
sustainability

Article

Recurrence Interval Analysis on Electricity
Consumption of an Office Building in China

Lucheng Hong 1,*, Wantao Shu 1 ID and Angela C. Chao 2

1 School of Electrical Engineering, Southeast University, Nanjing 210096, Jiangsu, China; shuwantao@163.com
2 School of Management and Economics, Southeast University, Nanjing 210096, Jiangsu, China;

angela_zc@seu.edu.cn
* Correspondence: hlc3061@seu.edu.cn; Tel.: +86-25-8379-4162

Received: 30 November 2017; Accepted: 12 January 2018; Published: 24 January 2018

Abstract: The energy management of office buildings has been a rising concern for owners, researchers,
and energy suppliers. The volatility of power load in office buildings threatens energy consumption
and risks device security. This paper investigates the load fluctuation patterns in an office building
based on user data, using recurrence interval analysis for different thresholds. The recurrence intervals
of volatility are fitted by stretched exponential distribution, from which the probability density
function is derived. Then, the short-term and long-term memory effect on the fluctuations are
learned by conditional probability density function and multifractal detrended fluctuation analysis,
respectively. A hazard function is further established to analyze the risk estimation of load volatility
and derive the value at risk (VaR). Thus, a functional relationship has been established between
average recurrence interval and threshold. The methodology and analysis results addressed in this
paper help to understand load fluctuation patterns and aid in the design of energy consumption
strategies in office buildings. According to the results of our research, conclusions and management
suggestions are provided at the end of this paper.
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1. Introduction

The excessive energy consumption of office buildings is becoming a critical and urgent problem in
urban development. According to the ministry of construction and other related research departments,
China has experienced a rapid development in the scale of construction which has resulted in poor heat
preservation performance in new buildings. Hence, the energy consumption of high-rise buildings
in the heating-cooling process is much higher than the global average, which makes it urgent to
strengthen energy management for office buildings and promote the rational and efficient utilization
of energy [1,2].

At present, one-third of total societal energy consumption goes to buildings in the developed
world. Though the amount is less than in these developed countries, the proportion of energy
consumption in Chinese buildings has increased in recent years due to the rapid development of the
construction market. It is forecasted that the number of large public buildings in China (e.g., offices,
apartments, restaurants, convention centers, and others) will rise dramatically in the next few years,
and China will add an area of about 1 billion square meters of large public buildings by 2020. It is
estimated that more than 90% of the large public buildings in China are large energy (electricity)
consumers [3]. Thus, in confronting the increasing energy demand, it is unavoidable that we must
realize building energy management by various means so as to reduce the energy dissipation of
the buildings, including lighting, air conditioning, power, special equipment, and other energy
consumption, which has become the most concerning problem for building owners.
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In recent years, China’s national economy has developed rapidly, with a high daily electricity
consumption whose peak appears during the daytime, especially in summer. Large companies,
shopping malls, office buildings, and other buildings need air-conditioning systems to adjust the
temperature. Hence, daytime electricity demands and prices are both much higher than those at night.
With the advancement of science and technology, the ice thermal storage system has been used at
night to avoid electricity reaching its peak during the day. This helps to reduce electricity consumption
during peak hours and increases power off-peak consumption, which is called peak load shifting.
This saves money for businesses and promotes local economic development [4].

Energy management reflects the quantified data of energy conservation and plays an important
role in emission reduction. Meanwhile, it contributes to applying the energy data as a management
tool and means for accurate diagnosis and analysis and promotes the utilization of construction energy,
resulting in energy savings in office buildings.

As one of the indispensable developments in social energy, electricity is considered of great
significance to the economy. At present, China has an urgent demand to save resources as the world’s
second-largest power consumer. Therefore, the forecast on power load has become an important
research focus and has been investigated continuously in recent years, from which power suppliers
and consumers can benefit to develop better energy management. The forecasting period ranges from
minutes to years due to the various demands for power load forecasting [5–7]. Many models have
been developed to address this problem, and most of them can be classified into three categories:
regression models, time series analysis, and artificial neural networks (ANNs).

Regression models make use of linear functions to construct relationships between the dependent
variables and numerous independent variables, including weather [8], income [9], GDP (Gross
Domestic Product), and seasonal variables [10]. The validity and correctness of regression models have
been confirmed by some empirical studies [11,12]. This modeling method and its extended versions
are widespread among researchers since they can accurately quantify the effect caused by various
factors. Today, abstract characteristics such as human behavior can also be physically described thanks
to technological development, although the model accuracy is sensitive to the volume of data.

Unlike the regression model, time series analysis considers future power load as a function of
previous load [13]. Typical time series analysis models consist of a multiplicative autoregressive model,
an autoregressive integrated moving average, and an autoregressive moving average with exogenous
input model [14]. Though the model is effective in short-time load prediction, its requirement for the
accuracy of historical data is extremely high, and the algorithm may be complex and unstable in some
nonlinear or non-stationary cases. Further, when involving meteorological factors, time series analyses
are unable to deal with the inaccuracy problems.

Compared to time series analysis, ANNs require further investigations [15]. An ANN does not
presume functional relations between past and future electrical loads, and performs better in dealing
with nonlinear and non-stationary relationships [16]. Benefiting from its great extensibility, ANNs can
integrate various other tools, including genetic algorithms [17], fuzzy logic [18], wavelet analysis [19],
and grey systems [20]. The effectiveness of ANNs has been confirmed in several case studies [21,22].
Currently, ANNs are widely applied in various fields consisting of electrical loads forecasting, although
ANNs are associated with the problems of slow convergence speed and the danger of easily falling
into local minima.

In this paper, recurrence interval analysis (RIA) [23]—which belongs to the category of time series
analysis—is introduced to investigate the fluctuation patterns of energy consumption in office buildings.
RIA focuses on the time interval of volatility instead of the power load. Therefore, RIA enables us to
analyze the profile of volatility in different magnitudes, and it does not have to make the presumption
that the load between past and future should follow specific functional relationships [23]. Owing to its
wide application, RIA is now used in diverse fields, including the study of climate [24], earthquake
activities [25], heartbeat monitoring [26], and financial volatility [27].
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Electricity generation requires the development of annual, monthly, daily, and even hourly power
system generation planning. Generation ability satisfies most needs for power in cities, but managers
are more concerned with fluctuations. Since traditional turbo generators cannot be regulated instantly,
surging and collective loads will disrupt the supply balance of power systems and lead to electricity
supply halts.

In the grid, it is important to design the power capacity of transmission lines and devices, and load
fluctuation makes capacity design more complex and equipment more expensive with “redundant”
performance, while the rate of return on investment is less. In addition, when out of normal range,
fluctuations can result in bus voltage out-of-limits and vulnerable power quality and interrupt the
normal work of some sensitive instruments.

In the power market, the load of a single building may have little effect on the power grid,
but considering the process of Chinese urbanization and its countless buildings in cities, multiple load
fluctuations at the same time will threaten the security of the energy supply. With regard to electricity
market reform in China, both the amount and the volatility of the power load are essential and of great
value to formulate a suitable energy supply strategy and reduce the running cost of buildings.

It is therefore reasonable to find that the system is threatened by risks of violent fluctuations.
The rest of this paper is arranged as follows. In Section 2, the analysis method is proposed and the basic
statistics of the dataset are presented. Then, an empirical study, including distribution function, scaling
properties, memory effect, and risk estimation, is demonstrated in Section 3, while the conclusions of
this paper are delivered in Section 4.

2. Method

“Recurrence interval” refers to the time interval between two sequential events beyond (below)
a positive (negative) threshold, and is usually utilized to investigate the extreme events among the
fluctuations. As is well known, extreme events feature a huge magnitude with a lower occurrence
probability, in accordance with the reality in the field of power research. Different from the financial
market, where investors mostly pay attention to price decline, electricity suppliers/consumers care
more about power load volatility.

A typical office building possesses heating, ventilation, and air conditioning systems that
consume a large portion of electricity [28]. RIA on extreme events with regard to electricity load
fluctuation helps to better forecast the future energy load, which can be applied to formulate a power
supply/consumption strategy.

2.1. Research Object Information

Today, commerce buildings are common in urban areas due to the development of China’s reform
and opening up, as well as improvements to the standard of living in China. The office building selected
as the research object is located in Xuanwu District, Nanjing, Jiangsu, China. The construction area of
the building is about 133 thousand square meters, which meets the multiple demands of international
enterprises. The building has a total height of 58 floors, of which floors 1–5 are a shopping/leisure
plaza, floor 6 includes large restaurants, floors 7–8 are hotel auxiliary facilities (including a swimming
pool, gymnasium, Western restaurant, and conference center), floors 9–26 are hotel suites, and floors
above 26 contain office space—all of which are rentals and are not for sale.

The power load data collected in this paper come from the meters in the office building area,
and were telemetry-recorded at a 15-min frequency by the State Grid Nanjing Electric Power Company.
The sample period covers from 1 January 2016 through 31 December 2016, and the data collected are
comprised of 35,111 electricity load observations.
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2.2. Fluctuation of Power Load

The return of time series is calculated by taking the logarithmic difference of the load, as follows:

r(t) = ln l(t)− ln l(t− ∆t) (1)

In Equation (1), l(t) is the electricity load (unit: kW) of tth time, and ∆t = 15 min because of the
data sampling frequency. The logarithmic return reduces the absolute value of the data and makes the
calculation convenient, which allows the multiplication to be transformed into an addition calculation.
It does not change the nature and correlation of the data, and helps to weaken the collinearity and
heteroscedasticity of the model, making further statistical analysis possible.

To apply the recurrence interval analysis, time series r(t) is normalized by dividing its standard
deviation as follows:

R(t) =
r(t)[

Er(t)2 − E2r(t)
]1/2 (2)

where E denotes the mathematical expectation of the variables and
[

Er(t)2 − E2r(t)
]1/2

is the standard
deviation of r(t). For each threshold q, a group data of recurrence interval τ can be obtained, with which
the probability density function of is confirmed. Therefore, the mathematical expression of the
recurrence interval could be derived as follows:

τ(t) = min
{

t− t′ : R(t) > q, t > t′, q > 0
}

(3)

2.3. Probability Density Function

Considering τ as the recurrence interval when the threshold is q (> 0), the overwhelming
consensus [27,29,30] is that the recurrence intervals of volatility can be fitted by a stretched exponential
distribution, which is given by

f (x) = ατe−(βτx)γ

(4)

Equation (4) means that, given a threshold q, the distribution of recurrence interval τ is Pq(τ),
where τ is the mean recurrence interval depending on q, and α, β, and γ are the function parameters.

2.4. Memory Effect

2.4.1. Short-Term Memory

To investigate short-term correlations among the recurrence intervals, Pq(τ|τ0), the conditional
probability density functions are first calculated and compared. Pq(τ|τ0) is the probability of finding
a recurrence interval τ immediately following the recurrence interval . The criterion is that if there are
no short-term correlations, will be found independent from τ0. However, in order to obtain more data,
values of Pq(τ|τ0) for τ0 in a certain interval will be calculated instead of a single value of τ0 [31].

For a given threshold q, the set T of all the recurrence intervals is partitioned into four
non-overlapping subsets, meeting T = T1 ∪ T2 ∪ T3 ∪ T4 where Ti ∩ Tj = φ, i 6= j. All of the recurrence
intervals in T are sorted with an increasing order in the partitioning procedure, and then T is turned
into subsets with the same size. Hence, the quarter smallest recurrence intervals are selected to the
first subset T1, while T4 contains the largest quarter of T. Under the estimation that the conditional
probability density functions are derived as Pq(τ|Ti) = Pq(τ|τ0 ∈ Ti), and if there are no short-term
correlations, it can be found that Pq(τ|Ti) = Pq(τ|Ti), i 6= j.

2.4.2. Long-Term Memory

The multifractal detrended fluctuation analysis (MF-DFA) method [32,33] is adopted to determine
the long-term memory in electricity consumption for Building A.
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The conventional DFA method—invented by Peng to investigate the long-range dependence in
DNA nucleotide sequences [34]—is adopted in this paper to investigate the statistical self-affinity in
time series analysis. The properties of DFA have been extensively studied, and have been authenticated
to be capable of characterizing the long-term correlations in a time series [35–37]. Kantelhardt [32]
combined multifractal with DFA and proposed MF-DFA, which allows us to describe the multifractal
characteristics of time sequence and compute the Hurst exponent H(p) for all p-order statistical
moments. When p = 2, the MF-DFA degrades into conventional DFA.

For a non-stationary time series, only when 0.5 < H(p) < 1 will the series have a long-term
correlation, indicating that the system has a fluctuation pattern in long-term evolution. When H(p) is
the function of p, the time series has multiple fractal characteristics.

2.5. Risk Estimation

The hazard probability function Wq(∆t|t) is one important method to estimate risk in recurrence
interval analysis. Considering the fact that t units of time have passed since the last large volatility
greater than q, it is probable that the next large volatility greater than q will occur within ∆t units of
time. Mathematically, the hazard probability function can be expressed as

Wq(∆t|t) =
∫ t+∆t

t Pq(τ)dτ∫ ∞
t Pq(τ)dτ

(5)

Since each distribution Pq(τ) has been matched to a stretched exponential, the theoretical value of
Pq(τ) can be calculated with the parameters α, β, γ, as shown in Equation (4). Besides, in order to
determine the Wq(∆t|t) empirically, Wq(∆t|t) is further derived as

Wq(∆t|t) =
count

(
t < τq ≤ t + ∆t

)
count

(
τq > t

) (6)

where “count
(
τq > t

)
” denotes the number of recurrence intervals greater than t units of time and

“count
(
t < τq ≤ t + ∆t

)
” is the number of recurrence intervals greater than t and not greater than

t + ∆t for a given q.
Value at risk (VaR) is widely applied for risk estimation. In this paper, the loss probability density

function in RIA is introduced to estimate the VaR, which defines the risk at loss q as follows:∫ q

−∞
P(R)dR = P∗ (7)

where P(R) is probability density function of the normalized series R(t) and P∗ is the loss probability.
Then, the mean recurrence interval can be derived as

τq =
1

Nq

τq

∑
i=1

τq,i (8)

where Nq denotes the number of intervals that fall below the threshold q, so ∑
τq
i=1 τq,i is approximately

equal to the total number of returns, and Nq + 1 is the number of returns below threshold q. Thus,
the mean recurrence interval can satisfy VaR as

1
τq

=
∫ q

−∞
P(R)dR =

number o f R(t) above q
total number o f R(t)

(9)

3. Results

The fluctuations of logarithmic returns of power load in the office building are presented in
Figure 1, and the statistics are calculated as shown in Table 1.



Sustainability 2018, 10, 306 6 of 15

From Figure 1, it is found that the returns are not normally distributed and sharp peaks arise.
In Table 1, the volatility is not symmetric, and the magnitude of negative values are higher than that
of positive values. It is also observed that volatile time periods when large volatilities cluster are
accompanied by short and dense recurrence intervals. In contrast, the recurrence during calm periods
with small volatility intervals are large and sparse. In the meantime, the volatility clusters (i.e., large
fluctuations) tend to follow a large fluctuation, while the small ones tend to follow small ones, which
helps to demonstrate the existence of long-term memory. Moreover, we go further to wonder whether
there are multi-fractal properties—namely, self-similarity—in the volatilities.

Figure 1. Logarithmic returns of power load in the office building.

Table 1. Statistics of the returns of power load in the office building.

Average Maximum Minimum Standard Deviations Skewness Kurtosis Nobs

2.4240 × 10−5 1.1364 −0.8591 0.1055 −1.4120 17.5124 35,110

Figure 2 depicts the Pq(τ), the distribution of recurrence interval τ, between returns with different
threshold q, of which the parameters are also calculated by maximum likelihood estimation, as shown
in Table 2.

Figure 2. Empirical and theoretical probability distribution of recurrence intervals between returns
with different thresholds of power load for the office building.



Sustainability 2018, 10, 306 7 of 15

From Figure 2, it can be seen that recurrence intervals will be longer with increasing , in agreement
with the fact that large fluctuations have more long intervals and fewer short intervals than small
fluctuations, which means the time interval between two consecutive events for large fluctuations has a
higher probability of increasing than shrinking. It is observed in Figure 2 that the empirical distribution
has a slight rise but then falls down again. This indicates that when the recurrence interval reaches
a spot, the corresponding occurrence probability will have a slight and short increase. The magnitude
of the rise in Figure 2 is too obvious to ignore, but please note that Figure 2 is in double logarithmic
coordinates, and when we change it to regular logarithmic coordinates, it is merely a negligible error
between theory and reality. Besides, through the analysis of Table 2 and Figure 2, it is found that all of
the function curves have a similar shape, which makes us wonder if there are any scaling behaviors
between these probability distribution functions (PDFs).

Table 2. Estimates of the coefficients of stretched exponential functions.

q α β γ

1.0 2.228 89.399 0.2151
1.2 0.720 23.148 0.2269
1.4 0.207 5.756 0.2363
1.6 0.120 4.660 0.2260
1.8 0.025 0.338 0.2720

To examine that, the method used in Yamasaki et al. [38] is introduced into this paper as

fq(τ/τ) = Pq(τ)τ (10)

where τ/τ is the scaled recurrence interval and Pq(τ)τ is the scaled PDFs. When threshold q changes,
τ will change, and there is (dτ)/(dq) > 0, indicating that the mean time of recurrence interval
increases with the volatility increase. Assuming fq(τ/τ) is independent of q, there will be a unique
function f (x) for different threshold q, which can be derived as

fq(x) = f (x) (11)

Namely, the scaled probability distribution fq(τ/τ) will converge to the single curve f (τ/τ),
and recurrence intervals will show scaling behavior. To verify that, the scatter diagram of fq(τ/τ)

designed as the function of τ/τ is shown in Figure 3.

Figure 3. Scaled probability distributions of recurrence intervals for different thresholds of power load
in the office building.
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It can be clearly seen in Figure 3 that for different thresholds q, Pq(τ)τ does not converge to any
single curve, illustrating that there is no scaling behavior, and the behaviors of large fluctuations
cannot be deduced by that of small fluctuations.

Figure 4 shows the results of Pq(τ|τ0)τ as a function of τ/τ for τ0 in the smallest subset T1

(filled symbols) and the largest subset T4 (open symbols), in which Pq(τ|Ti) 6= Pq(τ|Ti). It is also
noticed that Pq(τ|τ0 ∈ T1) is larger than Pq(τ|τ0 ∈ T4) for small τ/τ, while Pq(τ|τ0 ∈ T1) is smaller
than Pq(τ|τ0 ∈ T4) for large τ/τ. The fact that a small τ tends to follow a small τ0, and a large τ tends
to follow a large τ0, indicates the short-term correlations in recurrence intervals.

Figure 4. Conditional probability density functions Pq(τ|τ0) with τ0 ∈ T1 (filled symbols) and τ0 ∈ T4

(open symbols) for the office building.

In Figure 5, there are five subfigures, and each subfigure has four sub-subfigures which show the
results of MF-DFA, respectively. It can be seen that the p-order Hurst exponent of each line is greater
than 0.5 in a certain area, suggesting that long-term correlations and multifractal characteristics exist
in the recurrence intervals. When hp < 0.5, it means the volatility is of anti-continuity.

Figure 5. Cont.
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Figure 5. Cont.
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Figure 5. Multifractal detrended fluctuation analysis (MF-DFA) of the office building in different
thresholds. (a) Results of MF-DFA when q = 1.0; (b) Results of MF-DFA when q = 1.2; (c) Results of
MF-DFA when q = 1.4; (d) Results of MF-DFA when q = 1.6; (e) Results of MF-DFA when q = 1.8.

Figure 6 depicts the hazard function, in which the symbols are empirical values and the curves
are the theoretical values of Wq(∆t = 15|t). It is observed that the empirical values and the curves
coincide with each other very nicely, and the discrepancy between empirical and theoretical curves
decreases when t increases.

Furthermore, the trend that Wq(∆t = 15|t) decreases with increasing t suggests that recurrence
intervals exhibit clustering behaviors, and long-term memory between volatilities and theoretical
values will underestimate the risk in a short time period. Theoretically, the recurrence probability of
extreme events can be calculated for a given threshold q.

Figure 6. Cont.
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Figure 6. Cont.
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Figure 6. Theoretical (curves) and empirical (color symbols) value of Wq(∆t = 15|t) (x-axes are t,
y-axes are values of Wq(∆t = 15|t) for q = 1.0, q = 1.2, q = 1.4, q = 1.6, q = 1.8 from top to bottom).
(a) Empirical values and the curves are the theoretical values of Wq(∆t = 15|t) for q = 1.0; (b) Empirical
values and the curves are the theoretical values of Wq(∆t = 15|t) for q = 1.2; (c) Empirical values and
the curves are the theoretical values of Wq(∆t = 15|t) for q = 1.4; (d) Empirical values and the curves
are the theoretical values of Wq(∆t = 15|t) for q = 1.6; (e) Empirical values and the curves are the
theoretical values of Wq(∆t = 15|t) for q = 1.8.

Equation (9) defines 1/τq as the loss probability for a threshold q, the curve of which is depicted
in Figure 7. Figure 7 demonstrates the functional relationship between threshold q and the average
recurrence interval.

Figure 7. The reciprocal of mean recurrence interval 1/τq as a function of threshold.

In Figure 7, as q increases, the average recurrence interval gets larger. This illustrates that with
increased volatility, the recurrence interval between load fluctuations exceeding the threshold will
become larger, which is consistent with the fact that small fluctuations (with less q) are more frequent
than the violent fluctuations as shown in Figure 1. Thus, energy managers can roughly estimate the
risk probability of the next occurrence of different amplitude fluctuations based on (9) and Figure 7.
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For example, if investors want to know the probability of a risk level at 1%, they can find the q for
1/τq = 1%, which represents the VaR that we are looking for.

4. Conclusions

The paper utilizes recurrence interval analysis to investigate the properties of recurrence intervals’
volatility for different thresholds and to study the power load behaviors of large volatilities in an office
building from which mass data were collected at 15-min high-frequency. The RIA method was applied
to analyze the characteristics of volatility in Building A and to verify the short-term and long-term
memory effectiveness and estimate the VaR.

On the basis of the above empirical analyses, the following suggestions are summarized for the
future improvement of China’s power supply companies and energy managers:

First, power enterprises can make full use of data to conduct load and customer management.
The load of the office building fluctuates more frequently in specific periods, such as late spring
and early summer and late autumn (see Figure 1), when building managers can practice seasonal
differential management. More frequent and careful inspections will help to decrease the risk of serious
accidents. Besides, the capacity of power devices can be optimized to save equipment costs according
to the fluctuation amplitude of power loads in different areas. The details of load fluctuation and their
characteristics in variable industries—including buildings—can also help to construct different energy
services with industrial differences.

Second, the distribution of the probability density function is shown in Figures 2–4, illustrating
that the occurrence of large fluctuations can be estimated according to load fluctuation characteristics
in the office building. Based on the probability density function, power enterprises can characterize
the features of load fluctuations and provide it as a value-added service to large electricity consumers,
which helps to reduce the operating costs. According to the estimation, power enterprises can design
multiple energy storage devices or maintenance strategies for different service combinations. This will
improve the efficiency of energy utilization in the region and improve the viability of the power
enterprises under market-oriented reform.

Third, both short-term and long-term memory effects exist in the fluctuations in the office building,
indicating that clusters of recurrence intervals of volatilities are caused by both present and long-term
correlations. This helps to demonstrate that the failure of load forecasting is in some cases influenced
by complicated factors.

Finally, the study of risk estimation shows that there is more short-term correlation between the
recurrence intervals of power fluctuation in the office building. Therefore, when the load of the office
buildings fluctuates (especially in the case of large fluctuations), energy managers need to prepare
for the next similar fluctuation within a short time. Further, power supply enterprises can make
corresponding preventive management strategies in order to deal with the crisis brought by sudden
load fluctuations in such industries and set reasonable prices for different levels of energy usage.

This paper has some deficiencies, which can be overcome by subsequent research. Comprehensive
analysis and comparison of power load fluctuations in multiple buildings can help energy suppliers
and consumers realize energy management better.
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