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Abstract: This study investigates the issue of minimizing the environmental burden of a real
closed-loop supply chain (CLSC), consisting of a pallet provider, a manufacturer and several retailers.
A simulation model is developed under Microsoft Excel™ (Microsoft Corporation, Washington,
US) to reproduce the flow of returnable transport items (RTIs) in the CLSC and to compute
the corresponding environmental impact. Multi-objective optimization, including some relevant
environmental key performance indicators (KPIs), is then carried out exploiting the commercial
software ModeFRONTIER™ (ESTECO S.p.A., Trieste, Italy), to determine the settings that minimize
emissions of the CLSC. In addition, economic and strategic metrics are taken into account in the
optimization, to make the analysis more comprehensive. Three scenarios are considered (one “base”
scenario and two scenarios examined in a sensitivity analysis) with different relative importance
assigned to the metrics subject to optimization. Results show that the asset retrieving operations
contribute to the environmental impact of the system to the greatest extent, mainly because of the
quite relevant distance between Company A and its customers. Conversely, emissions due to the
purchase of new assets contribute to the total environmental impact of the system to a very limited
extent. Because the analysis is grounded on a real CLSC, the results are expected to provide practical
indications to logistics and supply chain managers, to minimize the environmental performance of
the system.

Keywords: closed-loop supply chain (CLSC); returnable transport items (RTIs); environmental impact;
sustainability; simulation; multi-objective optimization; case study

1. Introduction

A closed-loop supply chain (CLSC) is a system where the forward and reverse flows of items occur
and should be managed simultaneously [1,2]. It therefore embodies various reverse logistics practices,
i.e., the collection of returned items from the end-users and the management of their end-of-life through
different decisions, including recycling, remanufacturing, repairing or final disposal [3]. The proper
management of a CLSC requires the design, control and operation of the system to maximize value
creation over the entire life cycle of a product, with dynamic recovery of value from different types
and volumes of returned items.

Returns of items in a CLSC can occur for a number of reasons [4]. Production- and distribution-related
returns [5,6], which are the focus of this paper, reflect the situation where products are returned
by consumers to the vendor within some days after the purchase [7], or where products and/or
components are first remanufactured or recovered, then returned to like-new quality standards [8],
respectively. This paper deals, in particular, with the case of returnable transport items (RTIs), which are
used for internal transport of materials, components, semi-finished products and for the distribution
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of finished products. RTIs are “means to assemble goods for transportation, storage, handling and product
protection in the supply chain which are returned for further usage” [9]. Among RTIs, pallets as well as all
forms of reusable crates, totes, trays, boxes, roll pallets, roll cages, barrels, trolleys, pallet collars, racks,
lids and refillable liquid or gas containers can be mentioned [10]. In a CLSC, RTIs can be handled
either by direct/deferred exchange or by asset pooling [11]. In the latter situation, a pool operator
owns the RTIs and manages their deliveries and returns, while in the former, supply chain players
own some RTIs, which are exchanged among the actors of the chain. The exchange is “direct” if
assets are returned immediately and in the same quantity as that shipped, or “deferred” if the return
is completed later. The direct/deferred exchange is widely adopted by companies, because of its
simplicity and ease of implementation. Moreover, exchanged RTIs can be reused and do not add to
the amount of items to be recycled or destroyed, which is relevant to ensure sustainability of logistics
activities [12] and is crucial to CLSCs [9,13].

In recent years, there has been increasing concern about the environmental impact of supply
chain processes and of CLSCs in particular [12]; this is why CLSCs are becoming more and more
important areas of research [14,15]. Compared to the traditional forward supply chain, CLSCs tend
to save energy, consume less material and be more environmentally friendly [16]. Moreover, they
are attracting attention both in developed countries, because of legislation and social pressures, and
in developing ones, where the adoption of reverse logistics practices may become a leverage of
competitive advantage [17]. Recovering value from returned products and assets is an important
activity of CLSCs from a sustainability perspective [3], since one of the ways to “green” a supply chain
is to involve the players in downstream activities like product or asset recovery [18,19]. In addition,
as asset returns are common in CLSC, these systems should also embody an appropriate asset recovery
strategy [20]. Despite the relevance of these concepts, however, most of the research relating to supply
chain sustainability has been focused on analyzing and greening the forward flows of products, while
it is significantly less frequent that reverse flows of returned items are included in the analysis [21–24].
The aim of this paper is to contribute to the literature by evaluating and minimizing the environmental
impact of an existing CLSC. A simulation model, which takes inspiration from a previous study [25],
is used to support the analysis and specifically to quantify the environmental impact caused by the
key activities of the asset management process. Starting from the previous study, which focused
on evaluating the economic performance of the CLSC, this paper goes ahead by minimizing the
environmental impact of the asset management process in the same system. This paper represents
the second part of a research project whose general aim is to model and optimize the sustainability of
supply chains.

The paper proceeds as follows. Section 2 reviews the literature relevant to this research. Section 3
provides some information about the case study under examination. Section 4 describes the simulation
model developed to evaluate the environmental impact of the targeted CLSC. In Section 5, we describe
the logic used to carry out the simulation and multi-objective optimization. In Section 6, we report
the results of the simulated scenarios, of the optimization procedure and of the solutions ranking.
Section 7 concludes by summarizing the key findings of the study, highlighting the main limitations
and suggesting future research directions.

2. Literature Analysis

The scientific literature on CLSCs offers numerous topics of interest to logistics and production
managers, including the development of methods for vendor selection in reverse logistics [26],
the relationships between CLSCs and third party logistics service providers [27], the product eco-redesign
process and its impact on the performance of a CLSC [28] and the development of taxonomies for
CLSC activities [29]. In line with the aim of this study, the review of the literature was focused on
those papers that developed quantitative models to analyze the sustainability of CLSCs. Georgiadis
and Besiou [30] proposed one of the first examples of these studies. By means of a system dynamics
model, the authors have evaluated the importance of the environmental sustainability strategies
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and the operational features of a CLSC, their interactions and the corresponding impact on the
environmental and economical sustainability of the system, in the context of waste of electric and
electronic equipment. Gao and Ryan [31] have examined a CLSC design problem that takes into
account the impact of carbon emission regulations. The authors considered three regulatory policy
settings, namely: (a) firms are subject to mandatory carbon caps on the amount of carbon they emit;
(b) firms are taxed on the amount of emissions; (c) firms can participate in a carbon cap and trade
system. Shi and Min [32] investigated two critical environmental factors of the product weight
and the collection rate, as well as their environmental consequence on the landfill quantity, in the
context of CLSCs. They modelled three closely related CLSCs, consisting of a manufacturer, who
also recycles the used products, and a collector of used products. Alfonso-Lizarazo et al. [12] showed
how the potential for managing reverse logistics flows could be implemented in the agro-industrial
sector. To this end, they developed a mathematical model that considers simultaneously the forward
and reverse flows in a CLSC of agri-food products and evaluated different scenarios of interactions
between forward and reverse flows. The authors found that taking into account the direct and
reverse flows simultaneously has a positive impact on the economic profits of the CLSC considered.
Hasanov et al. [33] have developed a CLSC model that considers the economic value and energy
content of products. Lot-sizing problems were also investigated thanks to the model. Chen et al. [34]
have examined an integrated CLSC network design problem with sustainable concerns in the solar
energy industry. The authors developed a deterministic multi-objective mixed-integer programming
model which considers the trade-offs between the total cost and the CO2 emissions of the system, with
the aim of capturing both the economic and environmental facets of the problem. Chen et al. [35]
proposed a comprehensive CLSC model, composed of eight players, all operating in the existing
cartridge recycling scenario of Hong Kong. They developed an integer-programming model to study
both the delivery routes of cartridges and the corresponding quantity, and solved it by means of a
two-stage genetic algorithm. A similar analysis was carried out by Garg et al. [36]. These authors
dealt with the environmental issues to be faced in the design of a CLSC network and to this end
modelled a nine-echelon network (four echelons in the forward chain and five echelons in the backward
chain). To assess the environmental impact of the resulting network, they formulated a bi-objective
integer nonlinear programming problem that was solved by means of an interactive multi-objective
programming approach algorithm. Alimorandi et al. [37] modelled a CLSC with recovery options for
treating returned products. The recovery system consists in collection centers, remanufacturing plants
and disposal centers. In a similar study, Govindan et al. [38] have developed a multi-objective mixed
integer mathematical problem for a generic CLSC, to evaluate how a product recovery system helps
improve manufacturing sustainability. The network modelled includes a hybrid manufacturing facility,
a warehouse, some distribution and collection centers and a hybrid recovery facility. Bottani et al. [25]
developed a simulation model to reproduce the reorder process of RTIs in a CLSC and to optimize
the cost of the asset management process. With the purpose of enhancing the return rate of used
products in CLSCs, Dutta et al. [39] developed a recovery framework that makes use of buy-back offer
at retailer level. The proposed recovery framework was integrated with an optimization model for a
multi-period problem under demand and capacity uncertainty.
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Table 1. Closed-loop supply chain (CLSC) models reviewed in this study and contribution of the present study.

Paper Field
Sustainability Perspective

Methodology Main Results
Environmental Economic

Georgiadis and Besiou [30] Waste of electric and electronic
equipment in CLSC x x Extension of a system

dynamics-based model

The production of recycled materials of high quality
improves the economical sustainability and the availability
of natural resources

Gao and Ryan [31] Document-office company
operating in the Iberian market x x Network design Suggestions to balance the trade-offs between usual costs

and the impact of carbon emission regulations

Shi and Min [32] Supply chain
centralization/decentralization x Modelling framework

Evaluation of the impact of supply chain centralization or
decentralization strategies and of the relationships
between government subsidy and fee on these strategies

Alfonso-Lizarazo et al. [12] Palm oil CLSC x Mathematical model Impact of the simultaneous analysis of direct and reverse
flows on the net economic profit of the CLSC

Hasanov et al. [33] Economic value and energy content
of products x Novel modelling framework Suggestions for a SC model that takes into account energy,

transportation and disposal costs

Chen et al. [34] Crystalline solar energy industry x x Deterministic multi-objective
mixed integer programming model

Suggestions for capacity expansion, technology selection,
supply chain design, factory location options and
capacity allocation

Chen et al. [35] Ink-and-toner cartridge delivering
and recycling in Hong Kong x Mix integer linear

programming model Suggestion for integration of forward and reverse flows

Garg et al. [36] Geyser manufacturer CLSC x Interactive multi-objective
programming approach algorithm

The inflow of returns with better recovery options
substantially influences the economic benefit for business
by increasing the demand for new products in first
customer markets

Alimorandi et al. [37] CLSC x A fuzzy mixed integer linear
programming model

Suggestions for a new design of supply chain network in
which waste of materials is minimized and the new raw
materials are necessary only when the used products may
not be recovered

Govindan et al. [38] Case study from an electrical
manufacturing industry x x Multi-objective mixed integer

mathematical problem Suggestions to enhance manufacturing sustainability

Bottani et al. [25]
Manufacturer of fast moving
consumer goods operating in the
North of Italy

x Mathematical model reproduced
on a Microsoft Excel™ simulator

Suggestions for asset management strategies that
minimize the total cost of the CLSC

Dutta et al. [39] CLSC of electronics
products category x Recovery framework Considerations about the profitability of the system as a

function of the probability of product acceptance.

Present study Manufacturer of fast moving consumer
goods operating in the North of Italy x x Mathematical model reproduced on a

Microsoft Excel™ simulator
Suggestions to minimize the environmental impact of the reverse
logistics activities of RTI in a CLSC
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Table 1 summarizes the main studies about CLSC networks, along with their aim and characteristics.
All the papers listed in Table 1 proposed quantitative models for CLSCs, which highlights the interest
toward a quantitative analysis of these systems. However, some gaps exist. More specifically, most of
the studies reviewed addressed mainly the economic perspective of sustainability, while only few of
them (e.g., [34,36]) tried to model the environmental impact of CLSCs. However, evaluating also the
environmental burden of logistics activities is an increasingly important topic, as these activities are
likely to generate undesired by-products, such as inefficient (or excessive) use of fossil fuels and their
CO2 emissions [12,24,40]. Secondly, the case of RTIs management is not much explored in literature,
despite the fact that RTIs are always subject to forward and reverse flows (as they are expected to
be returned after usage) and therefore represent typical items to be managed in a CLSC. This paper
contributes to the literature by addressing these gaps, in that it proposes a detailed evaluation of the
environmental impact of a CLSC, targeting a real case of RTIs management, and suggests ways to
minimize it.

3. Case Study

As mentioned, this paper builds upon the study by Bottani et al. [25] and focuses on the same
CLSC, which includes a manufacturer, an asset (pallet) provider and seven customers (retail stores).
For the sake of clarity, a short description of the CLSC analyzed is provided in the following; for further
details, the reader is referred to Bottani et al. [25].

The manufacturer, which will be referred to as “Company A”, is a fast moving consumer goods
producer, operating in the north of Italy. Company A is the focus of the analysis, as it owns a stock
of proprietary RTIs (pallets), manages their forward and reverse flows in the CLSC and is therefore
responsible for the environmental impact of the asset management process. To be more precise,
Company A receives orders of finished products from its customers and fulfils them by preparing and
shipping stock keeping units (SKUs), which require a corresponding amount of empty pallets. SKUs
are then loaded into trucks and shipped to the customers. Shipments are performed by road using
33-pallet lorries. At the delivery point, the palletized SKUs are unloaded and stored in the customer’s
warehouse. Company A adopts the “deferred exchange” practice for asset recovery. This means that,
in general, customers are unable to immediately return the whole amount of pallets received and
typically return only some empty pallets, available at their warehouse when a shipment is received.
To retrieve the remaining pallets, Company A needs to organize dedicated trips to its customers.
Retrieving activities, however, do not ensure that the whole amount of pallets will be recovered: more
precisely, Company A estimates that it loses approximately 2.5% of the pallets shipped per retrieving
cycle. A further quota of pallets (1%) should be replenished annually due to damages. In managing
the assets flow, Company A should finally avoid the occurrence of out-of-stock situations, because lack
of pallets in stock means that the company is not able to ship the finished products to its customers,
resulting in a sale loss. To avoid out-of-stock situations, Company A can either recover assets from
its customers, purchase new assets from the pallet provider through regular orders or purchase new
assets with urgency.

The process described above causes environmental emissions because of transport activities from
Company A to its customers (shipments), from the pallet provider to Company A (regular order or
urgent order) and from the customers to Company A (retrieving). A further environmental impact of
the system modelled is caused by the assets lost or damaged, which can be considered in the same
way as for wasted pallets.

4. Modelling Framework

4.1. Computation of the Environmental Emissions

According to Eriksson et al. [41], the environmental impact of transport activities should include
CO2, NOx and SOx emissions. The unitary (i.e., kg/km) values of NOx and SOx emissions are
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significantly lower than that of CO2 emissions; more precisely, they account for 0.00021 kg/km and
0.00008 kg/km on average for a heavy vehicle, while for the same kind of vehicle, CO2 emissions
account for 0.699 kg/km (≈3000 times as much) [42]. Nonetheless, the effect of NOx and SOx on the
environment is relevant, as these pollutants can cause acidification of surface water and soil, damages
to forests and coastal eutrophication [43]. Looking at the effect on the human population, NOx and
SOx are responsible for respiratory illness, such as asthma and bronchitis [43]. Therefore, in the model
we have computed the CO2, NOx and SOx emissions of transport activities.

As far as the lost and damaged pallets are concerned, their environmental impact takes into
account the CO2 emissions only, according to Carraro et al. [44]; in particular, it is estimated by
calculating the CO2 eq. produced in pallet manufacturing, maintenance and end-of-life.

The relevant equations for the computation of the environmental emissions were added to the
model developed by Bottani et al. [25] to describe the flow of assets in a CLSC, using the notation in
Table 2. Such flow is controlled by two variables, denoted as OP and MPQ. OP is the reorder point of
the traditional economic order quantity (EOQ) policy [45] and triggers the decision of replenishing
the stock of assets; MPQ, instead, reflects the minimum amount of pallets that should be available
at a customer’s site to trigger the retrieving process. For the sake of brevity, the description below is
limited to the equations that were added to the original model with the purpose of computing the
CO2 eq. emissions of the CLSC.

Table 2. Nomenclature (partially taken from Bottani et al. [25], with permission from Elsevier).

Symbol Description Unit of Measurement

Indexes
i delivery point (i = 1, . . . 7) -
n truck (n = 1, . . . ntruck) -
t simulation day (t = 0, . . . Ndays) -
e type of environmental emission (e = 1 for CO2; e = 2 for NOx; e = 3 for SOx) -

Subscripts
L, D lost or damaged pallets -

r, s, p_u, p_r recovery, shipment, urgent purchase, regular purchase -
Tot Total -
DP delivery point -
A Company A -

Prov pallet provider -

Superscripts
P “physical” -
T “theoretical” -

Simulation parameters
Ndays simulation duration (days)

Delivery point parameters
ODP,i(t) order issued (pallets)
RDP,i∗(t) amount of assets retrieved (pallets)
%L, %D percentage of assets lost and damaged (%)

dA,i distance between delivery point i and Company A (km)

Company A parameters
Ndays/year working days per year (days)

SA,i(t) amount of assets shipped to delivery point i (pallets)
IP
A(t), IT

A(t) physical and theoretical stock of assets (pallets)
OA(t), UOA(t) amount of assets purchased through a regular or urgent order (pallets)

PA(t) amount of proprietary assets (pallets)
dA,prov distance from Company A to the pallet provider (km)

OP order point (pallets)

MPQ minimum picked quantity (minimum amount of assets to be collected
through retrieving operations) (pallets)

Environmental parameters (kg CO 2 eq./pallet)
Ipallet CO2 emissions of a lost/damaged pallet (kg CO 2 eq./pallet)

LF load factor of a truck (%)
IFLTe emissions type e of a full load truck (kg/km)

Other parameters
n(pallets/truck),s
n(pallets/truck),r

amount of palletized SKUs that can be loaded on a truck during shipment
and retrieving (pallets/truck)
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Start of the process. At time t, Company A receives orders from its customers and checks whether
the amount of orders received can be fulfilled exploiting the “physical” stock of assets. If the stock
is sufficient (i.e., IP

A(t − 1) ≥ ∑7
i=1 ODP,i(t)), Company A will follow the order fulfilment process

(Branch 1); otherwise, it will incur an out-of-stock situation (Branch 2).
Branch 1—order fulfilment. To fulfil the request, Company A will prepare the order, load the trucks

and ship the pallets to its customers. This causes emissions in the environment, which depend on the
type of truck used and on its saturation level. Indeed, it can always happen that the 33-pallet lorry used
for shipping is not fully saturated (LF < 100%). Infras [46] estimates that the fuel consumption and
therefore the emissions of an empty (LF = 0%) truck of gross weight 24–40 tons account for approx.
61% of those of a full load (LF = 100%) truck. For intermediate values of LF, the impact of a truck can
be estimated using Equation (1):

LF × IFLTe + (1 − LF)× 0.61 × IFLTe, (1)

where IFLTe indicates the amount of emissions type e of a full load truck [47]. To calculate the
saturation and the emissions of the trucks used to ship the SKUs to the delivery points, the number of
vehicles required for shipment at customer i, ntrucks,i should be first estimated; the following equation
can be used:

ntrucks,i =
⌈

SA,i(t)/n(pallets/truck),s

⌉
, (2)

where n(pallets/truck),s is a fixed quantity describing the amount of palletised SKUs that can be loaded
on a 33-pallet truck during shipping. Obviously, the result of Equation (2) should be rounded up to the
next whole number; for example, a result of 1.76 means that 2 trucks are required for the shipment.
The average saturation of the trucks used for shipment at customer i at time t, %SA,i(t), is computed
starting from the total amount of pallets loaded on a truck of given capacity and from the number of
pallets shipped, as follows:

%SA,i(t) =

[
SA,i(t)/n(pallets/truck),s

]
ntrucks,i

, (%) (3)

The unitary emission type e of truck n during shipping at customer i, ISA,n,i,e(t) can be computed
as follows:

ISA,n,i,e(t) = %SA,i(t)× IFLTe + (1 − %SA,i(t))× 0.61 × IFLTe, (kg/(km·day)) (4)

The overall emissions type e of a shipment at time t is finally obtained by adding up the
contribution of each truck and taking into account the transport distance, as follows:

ISA,e(t) = ∑ 7
i=1[∑

ntrucks,i
n=1 (ISA,n,i,e(t)× dA,i)], (kg/day) (5)

Further emissions relating to the shipment activities are due to the quota of assets lost and
damaged, which, as mentioned, can be considered in the same way as wasted pallets. At day t, their
environmental impacts, in terms of CO2 emissions, can be calculated as follows:

IL(t) = %L × Ipallet × ∑ 7
i=1SA,i(t), (kg CO2 eq./day) (6)

ID(t) =
%D × Ipallet × ∑7

i=1 SA,i(t)
Ndays/year

, (kg CO2 eq./day) (7)

Product shipment causes the update of the assets inventory at Company A, which will then check
whether the stock is lower than OP. If IT

A (t) > OP, Company A will not need to replenish its stock of
assets (Branch 1.1); otherwise, it will follow the replenishment procedure (Branch 1.2).
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Branch 1.1—no replenishment. If the stock of pallets is not replenished, there are no transport
activities and therefore the emissions associated with this branch score zero.

Branch 1.2—asset replenishment. If Company A needs to replenish its stock of pallets, transport
activities are required, because of either retrieving operations or regular orders. To be more precise,
in the case that one (or more) customers own more than MPQ assets in its stock, the Company will
start the retrieving process (Branch 1.2.1); otherwise, it will order new assets (Branch 1.2.2).

Branch 1.2.1—retrieving process. Once the customer i∗ from which empty assets should be retrieved
has been chosen, Company A should estimate the number of vehicles needed for retrieving (ntrucks,r),
their LF and their emissions. The former is computed applying the following expression:

ntrucks,r =
⌈

RDP,i∗/n(pallets/truck),r

⌉
(8)

where n(pallets/truck),r is a fixed quantity describing the amount of empty pallets that can be loaded
on a 33-pallet lorry (i.e., 500 pallets). Again, the result of Equation (8) should be rounded up to the
next whole number. The average saturation of the trucks used in the retrieving process %Sr(t) can be
derived starting from the amount of pallets loaded on each truck and the amount of pallets recovered,
as follows:

%Sr(t) =
(

RDP,i∗/n(pallets/truck),r

)
/ntrucks,r (%) (9)

The unitary emission type e of truck n during retrieving operations IRn,e(t) can be finally
computed as follows:

IRn,e(t) = %Sr(t)× IFLTe + (1 − %Sr(t))× 0.61 × IFLTe (kg/(km·day)) (10)

The emission type e of all the trucks used to retrieve the pallets from customer i∗ at time t is finally
obtained by adding up the contribution of each truck and taking into account the transport distance,
as follows:

IRe(t) = (∑ ntrucks,r
n=1 IRn,e(t))× dA,i∗ (kg/day) (11)

Branch 1.2.2—reorder process. In line with the EOQ policy, the amount of new pallets purchased
by means of a regular order is fixed and accounts for OA(t) = OA = 500, which reflect the maximum
number of empty pallets that can be loaded on a 33-pallet lorry. Therefore, %Sp_r(t) always score 100%
and ntrucks,p_r always score 1 in this process. The amount of emissions of type e generated by a regular
order at time t thus accounts for

IPr,e(t) =
[
%Sp_r(t) × IFLTe +

(
1 − %Sp_r(t)

)
× 0.61 × IFLTe

]
× dA,prov (kg/day) (12)

Branch 2—out-of-stock. In the case IP
A(t − 1) < ∑7

i=1 ODP,i(t), Company A will incur an out-of-stock
situation and will place a urgent order to the pallet provider. In line with the aim of minimizing
the environmental impact of the CLSC, in the model it is assumed that UOA(t) = UOA = 500,
meaning that whenever an urgent order is required, the transport will be a full truck load. This is
expected to decrease the number of transports required and consequently their environmental impact.
Hence, as per branch 1.2.2, in this process %Sp_u(t) and ntrucks,p_u always score 100% and 1 respectively.
The amount of emissions of type e caused by an urgent order at time t thus accounts for:

IPu,e(t) =
[
%Sp_u(t)× IFLTe +

(
1 − %Sp_u(t)

)
× 0.61 × IFLTe

]
× dA,prov (kg/day) (13)

Figure 1 summarizes the environmental impacts generated in each branch of the decision process.
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4.2. Environmental Key Performance Indicators

The following key performance indicators (KPIs), averaged on Ndays, are used to assess the
environmental performance of the CLSC.

(1) Total impact of retrieving for emissions of type e (IRTOT,e):

IRTOT,e =
∑

Ndays
t=0 IRe(t)

Ndays
(kg/day) (14)

(2) Total impact of shipments for emissions of type e (ISTOT,e):

ISTOT,e =
∑

Ndays
t=0 ISA,e(t)

Ndays
(kg/day) (15)

(3) Total impact of purchase for emissions of type e (IPTOT,e):

IPTOT,e =
∑

Ndays
t=0 IPr,e(t) + IPu,e(t)

Ndays
(kg/day) (16)

(4) Total impact of lost and damaged pallets (IpalletTOT):

IpalletTOT =
∑

Ndays
t=0 IL(t) + ID(t)

Ndays
(kg CO2 eq./day) (17)

(5) Total environmental impact of the CLSC for emissions of type e (ITOT,e), computed by adding up
the contributions listed above, as follows:

ITOT,e =

{
IRTOT,e + ISTOT,e + IPTOT,e + IpalletTOT for e = 1 (kg CO2 eq./day)

IRTOT,e + ISTOT,e + IPTOT,e for e = 2, 3 (kg/day)
(18)
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4.3. Strategic and Economic Performance

Besides the environmental performance, some further economic and strategic KPIs were to assess
the efficiency of the asset management process of Company A. Such KPIs reflect those already detailed
in Bottani et al. [25]; hence, in the following paragraphs we simply define them, without proposing a
detailed computational procedure, which can be found in the previous paper.

The main economic performance of the CLSC is the total cost (Ctot) Company A incurs in
managing the flow of assets. For the CLSC considered, Ctot takes into account the cost of retrieving
assets from the delivery points, the cost of purchasing new assets (by means of regular or urgent
orders), the cost of holding the stock of assets and the opportunity cost. Although the economic
performance is not the main focus of this study, from a strategic point of view computing Ctot allows
the observation of how the cost of the CLSC varies when trying to optimize its environmental impact.

Further strategic KPIs considered are:

(1) The amount of proprietary assets (PA), which reflects the average number of pallets owned by
Company A and is expressed in (pallets);

(2) Asset rotation (AR), i.e., the number of times per year that the pallet stock rotates. It is expressed
in (year−1);

(3) Pallet utilization rate (U%), computed as the ratio between the time (days) of real usage of the
asset in the CLSC, either at the delivery point or in transportation activities, and its cycle time
(days), which measures the time required for an asset to complete a cycle in the CLSC considered
(i.e., from Company A to the customer and back to Company A);

(4) Out of stock (OOS), which provides a quantitative measure of those critical situations where
Company A does not have pallets available to ship products to its customer (days/year).

4.4. Input Data

To apply the model described in the previous sub-sections, several input data were collected, by
means of the direct examination of Company A and from other available sources. The full list of input
data is provided in Table 3.

Table 3. Input data (partially taken from Bottani et al. [25], with permission from Elsevier).

Parameter Numerical Value Measurement Unit Source

Ndays/year 260 (days) Company A
OA = UOA 500 (pallets) Company A

%L 2.5% - Company A
%D 1% - Company A

dA,i
362 (i = 1); 358 (i = 2); 606 (i = 3); 352 (i = 4);

232 (i = 5); 934 (i = 6); 632 (i = 7) (km) Company A

dA,prov 38 (km) Company A
n(pallets/truck),r 500 (pallets/truck) Company A
n(pallets/truck),s 33 (pallets/truck) Company A

Ipallet 7.16 (kg CO 2 eq./pallet) [44]
IFLT1 0.699 (kg CO2/km) [42]
IFLT2 0.21 × 10−3 (kg NOx/km) [42]
IFLT3 0.08 × 10−3 (kg SOx/km) [42]

4.5. Software Implementation

The set of equations described in Sections 4.1–4.3 was implemented in a Microsoft Excel™
simulation model, which consists of two spreadsheets. The first one is the complete database of
the inbound/outbound flows of assets recorded by Company A in 2016, including the forward
shipments to the customers and the reverse flows of the assets returned. In this spreadsheet, the
environmental impacts of the retrieving process are also computed (Equations (8)–(11)). The second
spreadsheet reproduces the flow of assets in the CLSC and computes the environmental impacts of
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shipments, purchases and losses/damages of assets (Equations (1)–(7), (12) and (13)). In the same
spreadsheet, the KPIs related to the environmental performance of Company A (Equations (14)–(18))
and the economic/strategic KPIs are also calculated. As far as the OP and MPQ parameters are
concerned, simulation was used to vary them in a range of suitable values (from 50 to 1200, step 5) to
determine the setting that optimizes the overall performance of the CLSC.

5. Optimization and Ranking Procedures

5.1. Optimization Procedure

As already mentioned, the system under examination generates emissions because of transport
activities from Company A to its customers (shipments), from the pallet provider to Company A
(regular order or urgent order) and from the customers to Company A (retrieving); a further
environmental burden is caused by the amount of assets lost or damaged. A multi-objective
optimization procedure was set up using the commercial software ModeFRONTIER™ release 4.6.2
(Esteco S.p.A.), to:

• minimize the emissions of the system;
• minimize the occurrence of out-of-stock situations;
• maximize the use of assets;
• maximize the number of rotations of assets.

As far as the emissions are concerned, the CO2 emissions (i.e., ITOT,1) are set as the KPI to
be minimized, for simplicity; therefore, the results reported in section 6.1 refer to this specific KPI.
Nonetheless, minimizing the CO2 emissions is expected to lead to the minimization of the whole
environmental impact of the system (i.e., of NOx and SOx emissions too), as the computational
procedure is the same for the three types of emissions. Therefore, NOx and SOx emissions are likely to
exhibit the same trend as the CO2 emissions.

ModeFRONTIER™ was integrated with the Microsoft Excel™ simulation model, by setting the
input data in Table 3 and defining the range for the OP and MPQ variables. A constraint on the
maximum number of proprietary pallets (PA < 3000) was introduced in the simulation, to take into
account the fixed storage capacity of Company A. The solutions returned by ModeFRONTIER™ are
marked as “feasible” (green dots in Figures 2–5) if they satisfy this constraint and “unfeasible” (yellow
dots) otherwise. Finally, only integer values were allowed for PA, OP and MPQ.

According to the list proposed above, the main outputs returned by the simulation are ITOT,1,
OOS, AR and U%. Further outcomes provided are ISTOT,1, IpalletTOT and IPTOT,1; however, these
KPIs are not taken into account in the optimization procedure, because the Company has a limited
control over them. In fact, ISTOT,1 depends only on the demand for finished products and therefore
cannot be modified by Company A; similarly, IpalletTOT depends on the percentage of assets lost or
damaged by the customers, over which Company A has no control. IPTOT,1, instead, is not taken into
account in the optimization procedure because it has a very low value compared to the remaining
environmental KPIs (as it will be shown later in the paper); minimizing this component would not
lead to significant savings in the environmental emissions of the system.

A two-stage optimization procedure was implemented on ModeFRONTIER™; that procedure
consists in the preliminary application of the Design of Experiments (DOE) technique and then in
the use of a genetic algorithm. To be more precise, in the DOE stage only the boundary values and
the intermediate value of OP and MPQ (i.e., 50, 625 and 1200) were considered, resulting in a 32

full factorial design. Outcomes of the DOE provided some preliminary insights about the solution
space and were used to guide the non-dominated sorting genetic algorithm (NSGA-II) towards the
optimal solution in the second stage of the optimization. The NSGA-II was selected after a preliminary
testing of two additional algorithms, i.e., the multi-objective genetic algorithm (MOGA) and real-coded
multi-objective genetic algorithm (ARMOGA). The preliminary testing showed that the NSGA-II was
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more effective than the remaining algorithms with respect to the computational time, as it explored
a lower number of solutions (261 vs. more than 900), without a significant difference in the results
returned. This is consonant with the better performance of the NSGA-II in converging near the
true Pareto-optimal front compared to other evolutionary algorithms [48]. Overall, the number of
configurations simulated is 270 per scenario, which is significantly less than the number of simulations
required if the model was simply run under Microsoft Excel™ by varying the OP and MPQ in their
range of values (i.e., 231 × 231 = 53, 361 simulations).

The optimization procedure was run on an Intel® Xeon®E3, 16 GB RAM desktop equipped with
Windows 7 Professional. Simulating each scenario (with Ndays = 20,000) required approximately 1 h
and 2 min.

5.2. Ranking Procedure

As a last step, the multi-criteria decision making (MCDM) tool of ModeFRONTIER™ was
exploited to rank the feasible configurations on the basis of their score against the objectives set in the
optimization, to enable an effective final choice of the dyad MPQ-OP which returned the best solutions
in terms of all the relevant KPIs. A linear MCMD model was chosen to rank the configurations, as
it is the simplest approach to ranking. This approach computes a sort of weighted sum of the scores
of each KPI subject to optimization, after the user has set a relative importance (weight) for the KPIs.
In the “base” configuration, the highest relative importance was assigned to the total CO2 emissions
(0.40), in line with the focus of the study, and to the OOS(0.40), because configurations that avoid the
occurrence of out-of-stock situations should be preferred for a practical implementation at Company
A. The lowest weights (0.10) were assigned to AR and U%.

However, because determining the relative importance of the KPIs is a subjective process, two
additional scenarios were analyzed in a sensitivity analysis, with different weights assigned to the
KPIs. The weights set in these scenarios are:

• 0.25 for all the KPIs. This scenario should capture the situation where Company A attributes the
same importance to all KPIs considered in the optimization;

• 0.40 for AR and U% and 0.10 for the total environmental impact and for the OOS. This scenario
should capture the situation where Company A attributes the highest importance to the strategic
KPIs, while the environmental impact is perceived as less important.

6. Results

6.1. Simulation Results

The main results of the simulation runs are reported in the form of trend of the KPIs chosen for the
optimization as a function of two problem variables, i.e., OP and MPQ. Such representation is effective
in highlighting the impact of these parameters on the environmental performance of the system.
A correlation analysis on the simulation outcomes was also performed to help identify relationships
among the variables and the KPIs.

The trends of U%, AR, OOS and ITOT,1 as a function of OP and MPQ are proposed in Figures 2–5.
Starting from the environmental KPI, from Figure 2a it can be seen that ITOT,1 varies approximately

from 75 to 150 kg CO2 eq./day, while solutions with ITOT,1 < 75 kg CO2 eq./day are all unfeasible.
The design space includes (feasible) solutions with the same ITOT,1 (e.g., 75 kg CO2 eq./day), which
stem from very different values of OP (from 150 up to 1200 pallets). Similarly, the same value of OP
(e.g., 150 or 450 pallets) generates very different ITOT,1. Therefore, the relationships between these
parameters are not immediately easy to identify. The correlation analysis confirms this consideration:
indeed, the correlation between OP and ITOT,1 is very weak (0.09). Figure 2b shows, instead, a clear
relationship between ITOT,1 and MPQ. More precisely, the increase in MPQ involves a corresponding
decrease in ITOT,1, which is confirmed by the quite strong negative correlation (−0.68) between these
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variables. When MPQ is higher, Company A will use recovery operations less frequently, resulting in
lower CO2 emissions of the retrieving activities and in a better environmental performance.

With respect to the strategic KPIs, Figure 3a shows that the highest AR (>200 rotations/year)
is obtained with OP ≈ 150–200 pallets. Solutions with OP < 100 pallets are almost all unfeasible.
In general, it is reasonable to expect that the increase in OP involves a corresponding increase in
the number of PA. This, in turn, increases the cycle time of assets, worsening the AR. This is
confirmed by the negative correlation between these variables (−0.66). The relationship between AR
and MPQ (Figure 3b) is very similar (−0.49). When the MPQ is higher, Company A will reduce the
recovery operations and will probably increase the number of orders, resulting in a higher PA and thus
decreasing the usage of each asset.
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Figure 2. Trend of ITOT,1 [kg CO2 eq./day] as function of OP (a) and MPQ (b).
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Figure 5. Trend of U% [%] as function of OP (a) and MPQ (b).

The relationship between OOS and OP is evident from Figure 4a and quite easy to explain. Higher
OP generates higher inventory available when orders are placed and therefore, out-of-stock situations
are less likely to occur. Accordingly, these variables exhibit a negative correlation (−0.59). From
Figure 4a it can also be seen that configurations with OP > 250 pallets always generate null (or almost
null) OOS, which is an important evidence for Company A. Conversely, with values of OP from 100 to
200 pallets OOS situations are particularly likely to occur, although the resulting configurations are
unfeasible. The relationship between OOS and MPQ is slightly less evident (Figure 4b). In general,
lower MPQ seems to generate higher OOS, probably because higher MPQ involves a higher PA, thus
making OOS situations less likely to occur. Nonetheless, it should also be noted that, in feasible
configurations, stock-out situations are very unlikely to occur, as their maximum value is 2 days/year.
The low correlation coefficient (−0.14) confirms a weak relationship between these variables.

Figure 5a shows that U% tends to decrease with the increase in OP. Increasing OP causes a
corresponding increase in the number of PA and, consequently, a higher cycle time of assets. Since U%
is inversely proportional to the cycle time, it decreases accordingly. The two variables thus exhibit a
strong negative correlation (−0.81). Conversely, the relationship between U% and MPQ (Figure 5b)
seems to be opposite, i.e., the increase in MPQ involves a corresponding increase in U%. However,
this relationship is weaker than the previous one (0.31).

6.2. Multi-Criteria Ranking

The solutions described in the previous paragraph were subject to multi-criteria ranking using
the linear MCDM tool of ModeFRONTIER™. We start by considering the “base” scenario, in which
the highest importance (0.4) is assigned to the environmental KPI and the OOS, while the importance
of the remaining KPIs is set at 0.1. Table 4 shows an extract of the top-5 simulation runs after ranking.

From Table 4 it is easy to see that the top-5 configurations are similar in terms of all environmental
emissions (ITOT,1, ITOT,2 and ITOT,3), which confirms that these KPIs follow the same trend. ITOT,1,
which was subject to minimization, turns out to be in the range 75.50 to 76.43 kg CO2 eq./day. It is
also easy to see that, as already recalled, IpalletTOT does not vary as a function of OP and MPQ, as it
depends only on the amount of pallets lost and damaged. Such contribution accounts for approximately
38.28% of the total CO2 emission of Company A. ISTOT,e does not vary either, as shipments are triggered
by the customers’ demand and as such do not depend on OP and MPQ.

In all the top-5 configurations, IPTOT,e is almost constant; IPTOT,1 for instance, always accounts
for 0.23 kg CO2/day, corresponding to approximately 0.30% of the total CO2 emissions of the
system. IPTOT,2 and IPTOT,3 account, instead, for approximately 0.50% of ITOT,2 and ITOT,3, respectively.
Therefore, purchasing activities have very limited impact on the environmental performance of the
CLSC. The last environmental KPIs, i.e., IRTOT,e, turns out to be the most important quota of the
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environmental emissions of the CLSC. To be more precise, IRTOT,1 ranges from 42.76 to 43.69 kg CO2

eq./day, corresponding to 56–57% of ITOT,1; the contribution of IRTOT,2 and IRTOT,3 to ITOT,2 and ITOT,3
is even higher (ca. 91%). This suggests that minimizing ITOT,e basically corresponds to minimizing
IRTOT,e for the system considered.

With respect to the strategic KPIs, the top-5 configurations do not exhibit a significant difference
in terms of OOS, which accounts for 0.15 days/year in the first two configurations and is null in
the remaining ones. Despite an OOS greater than 0, the first ranked configuration, obtained setting
OP = 175 and MPQ = 360 pallets, shows a very high AR and a good U%. Configurations 196, 237 and
170 are instead interesting because of the null OOS, which could be of practical interest to Company A;
however, AR and U% are slightly worse compared to the first two ranked configuration.

6.3. Sensitivity Analysis

We now consider the case of a change in the relative importance of the KPIs subject to optimization,
to highlight possible modifications in the asset management strategy of Company A as a function of
the weights assigned to these KPIs.

We begin by analyzing the situation in which the same relative importance (i.e., 0.25) is assigned to
all the KPIs subject to optimization; with these weights, the top-5 configurations resulting after ranking
are proposed in Table 5. As Table 5 shows, in the case all the KPIs are given the same importance, the
results are quite variable in terms of the total environmental emissions (IPTOT,1, ITOT,2 and ITOT,3),
OOS and AR. Moreover, the top-5 configurations all exhibit a non-null OOS, meaning that if Company
A is interested in enhancing also AR and U%, the occurrence of stock-out situations cannot be avoided.
Looking, for instance, at the CO2 emissions (ITOT,1), it can be noticed that they are significantly higher
in this scenario than in the “base” scenario, with a peak of 102.6 kg CO2 eq./day in the third ranked
configuration. Once again, this is due to the relevant contribution of IRTOT,1. AR and U% improve
significantly compared to the “base” scenario, reaching ca. 150 rotations/year and 88.3% respectively
in the first ranked configuration.

It is interesting to note that configuration 154 ranked fourth in this scenario and first in the “base”
scenario; this suggests that this configuration returns performance values that are quite robust with
respect to the weights assigned to the KPIs.

A further interesting point is that, apart from configuration 154, all the remaining configurations
are obtained setting a quite low MPQ (from 120 to 265 pallets). Because of the low MPQ, from a
practical point of view it could be hypothesized that Company A would be able to carry out retrieving
operations using low capacity vehicles. These vehicles produce less CO2 compared to 33-pallet lorries
(whose use has been hypothesized in this study); therefore, the real environmental impact could be
lower than that estimated by our model.

Table 6 shows the results obtained in the case the highest importance (0.4) is assigned to AR
and U%, while less importance (0.1) is assigned to ITOT,1 and OOS. As it is reasonable to expect,
the top-5 configurations all exhibit a very good AR (around 200 rotations/year), which involves a
limited amount of proprietary assets (ca. 1000 pallets at maximum). The environmental emissions
in this situation are not optimized, because, with fewer pallets, Company A should organize very
frequent collections of pallets from the customers’ sites. Nonetheless, as per the previous case, the
MPQ of the top ranked configurations is quite low, which suggests that Company A could carry out
retrieving operations using low capacity vehicles, resulting in reduced CO2 emissions compared to
those computed using our model. Finally, the results in Table 6 confirm that when maximizing R and
U%, out-of-stock situations are more likely to occur.
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Table 4. Top-5 configurations of the “base” scenario after ranking.

Decision Variables Strategic KPIs CO2 eq. (kg/day) NOx (g/day) SOx (g/day)

Configuration ID OP MPQ OOS AR U% PA IRTOT,1 IPTOT,1 IpalletTOT ISTOT,1 ITOT,1 IRTOT,2 IPTOT,2 ISTOT,2 ITOT,2 IRTOT,3 IPTOT,3 ISTOT,3 ITOT,3 Ctot

154 175 360 0.15 111.63 87.15 2047 42.76 0.23 28.90 3.61 75.50 12.80 0.07 1.08 14.00 4.80 0.03 0.14 5.33 179.28
262 195 400 0.15 100.80 86.85 2253 43.69 0.23 28.90 3.61 76.43 13.10 0.07 1.08 14.27 5.00 0.03 0.14 5.43 184.07
196 335 360 0.00 79.372 82.78 2205 43.05 0.23 28.90 3.61 75.79 12.90 0.07 1.08 14.08 4.90 0.03 0.14 5.36 184.31
237 345 370 0.00 76.41 82.23 2262 43.07 0.23 28.90 3.61 75.81 12.90 0.07 1.08 14.09 4.90 0.03 0.14 5.36 184.47
170 375 360 0.00 73.19 81.46 2228 43.18 0.23 28.90 3.61 75.92 12.90 0.07 1.08 14.13 4.90 0.03 0.14 5.38 185.28

Table 5. Top-5 configurations after ranking with modified weights—first scenario.

Decision Variables Strategic KPIs CO2 eq. (kg/day) NOx (g/day) SOx (g/day)

Configuration ID OP MPQ OOS AR U% PA IRTOT,1 IPTOT,1 IpalletTOT ISTOT,1 ITOT,1 IRTOT,2 IPTOT,2 ISTOT,2 ITOT,2 IRTOT,3 IPTOT,3 ISTOT,3 ITOT,3 Ctot

209 145 215 0.82 149.79 88.29 1467 48.17 0.23 28.9 3.61 80.91 14.47 0.07 1.08 15.62 5.51 0.03 0.14 5.95 202.03
61 145 240 0.82 147.05 88.21 1500 46.69 0.23 28.9 3.61 79.43 14.02 0.07 1.08 15.18 5.34 0.03 0.14 5.78 195.72
246 175 120 0.07 177.05 84.9 972 69.32 0.23 28.9 3.61 102.06 20.83 0.07 1.08 21.97 7.93 0.03 0.14 8.37 288.01
154 175 360 0.15 111.63 87.15 2047 42.76 0.23 28.9 3.61 75.5 12.80 0.07 1.08 14.00 4.80 0.03 0.14 5.33 179.23
91 145 265 0.89 135.51 88.19 1714 44.99 0.23 28.9 3.61 77.73 13.52 0.07 1.08 14.67 0.14 0.03 0.14 5.59 188.56

Table 6. Top-5 configurations after ranking with modified weights—second scenario.

Decision Variables Strategic KPIs CO2 eq. (kg/day) NOx (g/day) SOx (g/day)

Configuration ID OP MPQ OOS AR U% PA IRTOT,1 IPTOT,1 IpalletTOT ISTOT,1 ITOT,1 IRTOT,2 IPTOT,2 ISTOT,2 ITOT,2 IRTOT,3 IPTOT,3 ISTOT,3 ITOT,3 Ctot

130 135 60 1.93 210.9 89.28 967 70.64 0.23 28.9 3.61 103.38 21.22 0.07 1.08 22.38 8.09 0.03 0.14 8.52 299.89
62 145 60 1.63 211.25 87.83 919 79.03 0.23 28.9 3.61 111.77 23.74 0.07 1.08 24.90 9.05 0.03 0.14 9.48 335.18
78 135 85 1.93 196.68 90.39 1051 63.12 0.23 28.9 3.61 95.86 18.96 0.07 1.08 20.12 7.22 0.03 0.14 7.66 268.14
123 135 80 1.93 200.95 88.96 1030 68.1 0.23 28.9 3.61 100.84 20.46 0.07 1.08 21.61 7.79 0.03 0.14 8.23 288.14
191 145 50 2.01 211.93 87.7 886 80.97 0.23 28.9 3.61 113.71 24.33 0.07 1.08 25.48 9.27 0.03 0.14 9.71 344.01
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7. Conclusions

This paper has proposed an analysis of the environmental emissions caused by the asset management
process of a real CLSC, consisting of a pallet provider, a manufacturer (Company A) and several
retailers. The analysis was supported by a Microsoft Excel™ model, which computes the CO2, NOx

and SOx emissions of the system on the basis of the flows of asset. This model was integrated
with ModeFRONTIER™ in a multi-objective optimization procedure, which took into account
these emissions and some strategic KPIs of Company A. The multi-objective optimization targeted,
in particular, the minimization of the CO2 emissions, coupled with the minimization of stock-out
occurrence and the maximization of assets usage and rotation. As a result, the setting of the asset
management process, in terms of OP and MPQ, which performed best against the objectives set was
derived as a function of the relative importance assigned to each KPI.

When assigning the highest relative importance to the minimization of CO2 emissions and
OOS occurrence (“base” scenario), the best performance of the system is achieved setting OP = 175
and MPQ = 360 pallets. With this setting, the total CO2 emission of the CLSC accounts for
75.50 kg CO2 eq./day approximately. The different components of the environmental impact
contribute to this KPI in different ways and to a different extent. Asset retrieving activities contribute
to the total impact to the greatest extent (approx. 42.76 kg CO2/day), while the CO2 emissions caused
by the purchasing of new assets and the replenishment of lost and damaged assets are significantly
less relevant. The CO2 emissions due to the shipping activities, although not irrelevant, cannot be
minimized by Company A, as shipments depend on the final customers’ demand only. This implicitly
means that to minimize the total emissions of the system, Company A should actually minimize the
environmental burdens caused by asset retrieving operations. In turn, the high environmental impact
of retrieving activities is due to the quite relevant distance between Company A and its customers
(delivery points), which is always higher than 250 km (approximately 496 km on average) in the system
considered. This distance also prevents the possibility of visiting more than one customer in a single
shipment. Moreover, as retrieving activities are ad hoc transports, they are rarely optimized in terms
of truck load. Therefore, if using lorries with a capacity of 33 pallets, an effective strategy to decrease
the environmental impact of retrieving operations is to set the MPQ at a quite high value, close to a
full truck load shipment—this is why the top-5 ranked configurations of the “base” scenario all exhibit
MPQ > 360 pallets.

Besides the “base” scenario, we carried out a sensitivity analysis to evaluate two additional
situations, in which different weights were set for the KPIs subject to optimization. In the first situation,
the same relative importance was assigned to all KPIs considered in the optimization process. In this
case, the most effective performance is obtained when setting OP = 145 and MPQ = 215 pallets and
exhibits a very good AR and U%. However, the environmental impact of the CLSC is not optimized in
this scenario and stock-out situations are more likely to occur. In the case where the highest importance
is assigned to AR and U%, the top ranked configurations obviously show excellent scores against
these KPIs, while the environmental performance and the OOS worsen significantly compared to the
base scenario. Nonetheless, it is interesting to note that the MPQ of the top-ranked configurations
examined in the sensitivity analysis is always lower than that of the base scenario and, in particular,
it is lower than the number of assets that can be retrieved with a full-truck load shipment. From a
practical perspective, this means that retrieving activities will be more frequent, but that Company A
could carry out these activities using low capacity vehicles (instead of 33-pallet lorries, as hypothesized
in our model); therefore, the is room for reducing the resulting environmental impact.

A further consideration that can be derived from the analysis of the top-5 ranked configurations
of all scenarios is that the total environmental performance and the total cost of the CLSC, although
not strictly proportional, seem to go at the same pace. The lowest total environmental impact and total
cost were indeed obtained in the first scenario (i.e., when the minimization of the environmental KPI is
given the highest relative importance), while, with the increase in the total impact, the total cost of the
system increases too.
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To sum up, the results of this study provide Company A with an overview of its current performance
in terms of environmental emissions and can help the company improve the environmental impact of
its asset management process.

From a theoretical perspective, the model developed in this paper includes a set of formulae
that were added an original (economic) model for the computation of the environmental emissions of
the system. From a practical perspective, this paper is structured as a case study, as it focuses on the
specific context of Company A. Nonetheless, a similar evaluation can be easily extended to different
companies or CLSCs. When analyzing different systems, it could be interesting to evaluate whether
lower distances between the focal company and its customers could modify the environmental balance
of the system or change the strategy to be adopted for assets management. Similarly, the multi-objective
optimization procedure could be applied with different relative importance of the KPIs or setting
different objectives, with the aim to evaluate the impact of different assets management strategies on
the environmental performance of the system. Therefore, the model itself represents an interesting
addition to the literature about CLSCs.
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