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Abstract: In this study, we proposed a new empirical method by combining generalized
autoregressive score functions and a copula model with high-frequency data to model the
conditional time-varying joint distribution of the government bond yields between Poland/Czech
Republic/Hungary, and Germany. Capturing the conditional time-varying joint distribution of these
bond yields allowed us to precisely measure the dependence of the government securities markets.
In particular, we found a high dependence of these government securities markets in the long term,
but a low dependence in the short term. In addition, we report that the Czech Republic showed
the highest dependence with Germany, while Hungary showed the lowest. Moreover, we found
that the systemic risk dynamics were consistent with the idea that the global financial crisis not
only had spillover effects on countries with weak economic fundamentals (e.g., Hungary, which had
the highest systemic risk), but also had contagion effects for both CEEC-3 countries and Germany.
Finally, we confirm that three major market events, namely the EU accession, the global financial
crisis, and the European debt crisis, caused structural changes to the dynamic correlation.

Keywords: dynamic conditional correlation; generalized autoregressive score functions; time-varying
copula function; CoVaR

1. Introduction

Measuring the dependence structures of government securities markets is garnering considerable
attention from academia as well as from financial institutions, given the continuing expansion of the
European Union (EU). In 2004, 10 countries from Central and Eastern Europe and the Mediterranean
region joined the EU, which served as a historic step towards unifying Europe after several decades of
division that had resulted from the Cold War. In this study, rather than investigating correlations, we
propose a new approach to investigate the dependence structures among these countries’ financial
markets including the investigation of general correlations as well as tail correlation.

Financial markets become integrated when economies strongly depend on one other. This process
not only reduces transaction costs, but also improves the efficiency of information sharing.
However, although financial integration increases overall market efficiency, it reduces the
diversification benefits available to prospective investors. Thus, investigating the dynamic process
of financial integration allows us not only to measure the interdependence of economies, but also to
provide useful information for investors.

Here, we propose a new method for evaluating the degree to which the integration processes and
risk spillovers in Central and Eastern Europe have evolved over time. To simplify our analysis, we chose
Poland, the Czech Republic, and Hungary (termed as the CEEC (Central and Eastern European countries)-3
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hereafter) to represent Central and Eastern Europe given that these countries have the largest economies
and financial markets in the region as well as the best data availability. To represent the EU, we chose
Germany because of its economic background and geographic factors. Therefore, we investigated the
differences in the dependence structures of the government securities markets in the CEEC-3 and Germany.

Two types of approaches tend to be used to study dependence structures. The first type
includes observation-based methods such as those based on the generalized autoregressive
conditional heteroskedasticity (GARCH) framework [1,2]. The dynamic conditional correlation
(DCC-GARCH)-based approach [3–5] and copula-GARCH-based approach [6–8] are representative
examples. The second type is parameter-based methods. The classical analysis of this type focuses
on time-varying parameters, which allows us to better characterize the dynamic correlations in
government securities markets by using easy estimations. For example, Pozzi and Wolswijk [9]
employed a linear state space approach to estimate the latent factor decomposition of the excess returns
or risk premiums suggested by a standard international capital asset pricing model for government
bonds. They found that the government bond markets in the Eurozone under investigation were
almost fully integrated by the end of 2006, showing that an important part of the achieved convergence
was reversed during 2007–2009. Bekiros [10] also provided evidence that time-varying parameter
models more accurately forecast Eurozone economies than other models.

In this study, we employed a parameter-driven model, namely the generalized autoregressive
score (GAS) model, to investigate the dynamic integrated process of European government securities
markets. For example, Creal et al. [11] employed the GAS model to analyze the dynamic correlation
between the euro and yen, and between the euro and pound. Meanwhile, Oh and Patton [12] and Creal
and Tsey [13] provided evidence that the GAS model could be employed with high dimensional copula
to investigate the interdependence among different assets. With regard to the topics of the present
study, Boubakri and Guillaumin [14] provided evidence that financial integration was not perfect, but
was increasing based on the dynamic correlation of the foreign exchange rate. Furthermore, they also
showed that financial contagion occurred during the global financial crisis.

Instead of focusing on the foreign exchange rate, in this study, we investigated the integration of
these countries based on interest rates (e.g., bond yields). Moreover, in contrast to the studies of Yang
and Hamori [5,7,8] who focused on investigating observations, we computed time-varying parameters.
The technique adopted herein was based on the score function of the predictive model density at time
t by incorporating the non-linear property. In addition, in contrast to observation-driven models, the
GAS model has the advantage of exploiting the complete density structure rather than only means and
higher moments. Furthermore, its applications can be extended to asymmetric, long memory, and other
more complicated dynamics without increasing model complexity. Therefore, by employing the GAS
framework, we restructured the time-varying copula model to investigate the dynamic integrations of
the government securities markets in Eastern Europe.

To understand the risk spillover effect between the CEEC-3 and Germany, we employed copulas
to compute the conditional value-at-risk (CoVaR) by providing quantitative evidence on the systemic
risk spillovers in government securities markets. Furthermore, we evaluated how the deteriorating
financial position of a sovereign market could impair the performance of other government securities
markets during a crisis. In particular, we used the CoVaR measures originally proposed by Adrian
and Brunnermeier [15] and generalized by Girardi and Ergün [16], which allowed us to capture the
possible risk spillovers between markets by providing information on the value-at-risk (VaR) of a
market, conditional on the fact that another market is in financial distress.

By adopting a two-step procedure, we easily obtained the value of the CoVaR. In the first step, we
computed the cumulative probability of the CoVaR from a copula function by assuming the cumulative
probability of the VaR of the market in financial distress, and the confidence level of the CoVaR. In the
second step, we obtained the value of the CoVaR by inverting the marginal distribution function for
this cumulative probability. Moreover, by employing GAS specifications, we obtained more sensitive
information on the risk spillover effect in the government securities markets of the CEEC-3 and Germany.
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Our contributions to the body of knowledge are threefold. First, we provide more specific details
on the dependence across different maturities when compared with previous studies. Second, we
implemented a new approach (i.e., the GAS-based dynamic Gaussian copula) to investigate the
dynamic correlations among these markets, which can provide us with more sensitive correlations to
the structural changes. This approach allowed us to analyze how the degree of dependence changed
according to major market events, namely the EU accession (2004), the global financial crisis (2008),
and the European debt crisis (2012). Third, we compared and contrasted the risk spillover effect in the
government securities markets of the CEEC-3 and Germany by employing both the Gaussian copula
model and the Gaussian copula GAS model. Finally, we employed the Symmetrized Joe-Clayton
copula (SJC copula; [17]) to investigate the tail dependence of these markets and compared them with
the results from the GAS-based model to verify the robustness of the results.

The remainder of this article is organized as follows. Section 2 discusses the copulas and verifies
the time-varying dependence structure. Section 3 describes the data and statistical issues. Section 4
provides the empirical results and Section 5 concludes.

2. Method

In this section, we first describe the margins of the return distributions based on our empirical
model. Second, we introduce the specifications of the dynamic copula model. Then, we selected one
particular elliptical copula (Gaussian copula) model to investigate the dependence of the government
securities markets in Eastern Europe. Furthermore, we estimated the systemic risk of these countries
based on both the Gaussian copula and the Gaussian copula GAS models. Finally, to justify the
empirical findings, we employed the SJC copula to examine the dynamic tail dependence of the
examined government securities markets.

2.1. Marginal Distribution Specifications

The marginal distribution for each return series is characterized by a Glosten-Jagannathan-Runkle
GARCH (GJR-AR(k)-GARCH(1,1)-Skew-t; [18]) model that considers the effects of asymmetric
information [18–20]. Assume Ri,t and hi,t to be bond i’s return and conditional variance for period t,
respectively. Thus, the GJR-AR(k)-GARCH(1,1)-Skew-t model for the bond return is

Rit = µi + αi,1Ri,t−1 + αi,2Ri,t−2 + · · ·+ αi,kRi,t−k + εi,t (1)

hi,t = ωi + βihi,t−1 + δiε
2
i,t−1 + · · ·+ γisi,t−1ε2

i,t−1 (2)

where si,t−1 = 1 when εi,t−1 is negative and si,t−1 = 0 otherwise. We assumed that the error term εi,t
followed the skew-t distribution with the density function f (υt, λt), such that

f (yt; υt, λt) =


bc
(

1 + 1
υt

(
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1−λt

)2
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where c = Γ( υt+1
2 )
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√
π(υt−2))

, b =
√

1+ 3λ2
t − a2, and a = 4λtc( υt−2

υt−1). This density is defined for 2 < υt < ∞

and−1 < λt < 1 [21]. For the GJR (1, 1) model, the constraints applied to Equation (3) are δ+ β+ 2γ < 2,
δ > −γ, and β ∈ (0, 1), and we chose k based on the Akaike information criterion (AIC) [22].

2.2. A Copula with GAS Dynamics

After determining the suitable marginal distribution, we proceeded to the copula function.
A dynamic copula model is typically used to model the dependence of government securities markets
in Eastern Europe in a dynamic process. However, an important contribution of our research
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was to calculate the time-varying correlations between the CEEC-3 and Germany. Two types of
specifications allow the parameters to vary over time. First, studies of copula-based analysis such as
Hafner and Manner [23] and Manner and Segers [24] have proposed a stochastic copula model that
allows the parameters to evolve as a latent time series. Second, ARCH (autoregressive conditional
heteroskedasticity)-type models such as dynamic conditional correlation (DCC) [3] and their related
models for copulas [11,17] permit the time-varying parameters to vary according to the functions of
the lagged observables. One advantage of the second approach is that it avoids the need to “integrate
out” the innovation terms driving the latent time series processes [25,26]. In addition, as pointed out
by McAleer [27], DCC may suffer from the problem of the derivation of asymptotic properties of the
Quasi-Maximum Likelihood Estimators. Therefore, based on the parameter-driven methodology, the
Generalized Autoregressive Score (GAS) model provided us with another view of the conditional
correction model as well as the CoVaR approach.

As our empirical model, we employed the GAS model of Creal et al. [11]. This function describes
the time-varying copula parameter (δt) as a combination of the lagged copula parameter and a forcing
variable related to the standardized score of the copula log-likelihood. Following Creal et al. [11], a
copula with GAS dynamics can be expressed as

Ut|Ft−1 ∼ Ct(δt(γ)) (4)

where γ is the copula function’s parameter; and Ut = [U1t, U2t]
′ is the vector of the marginal

conditional probability integral transform. To ensure that the correlation of the normal copula falls
between the values of−1 and 1, Creal et al. [11] suggested transforming the copula parameter by using
an increasing invertible function (e.g., logarithmic, logistic) to the parameter:

κt = h(δt)⇐⇒ δt = h−1(κt) (5)

For a copula with a transformed time-varying parameter δt, a GAS (1,1) model can be described as

κt+1 = ω + bκt + aI−
1
2

t h(δt)st (6)

st ≡
∂log

(
uy; δt

)
∂δt

(7)

It ≡ Et−1

[
sts

′
t

]
= I(δt) (8)

Although the functions for the time-varying parameters are arbitrary, they can nest a variety
of popular approaches from conditional variance models to trade duration and count models.
Nonetheless, in contrast to the approach taken by Patton [17], GAS models are more sensitive to
correlation shocks (for a comparison of the two models, see [11]).

Since we examined the dynamic process of the dependence of the government securities markets
in the CEEC-3 and Germany, we employed the time-varying Gaussian copula. The conditional
Gaussian copula function is defined as the density of the joint standard uniform variables (ut, vt)

with a time-varying correlation ρt. Moreover, we assumed that xt = φ−1(ut) and yt = φ−1(vt), where
φ−1(·) represents the inverse of the cumulative density function of the standard normal distribution.
Then, the density of the time-varying Gaussian copula is expressed as

CGau
t (ut, vt|ρt) =

1√
1− ρ2

t

exp

(
x2

t + y2
t

2
− x2

t − 2ρxtyt + y2
t

2
(
1− ρ2

t
) )

(9)

Thus, by combining Equation (6) with Equation (9), the Gaussian correlation parameter ρt is
modeled by the transformed parameter ρt = (1− exp(−κt))/(1 + exp(−κt)), and the additional
scaling factor δt = 2/(1− ρ2

t ) in Equation (6) is the consequence of modeling the transformed
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correlation parameter κt rather than ρt directly. Hence, we compared and contrasted the GAS Gaussian
copula estimation across maturities.

2.3. CoVaR

In this section, we quantified the VaR (Value at Risk) and CoVaR (Conditional Value at Risk)
for the government securities markets in the CEEC-3 and Germany. Given the strong linkages of
these markets [7], we considered the impact of financial distress in the German market (as measured
by its VaR) on the VaR of the CEEC-3 market and vice versa. Following the studies of Adrian and
Brunnermeier [15] and Girardi and Ergün [16], the CoVaR for asset i is the VaR for asset i conditional
on the fact that asset j exhibits an extreme movement.

Let rc
t be the returns for the CEEC-3 government securities market and rd

t be the returns for
the German government securities market. The downside CoVaR for stock returns for an extreme
downward oil movement and a confidence level 1− β can be formally expressed as the β-quantile of
the conditional distribution of rc

t as

Pr
(

rc
t ≤ CoVaRc

β,t(q, p)
∣∣∣rd

t ≤ VaRd
α,t

)
= β (10)

where VaRd
α,t is the α-quantile of the German government securities market return distribution and

Pr
(

rd
t ≤ VaRd

α,t

)
= α measures the maximum loss that the German government securities market

returns may experience for a confidence level 1− α and a specific time horizon.
Moreover, we measured the systemic impact of the CEEC-3 government securities market on the

German government securities market by considering the CoVaR for the latter instead of the former
as in Equation (10). The CoVaR in those equations can be represented in terms of copulas, since the
conditional probabilities can be rewritten, respectively, as

C
(

Frc
t

(
CoVaRc

β,t

)
, Frd

t

(
VaRd

α,t

))
= αβ (11)

where Frc
t

and Frd
t

are the marginal distributions of the CEEC-3 government securities market and
German government securities market returns, respectively. We followed Reboredo and Ugolini [25]
in computing the CoVaR by following a two-step procedure. Following the studies of Adrian and
Brunnermeier [15] and Girardi and Ergün [16], the systemic risk contribution of market j as the delta
CoVaR (∆CoVaR) can be defined as the difference between the VaR of the overall German government
securities market conditional on the distressed state of the CEEC-3 government securities market(

Rc
t ≤ VaRc

α,t
)
. The VaR of each of the individual CEEC-3 government securities markets can then be

treated as a whole conditional on the benchmark state of the market, considering it to be the median of
the return distribution of the market, or, alternatively, the VaR for α = 0.5. The systemic risk contribution
of the market for each CEEC-3 country is the government securities market thus defined as

∆CoVaRc/d
t =

CoVaRc/d
β,t − CoVaRc/d,α=0.5

β,t

CoVaRd,α=0.5
β,t

(12)

The primary shortcoming of such a specification is that it estimates the contemporaneous
correlation with the market to gauge the size of the potential tail spillover effects. In other words, it is
useful as it captures the marginal contribution of markets to the overall systemic risk. In this study, we
investigated the risk spillover effects between the CEEC-3 countries and Germany by employing both
the Gaussian copula model and Gaussian copula GAS model.

2.4. Estimation Method

In the final step, we employed the multi-stage maximum likelihood (MSML) estimation method
to calculate the dynamic relationships between the government securities markets in the CEEC-3 and
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Germany. First, we estimated the marginal distributions separately. In the second step, we estimated
the copula model conditioned on the estimated marginal distribution parameters. Therefore, the final
dynamic copula with the GAS process based on the GARCH model can be specified as

L(θ) = ∑T
i=1 log(ft(Xt; θ)) = ∑T

i=1 log( f1t(X1,t; θ1)) + ∑T
i=1 log( f2t(X2,t; θ2))

+∑T
i=1 log(ct(F1,t(X1,t; θ), F2,t(X2,t; θc)))

(13)

where θ = (φ′, γ′)′ is the estimated vector of all the parameters including those of the marginal
distributions φ and of the copula γ.

3. Data

To investigate the dependence of the CEEC-3 and Germany across maturities, we employed 3-month,
1-year, 3-year, 5-year, and 10-year government bond yields based on a daily frequency. In particular,
we focused on 3-year, 5-year, and 10-year government bond yields and omitted 3-month and 1-year
government bond yields due to the availability of data and empirical results. For instance, the short-term
interest rate for 3-month and 1-year yields cannot model the stable dynamic correlation between Hungary
and Germany since the estimation procedure does not converge. Thus, the data on 3-month and 1-year
yields did not fit the model well as there were too many poorly fitting observations. Moreover, the
marginal distribution for Poland was not well specified since the GARCH process was hardly justified.

The sample period ran from 1 January 2002 to 31 December 2016. The total dataset was comprised
of 3914 valid observations. In all cases, bond returns were calculated as the first differences of the
logs of yields. Table 1 reports the descriptive statistics of the return series. Particularly, we witnessed
the increasing of interest rate for the CEEC-3 countries across the different term structures during
our sample periods. In addition, the negative returns of the bond yields also indicated the bad credit
environment in the CEEC-3 countries where investors require higher nominal interests. The reason
may be due to the saving-investment imbalance with other developed countries such as Germany,
whose mean return for ten-year bond yield was still positive. Compared to Germany, the CEEC-3
countries have to deal with their debt problem. For example, the government of Hungary faces a great
fiscal deficit and struggles to solve its debt problem. The results of the Jarque–Bera (JB) test showed
that the null hypothesis of the normal distribution was rejected in all cases.

Table 1. Summary statistics across different maturities.

Poland Hungary Czech Republic Germany

3-year

Mean –0.000366 −0.000562 −0.000653 −0.000225
Std. Dev. 0.016497 0.017400 0.140969 0.167249
Skewness 0.678808 1.424991 −0.416608 0.682362
Kurtosis 11.01275 22.50707 87.16472 65.51154

JB 10,771.20 *** 63,382.03 *** 1,145,605 *** 628,135.2 ***
Observations 3914 3914 3914 3914

5-year

Mean −0.000303 −0.000380 −0.000874 −0.000848
Std. Dev. 0.015542 0.017361 0.169736 0.165198
Skewness 0.447378 0.761848 1.162340 2.072385
Kurtosis 13.77973 15.21576 188.6507 218.0410

JB 19,081.27 *** 24,714.69 *** 5,574,346 *** 7,432,406 ***
Observations 3914 3914 3914 3914

10-year

Mean −0.000225 −0.000204 −0.000636 0.000268
Std. Dev. 0.013174 0.015519 0.022779 0.124821
Skewness 0.496346 0.154218 0.336106 −0.555559
Kurtosis 13.80813 10.68544 28.27690 206.1039

JB 19,211.42 *** 9648.186 *** 103,392 *** 6,627,889 ***
Observations 3914 3914 3914 3914

Notes: *, **, and *** represent significance at the 10%, 5%, and 1% levels, respectively.
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4. Empirical Results

4.1. Marginal Distribution Estimations

In the first step, we employed univariate GJR-AR(k)-GARCH(1,1)-Skew-t models to model the
marginal distributions. Based on the SBIC (Schwarz Bayesian information criterion) [28], we selected
k = 2 for the 3-year maturity and k = 1 for the 5-year and 10-year maturities. Tables 2–4 report our
estimation results. We found that all the coefficients of the conditional variance term (β) with values
close to one were statistically significant at the 1% level. The coefficients of the asymmetric effect (γ)
were also statistically significant at the 1% level for the Czech Republic and Germany for the 3-year
maturity, and Poland and Germany for the 10-year maturity. Furthermore, the degrees of freedom
parameters (υ) were statistically significant at the 1% level with values above two, suggesting that the
tails of the error terms were heavier when compared with the normal distribution. Although the skew
terms (λ) were not statistically significant with positive values in most cases except Germany, we still
used the skew-student-t distribution since all the countries must correlate with Germany.

Table 2. Estimation results of the marginal distribution for 3-year yields.

Poland Hungary Czech Republic Germany

Mean Equation

µ1 × 10−4 −5.211 (2.115) *** −4.897 (2.511) ** −0.788 (0.745) 1.388 (1.546)
α −0.024 (0.015) −0.018 (0.015) −0.051 (0.015) *** −0.029 (0.023)

Variance Equation

ω × 10−5 3.414 (1.125) *** 2.251 (2.332) 3.112 (1.052) *** 1.718 (0.344)
δ 0.108 (0.053) *** 0.149 (0.607) *** 0.249 (0.075) *** 0.206 (0.051) ***
β 0.805 (0.039) *** 0.716 (0.101) *** 0.753 (0.038) *** 0.772 (0.031) ***
γ 0.023 (0.039) −0.129 (0.365) 0.213 (0.065) *** 0.250 (0.012) ***
υ 3.138 (0.209) *** 2.492 (0.416) *** 2.646 (0.106) *** 3.384 (0.581) ***
λ 0.023 (0.018) 0.014 (0.016) 0.048 (0.015) *** 0.049 (0.025) *

Diagnostic

Q(20) 23.21 [0.588] 36.54 [0.251] 81.22 [0.245] 21.18 [0.227]
Q2(20) 13.23 [0.786] 21.55 [0.127] 44.87 [0.621] 17.97 [0.419]

Log-Likelihood 11,202.57 10,244.36 8596.28 8496.57

Notes: The numbers in parentheses are standard errors. The numbers in square brackets are p-values. Q(20) (Q2(20))
is the Ljung–Box Q statistic for the null hypothesis that there is no autocorrelation up to order 20 for the
standardized residuals (standardized squared residuals). *, **, and *** represent significance at the 10%, 5%,
and 1% levels, respectively.

Table 3. Estimation results of the marginal distribution for 5-year yields.

Poland Hungary Czech Republic Germany

Mean Equation

µ1 × 10−4 −2.618 (2.110) 5.124 (2.221) ** −5.428 (4.775) 3.781 (1.546) ***
α −0.008 (0.019) 0.031 (0.015) ** −0.086 (0.017) *** 0.332 (0.015) ***

Variance Equation

ω × 10−5 2.414 (3.125) 4.141 (1.128) 1.787 (1.188) 1.221 (1.188)
δ 0.091 (0.037) *** 0.154 (0.013) *** 0.073 (0.001) *** 0.012 (0.002) ***
β 0.911 (0.028) *** 0.842 (0.039) *** 0.891 (0.028) *** 0.944 (0.015) ***
γ 0.008 (0.028) 0.139 (0.005) 0.145 (0.016) *** 0.099 (0.005) ***
υ 3.806 (0.281) *** 2.445 (0.055) *** 2.836 (0.588) *** 7.367 (0.568) ***
λ 0.013 (0.053) 0.015 (0.016) 0.027 (0.021) 0.071 (0.101)

Diagnostic

Q(20) 15.21 [0.448] 41.27 [0.651] 82.12 [0.245] 22.54[0.347]
Q2(20) 3.286 [1.000] 14.22 [0.234] 44.11 [0.621] 14.27 [0.721]

Log-Likelihood 11,235.812 10,113.699 10,244.87 9853.126

Notes: The numbers in parentheses are standard errors. The numbers in square brackets are p-values. Q(20) (Q2(20))
is the Ljung–Box Q statistic for the null hypothesis that there is no autocorrelation up to order 20 for the
standardized residuals (standardized squared residuals). *, **, and *** represent significance at the 10%, 5%,
and 1% levels, respectively.
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Table 4. Estimation results of the marginal distribution for 10-year yields.

Poland Hungary Czech Republic Germany

Mean Equation

µ1 × 10−4 2.568 (0.221) *** 6.351 (1.121) *** −4.298 (1.125) *** 2.121 (0.285) ***
α −0.042 (0.011) 0.046 (0.031) −0.009 (0.018) 0.089 (0.119)

Variance Equation

ω × 10−5 3.122 (1.155) *** 2.886 (1.085) *** 1.987 (0.788) *** 4.221 (1.688) ***
δ 0.116 (0.032) *** 0.111 (0.003) *** 0.166 (0.078) *** 0.017 (0.007) ***
β 0.891 (0.025) *** 0.832 (0.054) *** 0.835 (0.053) *** 0.961 (0.006) ***
γ −0.023 (0.021) 0.024 (0.469) 0.046 (0.041) 0.041 (0.009) ***
υ 4.012 (0.324) *** 2.319 (0.607) *** 2.996 (0.256) *** 11.621 (2.152) ***
λ 0.009 (0.012) −0.055 (0.019) 0.015 (0.017) 0.026 (0.022)

Diagnostic

Q(20) 15.26 [0.541] 69.17 [0.265] 55.32 [0.185] 12.96 [0.899]
Q2(20) 1.565 [1.000] 24.75 [0.631] 42.25 [0.331] 9.54 [0.841]

Log-Likelihood 11,116.610 10,004.310 10,522.495 9826.073

Notes: The numbers in parentheses are standard errors. The numbers in square brackets are p-values. Q(20) (Q2(20))
is the Ljung–Box Q statistic for the null hypothesis that there is no autocorrelation up to order 20 for standardized
residuals (standardized squared residuals). *, **, and *** represent significance at the 10%, 5%, and 1%
levels, respectively.

Table 2 shows the Q(s) and Q2(s) statistics to justify the empirical results of the
GJR-AR(k)-GARCH(1,1)-Skew-t models. The Q(s) statistic at lag s is a test statistic following an
asymptotical distribution with degrees of freedom equal to the number of autocorrelations less the
number of parameters. Its null hypothesis assumes that there is no autocorrelation up to lag s for the
standardized residuals. The Q2(s) statistic at lag s proposes a null hypothesis of no autocorrelation up
to order s for the standardized squared residuals. As shown in Tables 2–4, the null hypothesis of no
autocorrelation up to order 20 for the standardized residuals and standardized squared residuals was
accepted for all currencies, supporting our model specifications.

4.2. Dynamic Copula Estimations

In the second step, we transformed the standardized residuals obtained from the GARCH model
into uniform variates based on the cumulative distribution function. By applying this step, we obtained
the vector of filtered returns to estimate the copula functions in the CEEC-3 government securities
markets. Therefore, we estimated both the dynamic Gaussian copula and the dynamic Gaussian copula
based on the GAS framework by using the filtered return in the first step. Table 5 reports the estimation
results. According to Creal et al. [11] and Creal and Tsay [13], the GAS specification can provide a more
persistently time-varying correlation process. Since the log-likelihood was the largest for the 10-year
yields when compared with the other two, the long-term yields also provided the most persistently
time-varying correlation process. In addition, the terms (a, b) for the GAS framework estimations were
significant in most cases, which indicated that the GAS framework models the Gaussian copula well.

To illustrate the integration process between the CEEC-3 and Germany, Figures 1–3 plot their
estimated dynamic correlations from the Gaussian copula GAS model for the 3-year, 5-year, and
10-year yields. These figures illustrate the high (low) dependence of the government securities markets
in the long term (short term). In addition, the Czech Republic showed the highest dependence with
Germany, while Hungary showed the lowest. In particular, the structures of dynamic correlations for
Hungary were different from that of Poland and the Czech Republic, which may due to the fact that
Hungary has been experiencing a fiscal crisis since 2012.

Meanwhile, to see how EU accession, the global financial crisis, and the European debt crisis
affected dependence, we employed the multiple breakpoint test to examine the influence of dependence
based on global information citations (Table 6). In general, we found that these three events affected
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dependence significantly. As shown in Figures 1–3, the correlation significantly increased before the
examined CEEC-3 countries became EU members, in the global financial crisis period, and in the
European debt crisis period. Combining the results presented in Table 6 confirmed that financial
contagion occurred during these two crises. Meanwhile, the significant increase in correlation before
EU accession may have been caused by the expectations of market participants and requirements of
being EU members. After the global financial crisis, there was a significant decrease in dependence,
perhaps because of capital regulations and market segmentation [14].

Table 5. Estimation results of the Gaussian copula and Gaussian copula GAS (1,1) models.

3-Year 5-Year 10-Year

Gaussian Copula Model

Poland–Germany

ω 0.001 (0.007) 0.004 (0.011) 0.179 (0.059) ***
a 0.026 (0.004) *** 0.079 (0.006) *** 0.481 (0.014) ***
b 1.981 (0.018) *** 1.923 (0.012) *** 0.556 (0.041) ***

Log-Likelihood 30.528 76.522 90.791

Hungary–Germany

ω −0.021 (0.048) −0.043 (0.063) *** −0.057 (0.022) **
a 0.075 (0.004) *** 0.022 (0.007) *** 0.490 (0.004) ***
b 0. 821 (0.257) *** 0.975 (0.016) *** −0.477 (0.086) ***

Log-Likelihood 11.344 18.252 22.671

Czech–Germany

ω 0.001 (0.118) 0.006 (0.361) 0.352 (0.102) ***
a 0.025 (0.001) *** 0.071 (0.003) *** 0.395 (0.012) ***
b 1.994 (0.147) *** 1.984 (0.004) *** 0.749 (0.221) ***

Log-Likelihood 61.300 173.693 254.458

Gaussian Copula GAS (1,1) Model

Poland–Germany

ω 0.096 (0.085) 0.187 (0.091) ** 0.328 (0.094) ***
a 0.013 (0.003) *** 0.032 (0.007) *** 0.021 (0.004) ***
b 0.992 (0.004) *** 0.983 (0.008) *** 0.990 (0.004) ***

Log-Likelihood 30.551 84.951 110.213

Hungary–Germany

ω −0.029 (0.048) −0.062 (0.061) −0.052 (0.067)
a 0.018 (0.007) ** 0.019 (0.006) *** 0.014 (0.006) **
b 0.963 (0.030) *** 0.978 (0.014) *** 0.987 (0.012) ***

Log-Likelihood 11.136 19.819 18.023

Czech–Germany

ω 0.796 (0.198) *** 2.004 (0.358) *** 0.872 (0.187) ***
A 0.005 (0.001) *** 0.0163 (0.028) *** 0.001 (0.000) ***
B 0.988 (0.023) *** 0.998 (0.004) *** 0.998 (0.001) ***

Log-Likelihood 79.386 225.322 346.200

Notes: *, **, and *** represent significance at the 10%, 5%, and 1% levels, respectively.
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Table 6. Breakpoint test based on global information citations.

3-Year 5-Year 10-Year

Czech–Germany

Breakpoint 1 9/28/2004 12/24/2004 12/12/2003
Breakpoint 2 8/23/2007 10/17/2008 3/05/2007
Breakpoint 3 8/04/2009 9/29/2010 2/12/2009
Breakpoint 4 12/28/2011 10/22/2012 1/25/2011
Breakpoint 5 1/11/2013

Poland–Germany

Breakpoint 1 5/01/2006 4/01/2004 4/01/2004
Breakpoint 2 11/05/2008 5/15/2006 5/15/2006
Breakpoint 3 10/18/2010 10/22/2008 10/22/2008
Breakpoint 4 1/21/2013 10/04/2010 10/04/2010
Breakpoint 5 11/07/2012 11/07/2012

Hungary–Germany

Breakpoint 1 3/20/2007 9/25/2006 8/07/2007
Breakpoint 2 12/04/2009 6/05/2009 9/27/2010
Breakpoint 3 12/10/2012 12/07/2012 1/04/2013
Breakpoint 4
Breakpoint 5

Notes: The date is given by Month/Day/Year. We chose the numbers of the breakpoint date according to the SIC.

4.3. Risk Spillovers

Figures 4–6 plot the estimations of ∆CoVaR. Specifically, the blue line reflects the spillover effect
from Germany to the CEEC-3 and the red line reflects the spillover effect from the CEEC-3 to Germany
(The CoVaR estimations are available from the authors upon request). As shown in these figures, the
GAS-based Gaussian copula model was more sensitive than the Gaussian copula model as expected.
Moreover, the empirical evidence indicated that the German systemic risk was low and relatively stable,
while the CEEC-3 systemic risk was high and variant. Specifically, Poland showed the lowest systemic
risk, whereas Hungary showed the highest. Since the impact of the global financial crisis was reflected
in the abrupt increase in the ∆CoVaR value, we observed that the European debt crisis increased the
∆CoVaR value for both the German systemic risk and the CEEC-3 systemic risk. Finally, the ∆CoVaR
of long-term government securities fluctuated more widely than that for short-term government
securities in these countries. These results suggest that the systemic risk is higher for both the CEEC-3
countries and for longer-term bonds.
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Furthermore, our empirical evidence also showed that ∆CoVaR volatility increased substantially
for the countries in crisis. The reason may be the uncertainty of the government securities markets and
implementation of stabilization policies by the European Central Bank and International Monetary
Fund. These actions also provoke sudden changes in investor expectations. All the evidence on the
systemic risk dynamics was consistent with the idea that the crisis not only had spillover effects on
countries with weak economic fundamentals (e.g., Hungary, which had the highest systemic risk), but
also had contagion effects for both the CEEC-3 and Germany.

4.4. Dynamic SJC Copula

To ascertain how these events affected the dependence of the government securities markets in
CEEC-3 and Germany, we employed the dynamic SJC (symmetrized Joe-Clayton) copula proposed by
Patton [17] to investigate positive and negative events. In particular, we examined the dynamic tail
correlations in these markets to find the possibility of contagion or fight to quality. Generally, correlations
exist across the markets, but tail correlations do not. If the tail correlations exist across the markets, the
contagion or fight to quality will more likely occur as the contagion is more likely to be related to the
lower tail dependence, while the fight to quality is more likely to be connected to the upper dependence.
Following Patton [17], the density of the SJC copula is

cSJC

(
u, v|τU , τL

)
= 0.5[cJC

(
u, v|τU , τL

)
+ cJC

(
1− u, 1− v|τU , τL

)
+ u + v− 1] (14)

The SJC copula is symmetric when τU = τL and asymmetric otherwise. To estimate the
time-varying dependence structure for the conditional copula, we assumed that the dependence
parameter was determined by past information and that it followed an autoregressive moving average,
or ARMA (1,10)-type process. Therefore, the dynamics of upper and lower tail dependence can be
expressed as Equations (15) and (16), respectively:

τU
t = ∏ (βSJC

U τU
t−1 + ωSJC

U + γSJC
U

1
10

10

∑
i=1
|ut−i − υt−i|) (15)

τL
t = ∏ (βSJC

L τL
t−1 + ωSJC

L + γSJC
L

1
10

10

∑
i=1
|ut−i − υt−i|) (16)

where ∏ is the logistic transformation to keep τU and τL within the (0, 1) interval. We also estimated
the parameters based on the MSML estimation method.
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Table 6 reports the estimation results. For the copula function, β denotes the degree of persistence
and γ represents the adjustment in the dependence process. As shown in Table 7, the parameters γ

and β are significant only for the Czech Republic and Germany for all maturities, and for Poland and
Germany for the 10-year maturity, suggesting that significant variance and strong dependency existed
over time in these pairs.

Table 7. Estimation results of the SJC copula model.

3-Year 5-Year 10-Year

Czech–Germany

ωU 0.439 (0.302) 0.072 (0.078) 0.041 (0.015) ***
γU −2.671 (0.431) *** −0.368 (0.027) *** −0.196 (0.072) ***
βU 0.914 (0.051) *** 0.988 (0.017) *** 0.991 (0.004) ***
ωL 0.044 (0.059) 0.094 (0.092) 0.079 (0.023) ***
γL −0.203 (0.078) *** −0.453 (0.466) −0.399 (0.176) **
βL 0.995 (0.008) *** 0.986 (0.017) *** 0.988 (0.007) ***

Log-Likelihood 78.469 230.020 352.096

Poland–Germany

ωU −1.035 (0.131) *** −0.180 (0.696) 0.162 (0.065) ***
γU −0.484 (0.465) −0.538 (1.975) −0.961 (0.358) ***
βU 2.106 (2.253) 1.256 (1.353) 0.963 (0.014) ***
ωL −3.912 (3.450) −4.751 (2.950) −1.115 (1.018)
γL −0.917 (1.507) −0.658 (0.900) −9.421 (1.431) ***
βL 0.903 (1.659) 0.356 (0.371) −0.112 (0.237)

Log-Likelihood 2.261 22.933 83.667

Hungary–Germany

ωU −4.377 (1.259) *** −4.849 (3.180) −4.556 (2.918)
γU −1.021 (18.862) −1.132 (26.387) −1.079 (37.612)
βU 0.801 (1.039) 0.707 (0.415) * 0.795 (1.840)
ωL −9.462 (1.007) *** −9.534 (0.980) *** −9.473 (1.071) ***
γL −1.185 (2.827) −1.406 (2.367) −1.351 (5.567)
βL 0.303 (0.111) ** 0.301 (0.106) *** 0.317 (0.154) **

Log-Likelihood −11.042 −17.312 −17.291

Notes: *, **, and *** represent significance at the 10%, 5%, and 1% levels, respectively.

Figures 7 and 8 compare the time paths of the conditional lower and upper tail dependence based
on the SJC copula for Poland and the Czech Republic, respectively. In general, we found that the
conditional upper tail dependence was greater and fluctuated more than the conditional lower tail
dependence for Poland and for the 3- and 5-year government securities markets because the value of ωL

was less than that of ωU . Moreover, the variation degree increased as maturities increased. However, the
conditional upper tail dependence fluctuated less than the conditional lower tail dependence for the
Czech Republic in the 10-year government securities market. In addition, the dynamic process of tail
dependence was not well specified for the Poland–Germany and Hungary–Germany pairs since the
parameters γ and β were insignificant. Thus, they were omitted.

Meanwhile, these results also indicated that the Czech Republic showed the highest dependence
with Germany. In addition, both positive and negative news from Germany significantly affected
dependence, with the former having a larger influence than the latter, which was consistent with the
findings of Yang and Hamori [7]. In contrast to Büttner and Hayo [4] as well as Yang and Hamori [7,8],
however, we provided the dynamic process of dependence between the CEEC-3 and Germany and
showed that the positive and negative news affected dependence dynamically. Figures 7 and 8 also
confirmed that financial contagion occurred during the global financial and European debt crises,
consistent with the evidence provided by Boubakri and Guillaumin [14].
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Figure 8. Dynamic tail correlations between the Czech Republic and Germany. Note: This figure plots
the estimated dynamic tail correlations between the Czech Republic and Germany from the SJC copula
model for 3-year yields (top), 5-year yields (middle), and 10-year yields (bottom).

5. Conclusions

In this study, we investigated the dependence of the government securities markets in the
CEEC-3 and Germany across maturities by employing the GAS-based dynamic Gaussian copula
model. We found a high dependence of these government securities markets in the long maturity,
but low dependence in the short maturity. In addition, the Czech Republic showed the highest
dependence with Germany, while Hungary showed the lowest. Consistent with the findings of Pozzi
and Wolswijk [9], by employing the breakpoint test, we also confirmed that EU accession, the global
financial crisis, and the European debt crisis caused structural changes in the dynamic correlation.

Furthermore, by employing the ∆CoVaR risk measure, we observed that the German systemic risk
was low and relatively stable, while the CEEC-3 systemic risk was high and variant. By considering
different time horizons, we showed that the long-run bond ∆CoVaR was higher than the short-run
bond ∆CoVaR. This evidence on the systemic risk dynamics shows that the crisis not only had spillover
effects on countries with weak economic fundamentals (e.g., Hungary, which has the highest systemic
risk), but also had contagion effects for both the CEEC-3 and Germany.

We also employed the SJC copula to examine the dynamic tail dependence among these countries.
By comparing and contrasting the results from the dynamic Gaussian copula, we found that both
positive and negative news from Germany significantly affected dependence with the Czech Republic,
with the former having a larger influence than the latter. These results also showed that the dependence
structure between the CEEC-3 and Germany was asymmetric. In addition, we confirmed that the
Czech Republic showed the highest dependence with Germany and that financial contagion occurred
during the global financial crisis and European debt crisis.

Our results have at least one implication for policymakers and two implications for investors.
For policymakers, although the integration of the financial markets in the CEEC-3 has decreased since
2008 owing to market segmentation, becoming an EU member has increased the degree of dependence
with European financial markets. For investors, diversification benefits still exist, especially since the
global financial crisis. In addition, the dynamic correlations for these countries are more sensitive to
positive shocks, indicating that government securities markets remain a good investment, even during
a crisis period. Additionally, the risk spillovers from the German government securities market may
not be a large concern when compared with those from the CEEC-3 countries.
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