most critical factor in determining the dynamics and complexity of the post-fire
response of a damaged forest ecosystem to a fire event [10,16]. Due to the strong impacts of burn
severity on forest ecosystems, understanding how burn severity is influenced by various environmental
factors during a fire can offer profound insights to minimize economic loss, preserve forest ecosystems,
practice fire-resilient forest management strategies and plan effective post-fire restoration for planners
and decision makers. Although numerous studies have been conducted, the relationships between
burn severity and environmental factors remain unknown due to the dynamics and complexity of these
relationships and interactions among environmental factors during fire events. Considering that recent
trends in warming and increasing aridity could increase the probability of weather associated with
severe fires [17], there is increasing concern over the management of burn severity and environmental
factors escalating fire risks.

The three primary factors (i.e., the fire triangle) affecting burn severity are topography
(e.g., elevation, slope, aspect, topographic position, solar radiation and topographic wetness), weather
(e.g., temperature, relative moisture, wind speed, drought factor and regional climate) and fuel
(e.g., forest cover type, composition and configuration of forest, shrubs, heterogeneity and tree
density) [10,18]. Some studies have shown that topographic characteristics are the most significant
variables affecting burn severity. For example, Fang et al. [19] reported that topography was one of the
most significant factors explaining burn severity in the boreal forest of the Great Xing’an Mountains,
China. Similarly, Bigler et al. [20] found elevation to be the most significant predictor of fire severity
in Rocky Mountain subalpine forests. To understand the effects of weather on burn severity, two
different types of weather should be considered: climate and fire weather. Climate reflects broad
weather patterns and is closely associated with long-term annual and seasonal variation in precipitation,
temperature, relative moisture, solar radiation, drought and wind on a regional scale [19,21]. In general,
higher temperatures, lower humidity and dry conditions create environments that are more susceptible
to forest fires due to decreased fuel moisture and the lower energy required for pre-heating [22].
Meanwhile, fire weather reflects site-specific weather conditions during burning incidents and there is
an abundance of evidence indicating that fire weather conditions (i.e., temperature, relative moisture,
wind speed and drought factor) are the most critical factors in explaining many fire characteristics
such as ignition, spread and size and burn severity [20,23,24]. Based on fire studies, forest fires are
highly selective [3]. For example, less susceptible forest cover types (e.g., olive groves) can constrain
fire spread and lower the burn severity, whereas susceptible forest covers (e.g., aspen, red pine and
birch) can enhance the spread of fire and burn severity [3]. Moreover, many fuel traits directly impact
burn severity. Some of the primary traits of fuels related to burn severity are spatial distribution [10],
density [25–27], moisture [28], fuel type [3,29] and pre-fire forest heterogeneity [10].

Reviewing the literature on fire with regard to variables affecting burn severity reveals the
complexity of these relationships. Despite the large body of research, the influence of the fire triangle
on burn severity remains poorly understood due to the complex nature of the relationships. In the
literature, some of this complexity is due to interactions among topography, weather and fuel and their
spatially varying effects [30]. Simultaneously, this complexity is partially due to potential nonlinear
relationships between burn severity with topography, weather and fuels [3,19].

From this perspective, we examined the presence of nonlinear relationships of topographic
characteristics and fuels with burn severity. Several studies have suggested the possibility of nonlinear
relationships between burn severity and topography, weather and fuels. For example, Lee et al. [3]
reported the possibility of nonlinear relationships between burn severity and elevation and slope in
the hilly forest of Samcheok, Korea. Recently, Fang et al. [19] also reported nonlinear response curves
of the top three explanatory variables for both fire size and fire severity models in the boreal forest of
the Great Xing’an Mountains, China. The underlying rationale of this study was that the complexity
and dynamic effects of the fire triangle were in part due to the presence of nonlinear relationships.
In this study, we focused on topographic characteristics and susceptible tree cover type. Weather
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conditions were not considered because we examined only one study site and all analysis units shared
the same climate conditions; additionally, the local fire weather conditions within the study areas
were not available. Despite these limitations, the results of this study expand our knowledge of
the relationships of burn severity with topography and fuels and help to clarify the nature of these
relationships, which is crucial for informing forest managers and policy makers.

2. Methods and Materials

2.1. Study Site Characteristics and Samcheok Forest Fire

Samcheok is located in the eastern region of the Korean Peninsula and borders the East Sea.
The study area experiences a typical monsoon climate, characterized by substantial variation in
precipitation and temperature. In particular, precipitation is concentrated (about two-thirds of the
annual total) in summer and there is a dry season in spring and fall. Overall, the average annual
temperature and precipitation are 12.1 ◦C and 1342 mm, respectively [30]. The fire history indicates that
75% of forest fires in Korea occur in spring (March–May) due to dry and windy weather conditions [31].
Several studies have documented the complex topography of the site (e.g., [3,30]). Before the fire,
65% of the site was dominated by Japanese red pine (Pinus densiflora), which is the most susceptible
forest cover type in Korea. The forest had an average age of approximately 30 years and was at
the secondary succession stage, following the Korean War in the early 1950s [3]. The Samcheok fire
occurred on 7 April 2000, starting from a garbage burn site and burned for 9 days. It is the largest forest
fire recorded in Korea since 1960 [32]. During the fire event, the maximum wind speed was 26.8 m/s
and the minimum relative humidity was 7%, representing fire-prone conditions. Such susceptible
forest cover type and fire-prone weather conditions resulted in 16,151 ha of unique burned mosaic
in one of the most preserved landscapes in Korea (Figure 1). Several government agencies including
the Korea Fire Service (KFS) [31], National Institute of Forest Science, Ministry of Environment and
a number of private institutions have set long-term monitoring sites in the area to monitor post-fire
changes in various biotic and abiotic factors such as vegetation, soil, stream water quality, insects,
butterflies, birds and mammals.
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Figure 1. Location of the study site (37°7′42″–37°20′34″ N, 129°11′24″–129°22′32″ E) and boundary of 
the study site (white line). The fire was ignited in the northeastern corner of the study area on 7 April 
2000 and burned 16,151 ha of densely forested areas for 9 consecutive days. The east side of the study 
site bordered the East Sea. The west side comprised relatively high-elevation areas (~850 m) with steep 
slopes (>25°), while the east side comprised relatively low elevations (<100 m) with mild slopes (<5°). 

2.2. Spatial Unit of Analysis and Mapping the Percentage of Red Pine Trees  

To capture the spatial distribution of Japanese red pine trees, topographic characteristics (i.e., 
elevation, slope, topographic wetness index [TWI] and solar radiation index [SRI]) and burn severity 
in the study area, we divided the study area into 500-m grid cells. We generated 802 grid cells (500 
m) covering the entire study areas in the computer-aided draft (CAD) of Autodesk and converted the 
grid CAD file into a polygon shape file using the geographic information system (GIS). A unique 
identification code was assigned to each grid cell and the mean value of all selected variables within 
each grid cell was computed with GIS using the overlay function. Previous studies have shown that 
this spatial resolution can effectively capture complex topographic characteristics and burn severity 
(e.g., [10,30]). Forest fire is very selective to forest cover type. Japanese red pine is the most susceptible 
forest cover type in Korea and other forest cover types including mixed forest or broad-leaved forest 
have very weak relationships with burn severity [3,30]. The high susceptibility of red pine trees has 
been reported in other geographic locations (e.g., [20,33]). Red pine is the dominant forest cover type 
in Korea. Therefore, the primary fire suppression strategies of the KFS have involved the 
spatiotemporal management of red pine and we only considered red pine as the fuel type in 
explaining the variance of burn severity. We used the National Forest Classification Digital Map 
(NFCDM) released in 2000 by the Korea Forest Service (KFS) to compute the percentage of red pine 
trees within each grid cell. The NFCDM was originally a polygon shape file, which we converted into 

Figure 1. Location of the study site (37◦7′42′ ′–37◦20′34′ ′ N, 129◦11′24′ ′–129◦22′32′ ′ E) and boundary
of the study site (white line). The fire was ignited in the northeastern corner of the study area on
7 April 2000 and burned 16,151 ha of densely forested areas for 9 consecutive days. The east side of
the study site bordered the East Sea. The west side comprised relatively high-elevation areas (~850 m)
with steep slopes (>25◦), while the east side comprised relatively low elevations (<100 m) with mild
slopes (<5◦).

2.2. Spatial Unit of Analysis and Mapping the Percentage of Red Pine Trees

To capture the spatial distribution of Japanese red pine trees, topographic characteristics
(i.e., elevation, slope, topographic wetness index [TWI] and solar radiation index [SRI]) and burn
severity in the study area, we divided the study area into 500-m grid cells. We generated 802 grid cells
(500 m) covering the entire study areas in the computer-aided draft (CAD) of Autodesk and converted
the grid CAD file into a polygon shape file using the geographic information system (GIS). A unique
identification code was assigned to each grid cell and the mean value of all selected variables within
each grid cell was computed with GIS using the overlay function. Previous studies have shown that
this spatial resolution can effectively capture complex topographic characteristics and burn severity
(e.g., [10,30]). Forest fire is very selective to forest cover type. Japanese red pine is the most susceptible
forest cover type in Korea and other forest cover types including mixed forest or broad-leaved forest
have very weak relationships with burn severity [3,30]. The high susceptibility of red pine trees has
been reported in other geographic locations (e.g., [20,33]). Red pine is the dominant forest cover type in
Korea. Therefore, the primary fire suppression strategies of the KFS have involved the spatiotemporal
management of red pine and we only considered red pine as the fuel type in explaining the variance
of burn severity. We used the National Forest Classification Digital Map (NFCDM) released in 2000
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by the Korea Forest Service (KFS) to compute the percentage of red pine trees within each grid cell.
The NFCDM was originally a polygon shape file, which we converted into GRID file format with
a 50-m resolution, from which the percentage of red pine trees within each grid cell was computed.

2.3. Mapping Topographic Characteristics

The topographic characteristics of the study site are very complex at small and intermediate
scales (Figure 1). In fire research, various indicators have been adopted to delineate topographic
characteristics. The most common topographic indicators used in studies include elevation, slope,
aspect, topographic wetness index (TWI), solar radiation index (SRI), topographic position index,
elevation relief ratio, heat load index, topographic roughness index and gullies (e.g., [19,34–41]).
Because there is no clear evidence indicating which variables are more effective in delineating
topographic characteristics, we tried to adopt indicators that have proven to be effective in capturing
the complex topographic characteristics of our study areas in previous studies (e.g., [3,10,30]).
From an implementation perspective, simple indicators are better for forest managers and decision
makers who might be unfamiliar with complex topographic indicators. At the same time, most
topographic indicators are strongly correlated to each other, resulting in multicollinearity and using
many indicators does not necessarily enhance estimated model performance. Therefore, we focused
on major topographic characteristics including altitude, steepness, topographic type (i.e., valley/ridge
type) and the effects of incident solar radiation on the surface or fuels.

Based on these considerations, the selected indicators for the study included elevation (m), slope
(◦), TWI and SRI. Elevation (m) and slope (◦) are direct measurements that delineate topographic
characteristics and have shown strong relationships with burn severity in many fire studies
(e.g., [10,19,20,30,42,43]). TWI and SRI are relative measures of topographic characteristics. TWI is
a relative measure of the long-term soil moisture availability based on local slope and upslope areas
draining at a certain point (see [44,45]). Slope aspect is an important factor for understanding potential
direct incident radiation and temperature at a given location. However, using a simple aspect is
somewhat problematic because it cannot distinguish between 1◦ and 360◦ [38]. Therefore, the SRI
was proposed to compute the potential annual direct incident solar radiation at a given point without
the limitations of simple aspect (see [46]). A study on formation of the boundary of burned areas
found TWI to be a significant factor in higher-elevation areas and SRI was an important factor in areas
with low susceptible forest covers [10]. Therefore, TWI and SRI appear to have important roles in fire
behavior under somewhat different local conditions. Most forest fire studies have used topographic
analysis and computing topographic index based on digital elevation models (e.g., [19,47]). Similarly,
we used a digital elevation model to analyze the mean elevation, slope, TWI and SRI within the 500-m
grid cells.

2.4. Mapping Burn Severity

Even though the term fire severity has been used widely and interchangeably with burn severity
in the literature [26,48] and the two phenomena share some commonalities in fire and post-fire effects,
there are critical differences between them. For example, fire severity is associated with active fire
characteristics during the fire event and the immediate post-fire effects on the local environment.
Meanwhile, burn severity incorporates both short- and long-term post-fire effects on local and regional
environments [27]. In this study, burn severity referred to the degree of environmental change
(i.e., change in vegetation reflectance) caused by fire [26,30,48], allowing burn severity to be measured
based on a number of variables. One of the most common variables used to measure burn severity
is the vegetation consumed by fire in the damaged area, which we adopted for burn severity in this
study. Burn severity refers to the degree of change in vegetation reflectance captured in pre- and
post-fire satellite images in this study. The difference in the near-infrared reflectance of satellite images
taken pre- and post-fire is the delta normalized burn ratio (dNBR), which has been used to capture
burn severity effectively in many forest fire studies (e.g., [9,33,49]). A number of studies have shown
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that dNBR very effectively captures burn severity in the same study areas and have reported a strong
association between dNBR and the field-measured composite burn index (e.g., [10,30]). We used
Landsat Thematic Mapper satellite images with a 30-m resolution taken on 7 May 1999 (pre-fire) and
5 May 2000 (post fire) to compute the dNBR and the satellite-derived burn severity was classified into
six classes (extreme severity, very high severity, high severity, moderate severity, low severity and
unburned) using the Remote Sensing Application Center [49] criteria. Then, burn severity derived
from satellite images was validated with field-measured semi-composite burn index values (r = 0.832,
p < 0.01 [3]). Finally, we computed the mean burn severity within each 500-m grid cell for the analysis.

2.5. Linear and Nonlinear Model Estimation

In forest fire studies, simple correlations and linear regression models are the most common
conventional approaches to investigate the relationships between burn severity and environmental
variables, relying on the underlying assumption of a linear relationship. However, this assumption
is highly questionable [10,50]. Linear correlation and regression are useful when quantifying the
magnitude, direction and significance of the relationships between burn severity and environmental
variables such as topographic variables and fuel types. However, conventional linear approaches may
not accurately represent the true nature of the relationships between burn severity and environmental
variables, which could mislead forest managers and policy makers. To avoid nonlinearity issues in
dealing with the fire regime and environmental variables, a few approaches have been proposed
such as artificial neural networks [51], stochastic processing [52] and spatial clustering [53]. Recently,
flexible regression models, such as generalized additive models (GAMs; [54]), have been proposed to
handle the nonlinear effects of continuous covariates on the response variable [50,55].

We used the R-package (R Core Development Team) to estimate the linear and nonlinear models
of the relationship between burn severity with topographic variables and red pine trees. We adopted
the GAM in the R-package to fit nonlinear models, as GAM is very flexible and can provide an excellent
fit for nonlinear relationships [56]. It is a multiple regression model in which the additive nature
of the model is maintained but the linear regression lines are replaced by nonparametric functional
curves with multiple parameters. An interesting feature of GAM is that it allows determination of the
shape of the response curves from the data instead of fitting an a priori parametric model, making it
data-driven instead of model driven [57]. GAMs have been widely applied to investigate nonlinear
relationships between dependent and non-explanatory variables in various fields of study such as
plant and aquatic ecology (e.g., [58]) and water quality (e.g., [59]), as well as for nonlinear relationships
among biotic and bon-biotic variables in environmental settings due to complex interactions between
environmental factors. Many studies have identified nonlinear relationships among components of
forest ecosystems (e.g., [3,50,60–65]). In particular, Lee et al. [3] reported that burn severity might be
related to topographic characteristics such as elevation and slope. In their study, nonlinear models
performed much better than linear models in explaining the variances of burn severity with elevation
and slope due to the spatial variances in fuel moisture, temperature, precipitation and canopy bulk
density [66]; the compounding effects of fuels and the chimney effect [22]; and water potential [67].

The general linear multiple regression model (LM) for burn severity with topographic variables
and susceptible fuel is:

LMbs = α + β1 (elevation) + β2 (slope) + β3 (TWI) + β4 (SRI) + β4 (percentage of red pine trees) + ε (1)

where LMbs is burn severity; α is the intercept; βi is the coefficient of elevation, slope, TWI, SRI and
the percentage of red pine trees; and ε is the error term. In this equation, βi represents the linear
contributions of elevation, slope, TWI, SRI and the percentage of red pine trees to burn severity.
However, the GAM assumes that the contribution of each variable varies over the range of each
variable, which can be represented by a function instead a single coefficient. Applying this assumption
to Equation (1) yields the following conceptual equation of GAM for burn severity:
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g (GAMbs) = α + f 1 (elevation) + f 2 (slope) + f 3 (TWI) + f 4 (SRI) + f 4 (red pine trees) + ε (2)

where g is the unknown identity link; GAMbs is the burn severity; α is the overall intercept; fi is the
unknown smooth functions of elevation, slope, TWI, SRI and the percentage of red pine trees; and ε
is the error term. In this context, the GAM for burn severity is the sum of the functions of elevation,
slope, TWI, SRI and the percentage of red pine trees within each grid cell. Therefore, each variable can
have varying coefficients defined as a function and the contributions of each variable to burn severity
can differ among grid cells depending on the settings of the topographic characteristics (i.e., elevation,
slope, TWI and SRI) and susceptible fuel (i.e., percentage of red pine trees).

We estimated the LM and nonlinear GAM using the R-package to explain the variances in burn
severity with topographic characteristics (i.e., elevation, slope, TWI and SRI) and susceptible fuels
type (i.e., percentage of Japanese red pine trees). Then we compared the performance of the two
estimated models using the coefficient of determination (R2), Akaike’s information criterion (AIC) and
the Bayesian information criterion (BIC). In general, models with higher R2 values explain the variance
of the explanatory variables better than models with lower R2 values. Similarly, the AIC represents
the relative likelihood of delineating the true nature of the relationships among variables and smaller
AIC values represent a higher likelihood of explaining the nature of the data than other models with
higher AIC values; therefore, larger AIC values for models are associated with a lower probability [59].
Despite its usefulness and widespread use, AIC has been criticized for its tendency to select overly
complex models [68]. In addition, AIC is inconsistent and neglects the sampling variability of the
parameters [69]. As an alternative, BIC can be used as an indicator of model selection without these
problems [68–70]. The BIC value of a model is an estimate of a function of the posterior probability
that the model is true; thus, lower BIC values indicate that a model is more likely to be the true model.
Despite their different theoretical backgrounds, benefits and drawbacks, lower AIC and BIC values
both indicate better model performance in a practical sense.

3. Results

3.1. Descriptive Statistics and Spatial Distribution

The distribution of burn severity at the Samcheok site followed a near-normal distribution,
with a large number of observations around the mean value (mean = 3.88, standard deviation = 0.66).
Only 2 grid cells experienced low burn severity (<2), whereas 26 grid cells experienced very high
severity and extremely severity. The majority of grid cells were categorized as high severity, moderate
severity and low severity. Previous studies have documented the complex topography of the study
area (e.g., [3,10,30]). The maximum and minimum elevations of the study areas were 849.5 m and
0.0 m, respectively. Some parts of the damaged area shared a boundary with the East Sea and there
was great variance in elevation (Figures 1 and 2). However, the distribution of elevation and slope
differed substantially. The observed elevation showed a left-skewed distribution (skewness = 0.825,
kurtosis = −0.25), whereas the slope showed a somewhat normal distribution (skewness = −0.235,
kurtosis = −0.421). The TWI and SRI showed somewhat opposing distribution shapes, in which
TWI had a left-skewed distribution (skewness = 0.833, kurtosis = 1.25) and SRI had a right-skewed
distribution (skewness = −0.53, kurtosis = 0.03). The mean TWI and SRI values were 2.45 and 0.88,
respectively. Interestingly, the percentage of red pine trees within the grid cells showed a very different
distribution than the other variables (Figure 3). In total, 61 grid cells (7.8%) had no pine trees, whereas
77 grid cells were entirely covered with red pine trees (9.9%). The mean percentage of red pine trees
within a grid was 59.02, which suggests a high pre-fire dominance of red pine trees in the study area.
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Figure 2. Histograms of the observed variables: (a) burn severity, (b) elevation (m), (c) slope (◦),
(d) topographic wetness index (TWI), (e) solar radiation index (SRI) and (f) the percentage of red pine
trees (%). Burn severity, slope, TWI and SRI exhibited near-normal distributions, whereas elevation was
left-skewed. Interestingly, the distribution of the percentage of red pine trees showed that the frequency
of extreme values at the minimum (0%) and maximum (100%) values were very high, indicating high
variance of red pine trees over the study area.

3.2. Correlation Analysis and Scatter Plots

The results of the correlation analyses and scatter plots indicated a strong association of burn
severity with topographic characteristics and percentage of red pine trees. Burn severity was negatively
correlated with elevation (r = −0.25, p < 0.01) and TWI (r = −0.15, p < 0.01) and positively correlated
with the percentage of red pine trees (r = 0.47, p < 0.01) (Table 1). Burn severity was not significantly
correlated with slope or SRI. However, the scatter plots in Figure 3 were strongly suggestive of
nonlinear relationships between burn severity and elevation and slope. The scatter plot between burn
severity and the percentage of red pine trees seemed to show a linear relationship. Correlation analysis
indicated that burn severity was higher in low areas covered with more red pine trees. Elevation and
slope showed a high positive correlation (r = 0.69, p < 0.01) but the shape of the scatter plot suggested
the presence of a nonlinear relationship between elevation and slope. Elevation showed a strong
negative correlation with the percentage of red pine trees (r = −0.42, p < 0.01), which suggests that red
pine trees were more common in lowland areas. However, it was unclear whether the relationship was
linear or nonlinear based on the shape of the scatter plot (Figure 4). Simultaneously, the percentage of
red pine trees showed a negative relationship with slope (r = −0.12, p < 0.01), which suggests that mild
slopes were likely covered with more red pine trees than steep slopes. There was a strong negative
correlation between elevation and TWI (r = −0.57, p < 0.01), which suggests that lowlands likely had
higher wetness values. The scatterplot between elevation and TWI appeared as a gently curved shape,
which suggests a nonlinear relationship between elevation and TWI. In addition, TWI showed a strong
negative correlation with slope (r = −0.65, p < 0.01), which indicates that areas with steep slopes
might have low TWI values. The shape of the scatter plot between TWI and slope appeared to be
relatively linear.
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Table 1. Correlations among observed variables, including burn severity, elevation (m), slope (◦),
Topographic Wetness Index (TWI), Solar Radiation Index (SRI) and the percentage of red pine trees (%).
Burn severity was negatively correlated with elevation and TWI and positively correlated with the
percentage of red pine trees.

Variables Elevation (m) Slope (◦) TWI SRI Red Pine (%)

Burn severity −0.25 ** −0.04 −0.15 ** 0.04 0.47 **
Elevation (m) 0.69 ** −0.57 ** −0.14 ** −0.42 **

Slope (◦) −0.65 ** −0.37 ** −0.12 **
TWI 0.21 ** −0.04
SRI 0.15 **

n = 802. ** p < 0.01.

Overall, the results presented in Table 1 suggested that the topographic characteristics, percentage
of red pine trees and burn severity were closely associated. The percentage of red pine trees was closely
associated with elevation and TWI showed a strong association with elevation and slope, suggestive of
multicollinearity among elevation, slope and TWI. The comparison of the correlations and scatter plots
provided interesting insights into the relationships of burn severity with topographic characteristics
and red pine trees. The scatter plots in Figure 3 suggested the high possibility of the presence of
a nonlinear relationship between burn severity and some of the observed variables, which did not
appear to be significant in the correlation analysis. Because correlation analyses delineate linear
relationships among variables, simple correlation analyses were not sufficient to capture the true
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nature of burn severity with the topographic characteristics and percentage of red pine trees at the
Samcheok fire site.

3.3. Estimating Simple LMs and GAMs

To examine the causal relationships of the topographic variables and percentage of red pine trees
with burn severity, we estimated LMs and GAMs for each non-explanatory variable (i.e., elevation,
slope, TWI, SRI and pine trees) separately. Simple LMs and GAMs of each variable were compared
using the R2, AIC and BIC values to determine whether nonlinear relationships were present between
each variable and burn severity. If the GAM outperformed the LM in explaining burn severity,
the presence of a nonlinear relationship between non-explanatory variables (i.e., topographic variables
and percentage of red pine trees) and the explanatory variable (i.e., burn severity) was assumed. Table 2
summarizes the estimated simple LMs and GAMs. The results strongly indicated that the GAMs of
all topographic variables outperformed the LMs in terms of R2, AIC and BIC values. In particular,
the GAM (R2 = 0.23, AIC = 1,427.9, BIC = 1,467.7) of elevation performed much better than the LM
(R2 = 0.06, AIC = 1581.1, BIC = 1595.5). Similarly, the GAM (R2 = 0.10, AIC = 1550.5, BIC = 1598.4) of
slope showed a better performance than the LM (R2 = 0.00, AIC = 1630.8, BIC = 1644.8). The GAMs
of TWI and SRI outperformed the respective LMs. However, the low R2 values of both the GAMs
and LMs of slope, TWI and SRI indicated that their influences on burn severity were modest at best.
Among the topographic variables, elevation appeared to have the highest influence on burn severity.
However, the influence of elevation on burn severity was not constant and varied over the elevation
range (i.e., it was nonlinear). Interestingly, the R2, AIC and BIC values of the LM and GAM of the
percentage of red pine trees were almost identical, which did not support the presence of a nonlinear
relationship. In summary, the percentage of red pine trees was linearly associated with burn severity,
while elevation showed a significant nonlinear relationship with burn severity. Slope, TWI and SRI
also showed modest nonlinear relationships with burn severity.

Table 2. Estimated simple LMs and GAMs. The low F-values of the estimated LMs of slope and SRI
indicated that the estimated simple LM models were not significant. No differences in the effects of red
pine trees on burn severity were observed between the LM and GAM. The estimated models of red
pine trees were almost identical in terms of F-value, adjusted R2, AIC and BIC.

Variable
Elevation (m) Slope (◦) TWI SRI Red Pine (%)

LM GAM 1 LM GAM 1 LM GAM 1 LM GAM 1 LM GAM 1

F-value 52.42 ** 31.25 ** 1.63 10.88 ** 17.89 ** 10.87 ** 1.52 5.05 ** 223.4 ** 223.4 **
Adj. R2 0.06 0.23 0.00 0.10 0.02 0.05 0.00 0.04 0.22 0.22

AIC 1581.1 1427.9 1630.8 1550.5 1614.7 1593.6 1630.9 1603.1 1434.8 1434.8
BIC 1595.5 1467.7 1644.8 1598.4 1628.7 1616.3 1644.9 1642.7 1448.9 1448.9

* p < 0.05. ** p < 0.01. 1 Link function = identity.

Figure 4 presents a graphical representation of the smooth functions of each topographic variable.
Elevation and TWI had relatively simple nonlinear relationships with burn severity, whereas slope
and SRI have relatively complex nonlinear relationships with burn severity. The smooth function
of elevation (Figure 4) could be classified into two rough regions: a positive influence region and
negative influence region. In Region 1, low elevations showed escalated burn severity and the steep
positive function line (i.e., solid line in the middle of the shaded area) suggested that elevation had
strong positive impacts on burn severity within the region. However, the influence of elevation on
burn severity in Region 2 gradually changed towards a negative influence, which suggests that burn
severity decreased with increasing elevation. Compared to elevation, the slope showed a more complex
smooth function, which changed directions multiple times (Figure 4). Slope lowered burn severity
in Regions 1 and 3 but increased burn severity in Regions 2 and 4. However, only a small number
of observations were found in Regions 1 and 4 and their confidence intervals were relatively wide,
suggesting that the direction of the influence of slope on burn severity might not be highly significant.



Sustainability 2018, 10, 295 11 of 20

The smooth function of TWI appeared to show a relatively simple, positive influence at low TWI
values (Region 1) and a negative influence at high TWI values (Region 2). The smooth function of SRI
could be classified into three regions: Region 1 (negative influence), Region 2 (positive influence) and
Region 3 (negative influence). Notably, Region 1 (negative effect) and Region 4 (positive effect) in the
smooth function of slope and Region 1 (negative effect) in the smooth function of SRI were unlikely
to be overestimated, because there were not many cases and their R2 values were extremely low
(Table 3). Overall, the smooth functions of the topographic variables revealed inconsistent influences of
topographic characteristics on burn severity, which varied by elevation, slope, TWI and SRI. Elevation
showed the strongest nonlinear effects on burn severity. However, the effects of slope, TWI and SRI
on burn severity were modest at best. By contrast, the susceptible forest cover type (i.e., red pine
trees) showed a linear relationship with burn severity. This emphasizes the importance of controlling
the density and amount of flammable forest cover to minimize burn severity during fire events and
manage fire-resilient forests.
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3.4. Estimating Multiple LM and GAM

We estimated multiple LM and GAM with all of the independent variables (i.e., percentage of
red pine trees, elevation, slope and TWI) to explain the variance of burn severity using the R-package.
Multiple LM based on the least square method can provide the mean effects of an independent variable
on explanatory variables while controlling for other independent variables in the model. Unlike
LMs, GAMs do not provide coefficients for each independent variable because a single coefficient is
pointless if an independent variable is related to explanatory variables in a nonlinear fashion. Instead,
they provide an intercept and the approximate significance of smooth terms (i.e., significance of the
nonlinear relationship, (see [54] for details) of each independent variable with explanatory variables
and deviance explained by the model.
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The best fitting LM was selected using a stepwise method based on the R2, AIC and BIC values.
The estimated best-fit model included elevation, TWI and the percentage of red pine trees, while slope
and SRI did not have significant effects on burn severity (Table 3). The estimated multiple linear model
indicated that the percentage of red pine trees (b = 0.007, β = 0.34, p < 0.01) escalated burn severity
while elevation (b = −0.001, β = −0.27, p < 0.01) and TWI (b = −0.305, β = −0.29, p < 0.01) decreased
burn severity. The F-value of the estimated the best-fit model was 97.63 (p < 0.01) and the low variance
inflation factor (VIF) values of all of the independent variables indicated a lack of multicollinearity
among the variables included in the model. The estimated multiple model explained about 27% of the
variance of burn severity and a large proportion of the variance of burn severity was not explained by
these three independent variables. The estimated multiple best-fit LM was:

LMbs = 4.47 + (−0.001 × elevation) + (−0.31 × TWI) + (0.007 × percentage of red pine) (3)

Table 3. Estimated multiple LM. The estimated model explained about 27% of the variance of burn
severity. In this model, the percentage of red pine trees increased the degree of burn severity, whereas
elevation and TWI decreased burn severity.

Variable
Coefficients

t-Value VIF
b β

Constant 4.47 - 28.84 ** -
Elevation (m) –0.001 –0.27 –6.06 ** 2.09

TWI –0.31 –0.29 –7.16 ** 1.72
Red pine trees (%) 0.007 0.34 9.52 ** 1.42

F-value 97.63 **
Adjusted R2 0.27

AIC 1385.64
BIC 1422.23

** p < 0.01.

In estimated GAMs, the nonlinearity between an independent variable and explanatory variables
can be judged with the expected default frequency (EDF) value of each variable. When the EDF
equals 1, the explanatory variables and independent variable have linear relationships, whereas higher
EDF values are an indication of increasingly nonlinear relationships [54]. The estimated GAM in
Table 4 (family = Gaussian, link function = identity) indicated that all of the topographic characteristics
were related with burn severity in a nonlinear form, whereas the percentage of red pine trees (EDF = 1)
was associated with burn severity in a linear form. TWI (8.33, p < 0.001) and elevation (6.23, p < 0.001)
showed relatively higher EDF values, suggestive of a strong nonlinear relationship with burn severity.
Among the topographic variables, the slope appeared to have the lowest EDF value (1.95, p < 0.001),
which indicates a relatively less nonlinear relationship with burn severity. The EDF of the percentage
of red pine trees was 1, which indicates a linear relationship with burn severity. The estimated GAM
for burn severity was:

g (GAMbs) = 3.64 + (0.004 × percentage of red pine) + s (elevation) + s (slope) + s (TWI) + s (SRI) (4)

where g is the link function (identity) and s is the smooth function of each variable.
The adjusted R2 of the estimated GAM for burn severity was 0.36 (Table 4), which strongly

suggested that the GAM outperformed the LM (adjusted R2 = 0.27, Table 2) in explaining the variance
of burn severity at the Samcheok burn site. In addition, the AIC value of the GAM was 1297.43,
which was considerably smaller than that of the LM (1385.64). The BIC value (1402.22) of the GAM was
also smaller than that of the LM (BIC = 1422.23), indicating that the GAM performed better than the
LM in explaining burn severity. Analysis of variance (ANOVA) was performed to test for significant
differences between the two models in explaining burn severity. The results indicated that there was
a significant difference between the two models in explaining burn severity (Table 5). The ANOVA and
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comparisons of the R2, AIC and BIC of the two models strongly indicated that the GAM performed
better than the LM in explaining burn severity; therefore, topographic characteristics such as elevation,
slope, TWI and SRI had nonlinear relationships with burn severity. However, the percentage of red
pine trees appeared to have a linear relationship with burn severity, which implies that more pine trees
resulted in greater burn severity regardless of the topographic characteristics.

Table 4. Estimated GAM. About 36% of burn severity could be explained by the estimated GAM.
The percentage of red pine trees showed a linear relationship with burn severity, whereas all of the
other independent variables exhibited non-linear relationships with burn severity.

Variable EDF 1 F-Value Sig.

s (Elevation) 6.23 15.52 p < 0.001
s (Slope) 1.95 7.39 p < 0.001
s (TWI) 8.33 8.29 p < 0.001
s (SRI) 2.85 3.32 p < 0.01

s (% Pine) 1.00 25.19 p < 0.001
Constant 3.88 ** 2

Adjusted R2 0.36
AIC 1297.43
BIC 1402.22

** p < 0.01. 1 Array of estimated degrees of freedom for the model terms. 2 Significant based on t-value.

Table 5. ANOVA results indicating a significant difference between the LM and GAM in explaining
burn severity. With higher R2 and smaller AIC values, the ANOVA confirmed that the GAM performed
better in explaining burn severity.

Model Res. Df RSS Df. Sum of Sq. F-Value Pr (>F)

LMbs 798.00 260.99
17.36 37.08 7.45 < 0.001GAMbs 780.64 223.90

4. Discussion

4.1. Linear Relationship of Red Pine Trees with Burn Severity

The results of this study strongly support the findings of previous studies reporting close
associations between red pine trees and burn severity. All of the analysis results in this study including
the correlation analysis (Table 1), estimated LM (Table 2) and GAM (Table 3) strongly suggested
that higher percentages of red pine trees intensified the degree of burn severity, in agreement with
numerous previous studies (e.g., [3,10,18,26]).

In particular, a comparison of the β-values of independent variables in the estimated LM
highlighted that the percentage of red pine trees was the primary determinant of burn severity.
A few studies also reported a stronger association between burn severity and pre-fire forest cover type
than topography or fire weather (e.g., [19,20]). For example, Lee et al. [3] reported that the percentage
of red pine trees was the most significant factor in explaining burn severity compared to topographic
characteristics (i.e., elevation and slope) using regression tree analysis and landscape metrics. In their
regression tree, the percentage of red pine trees appeared as the first-order variable in explaining burn
severity, whereas the spatial configuration of red pine trees and topographic variables were the second
and third order variables, respectively. Interestingly, Fang et al. [19] quantified the relative importance
of fire weather, fuel type and topography at the Great Xing’an Mountain fire site in northeast China.
The authors reported that the spatial extent of burned area was determined primarily by the weather
conditions during the fire event. However, burn severity was mostly influenced by fuel type and the
weather condition during the fire event was a relatively less significant factor of burn severity than
forest cover type and topography. Bigler et al. [20] also reported that the most significant predictors of
burn severity were pre-fire vegetation conditions and elevation in Rocky Mountain subalpine forests.
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In addition, we found that the percentage of red pine trees in the grid cells was linearly associated
with burn severity and a higher percentage of red pine trees in grids cells resulted in higher burn
severity. The study area has complex and dynamic topographic characteristics, with great variation in
elevation, slope, TWI and SRI (Figure 3). According to the KFS [31] fire report, there were substantial
variations in wind speed and relative humidity during the fire event. Despite the variations in
topographic characteristics and changes in weather conditions, forests with a higher percentage of red
pine trees burned more severely than those with fewer pine trees.

However, we were unable to find many studies on the linear and nonlinear effects of susceptible
tree cover types on burn severity. Ríos-Pena et al. [50] modeled the occurrence of wildfires in Galicia,
Spain, using binary structured additive regression. Although they did not directly examine the
nonlinear effects of susceptible fuels on burn severity, their results suggested a linear relationship
between red pine trees and burn severity. In addition, the study suggested that different fuel types had
somewhat mixed linear and nonlinear effects on the occurrence of wildfire, where all tree-based fuels,
including shrubs and wood residuals, had linear effects, while litter under trees had nonlinear effects.
However, they did not provide clear explanations for the differences in the effects among fuel types.
Moreover, elevation showed declining negative nonlinear effects on burn severity and the nonlinear
effects of litter were due to the nonlinear effects of elevation. We observed similar linear effects of
susceptible forest cover types. Considering that the burn process requires consumable fuels, this was
unsurprising and emphasizes the importance of silviculture and forest management for fire-resilient
forests, because fuel characteristics are the only manageable factors in the forest fire triangle (i.e., fuel,
topography and fire weather).

The linear relationship between susceptible forest cover and burn severity in lowering the density
of flammable trees in forests should be a priority in forest management, because the degree of burn
severity is expected to rapidly decrease in response to a decrease in flammable trees in forests. However,
severe fire weather conditions can overwhelm fuel and topographic characteristics due to a stronger
association between weather and fire mechanisms and its higher variability compared to fuels [19,71].
Therefore, a strong linear relationship between red pine trees and burn severity might only occur
under moderate weather conditions.

4.2. Non-Linear Relationship of Topographic Characteristics with Burn Severity

Topographic characteristics have direct impacts on burn severity and fire behavior during
fire events. However, the relationships between burn severity and topographic characteristics
(e.g., elevation, slope and aspect) remain somewhat controversial. For example, Lee et al. [3]
found negative correlations between burn severity and elevation in Samcheok, Korea. Similarly,
Weatherspoon and Skinner [72] reported that higher elevation was associated with lower burn severity
because of cooler temperatures and higher humidity. In contrast, other studies have reported a positive
association of burn severity with elevation and slope [34,73,74]. For example, Fang et al. [19] reported
a strong association of severe burning with high elevations and steep slopes in the boreal forest of
the Great Xing’an Mountains, China. The contradictory results of the effects of topography on burn
severity are in part due to the complex interactions of topography with fuels and fire weather [26,29,74],
spatially varying effects [30] and indirect effects. In addition, topography and burn severity may be
associated in a nonlinear manner [10]. Bigler et al. [20] reported that the local effects of topography
declined with increasingly severe fire weather, particularly across short elevation gradients. Therefore,
it is difficult to generalize or simplify the relationships of topography with burn severity due to
contradictory evidence from studies of forest fires and the complex nature of these relationships.

The effects of topographic variables including elevation, slope, TWI and SRI on burn severity
in this study showed nonlinear relationships with burn severity, even changing from negative to
positive relationships in some cases. The nonlinear effects of topographic characteristics in this study
indicate that their influences on burn severity are not constant but rather, significantly vary in terms
of the direction and degree of their influences. For example, the influences on burn severity at one
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location might differ from those at different locations at the same fire site. Therefore, the influences
of topographic characteristics on burn severity should not be over-generalized to different studies
performed at different geographic locations and other fire sites. The non-linear effects of topographic
characteristics have been reported in several other studies (e.g., [3,66]). We considered two components
of the effects of topography on burn severity, direct and indirect effects, although there are no
clear-cut criteria to distinguish between these types of effects. Direct effects can be considered
the physical settings, such as convex/concave terrain [75] and slope gradient [75], of a fire event.
Meanwhile, indirect effects can be considered to affect the pre-fire conditions of fuel (e.g., composition,
configuration, density, average stand diameter and long-term moisture) [19,76]. As Lee et al. [3]
discussed, it is neither clear nor well documented in fire research why topographic variables are
nonlinearly associated with burn severity. However, these two components of topographic effects
are involved in the relationship between topographic characteristics and burn severity. From the
perspective of direct effects, the effects of susceptible tree cover might become too great, overriding the
effects of topographic characteristics [3]. Thus, burn severity could become more or less severe due to
the availability of susceptible tree cover under the same topographic characteristics. Extending
this rationale, additional causes of nonlinear effects of topographic variables could include the
spatial variation in fuel distribution, fuel moisture, moisture content, temperature, precipitation
and compounding effects [3,30,66].

From the perspective of indirect effects, topographic characteristics could alter the long-term
pre-fire conditions of fuels, in turn affecting direct effects. As confirmed in many other studies, pre-fire
stand conditions such as tree density, canopy coverage, average stand diameter and beetle outbreak
history have notable influences on the spatial patterns of fire severity [20,26,77]. Therefore, burn
severity should be understood based on the long-term interactions between topographic characteristics
and fuels conditions and the spatial and temporal dimensions must be considered together; however,
such a highly complex nonlinear relationship was beyond the scope of this study. Typically, the spatial
distribution of fire severity is not linear with elevation and slope [78,79]. We observed similar patterns
of red pine trees with elevation, slope, TWI and SRI at the study site, although we could not consider the
temporal dimension. We estimated the GAM for the percentage of red pine trees with all topographic
characteristics. The R2 of the model was 0.578 and an identity link function was used to estimate the
model (Table 6). Therefore, elevation, slope, TWI and SRI explained about 57.8% of the percentage of
red pine trees and the effects of the topographic variables were nonlinear. Elevation (EDF = 5.82)
and slope (EDF = 6.94) showed stronger nonlinear patterns, while TWI (EDF = 1.59) exhibited
a weaker nonlinear pattern. These results were consistent with the findings of Miller and Urban [78],
who reported nonlinear distributions

Table 6. Estimated GAM. The GAM estimated about 57.8% of the variation in the percentage of red pine
trees. All of the topographic variables showed significant non-linear relationships with the percentage
of red pine trees.

Variable EDF 1 F-Value Sig.

s (Elevation) 5.82 89.16 p < 0.001
s (Slope) 6.94 3.87 p < 0.001
s (TWI) 1.59 25.14 p < 0.001
s (SRI) 4.20 8.52 p < 0.01

Constant 58.23 ** 2

Adjusted R2 0.58
AIC 7313.02
BIC 7409.44

** p < 0.01. 1 Array of estimated degrees of freedom for the model terms. 2 Significant based on t-value.

In Equation (4), the burn severity at a given location is defined by the constant, linear positive
effects of red pine trees and the sum of the covariates of elevation, slope, TWI and SRI. From Table 5,
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the linear effects of red pine trees in Equation (4) could be defined by the constant and the sum of the
covariates of topographic variables, as shown in Equation (5).

g (GAMpine) = 58.243 + s (elevation) + s (slope) + s (TWI) + (SRI) variable (5)

where g is the link function (identity) and s is the smooth function of each variable.
Nonetheless, elevation showed the strongest non-linear effect on burn severity, whereas slope,

TWI and SRI appeared to have weak effects on burn severity. In addition, the separate GAMs for the
percentage of red pine trees with each topographic variable indicated that elevation (Adj. R2 = 0.50)
was the primary factor affecting the distribution of red pine trees, while slope (Adj. R2 = 0.22),
TWI (Adj. R2 = 0.07) and SRI (Adj. R2 = 0.06) were less significant factors in the distribution of
red pine trees. Elevation showed the strongest nonlinear effect on burn severity, whereas slope,
TWI and SRI had weak effects on burn severity. However, the role of elevation on burn severity
is somewhat confusing in fire research. Some studies have reported that elevation intensifies burn
severity because surface fuels at high elevations typically dry more quickly due to good drainage
and increased solar exposure [19,26,80]. By contrast, other studies have reported negative effects of
elevation on burn severity due to the higher productivity, vegetation density and fuel accumulation
(e.g., [3,81]). However, our results suggested that the role of elevation on burn severity cannot be
simplified, as suggested in previous studies and elevation can either increase or decrease burn severity
at a given location depending the availability of susceptible fuels, overriding their effects and the
pre-fire effects of elevation on the distribution on susceptible fuels.

5. Conclusions

The spatial mosaics of burn severity in burned areas have profound impacts on forest ecosystems
and the response of various components of forest ecosystems to forest fires. Broadly, burn severity is
determined by the forest fire triangle (i.e., fuel, topography and fire weather) and their interactions.
Many studies have investigated the separate or combined effects of these factors on burns in various
geographic locations. Most studies have assumed linear relationships and over-simplified the impacts
of various factors on burn severity, which could mislead policy makers, managers, planners and
practitioners managing fire-resilient or sustainable forests. However, the linearity of the relationships
between environmental variables and burn severity has never been examined, although a few studies
have reported the possible presence of nonlinear relationships between environmental variables and
burn severity; therefore, the relationships between environmental variables and burn severity are not
fully understood.

In this study, we examined the relationships between topographic characteristics and red pine
trees with burn severity at the Samcheok fire site in Korea. We estimated LMs and GAMs between burn
severity and topographic characteristics and red pine trees. After comparing the models, the nonlinear
GAMs considerably outperformed the LMs in explaining burn severity. However, susceptible forest
cover (i.e., Japanese red pine trees) showed linear effects on burn severity, consistent with the findings
of numerous other studies, where less susceptible tree cover was associated with lower burn severity.
This reinforces the importance of forest management and silviculture in lowering the availability of
susceptible fuels, such as prescribed burning, thinning fuel density, planting less susceptible trees,
or creating fuel breaks. Meanwhile, topographic characteristics had nonlinear effects on burn severity.
In particular, elevation was the primary topographic factor affecting burn severity in a nonlinear
pattern, while the nonlinear effects of slope, TWI and SRI were modest. The nonlinear effects of
elevation on burn severity could be due to overriding effects of susceptible fuels over elevation effects
and nonlinear effects of topographic characteristics on pre-fire fuel conditions, including the spatial
distribution and availability of susceptible tree cover.

These results might only be true in moderate weather conditions, because some studies have
reported that extreme weather could override the limits of fuels and topographic characteristics.
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Due to a lack of fire weather data, we could not examine the interactions among fuels, topographic
characteristics and weather conditions. Therefore, weather conditions should be considered when
investigating the nonlinear effects of topographic characteristics and susceptible tree covers in future
studies. In addition, the linear effects of red pine trees and nonlinear effects of elevation observed
in this study must be validated using different tree types and geographic locations and the findings
of this study should not be over-generalized for different tree cover types and geographic locations.
Finally, we could not fully explain the mechanism of the nonlinear effects of elevation on burn severity.
To understand the nature of the nonlinear effects of elevation, as well as other topographic variables,
the same study should be replicated at several different fire sites to extract common mechanisms of the
detailed effects of topographic characteristics on burn severity.
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