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Abstract: The green concept has become one of the key demands of the current era of development
in China. As an attempt to cope with climate change and constraints of resources and environment,
the industrial green transformation is bound to have a dramatic impact on the whole society.
This paper enriches the understanding of industrial green transformation by highlighting its social
attributes. Combining a hybrid model with a window analysis, this paper measures the dynamic
efficiency of regional industrial green transformation in China from 2006 to 2015. In general,
Beijing, Tianjin, Shanghai, Jiangsu, Zhejiang, Fujian, Shandong and Guangdong obtain the best
performance; industrial water use has the lowest and most unstable efficiency among various
resources. Tobit regression model, thereafter, is used to analyze the impact of hypothetical factors
on the efficiency of industrial green transformation. The findings demonstrate that reduction and
lean management of state-owned property, promoting the development of the productive service
industry, minimizing the proportion of fossil energy use and establishing an excellent economic basis
can have nationally positive impacts on the regional industrial green transformation; the progress
of the productive service industry is the key to industrial green transformation in Eastern China,
while the internal optimization of the industrial sector should be paid more attention in other regions,
especially in Western China. Finally, detailed discussions and policy suggestions at a regional level as
well as research prospects are given.

Keywords: industrial green transformation; efficiency; influencing factors; industrial policy; China;
Data Envelopment Analysis (DEA)

1. Introduction

Since the introduction of the ‘open’ policy, China has made remarkable economic progress and
transformed gradually from an agricultural country to an industrial one, ranked as the second largest
economy globally. However, in part, these achievements are obviously due to long-term extensive
economic growth characterized by labor-intensive and resource-intensive production modes [1,2].
As the most critical component of the national economy, on the one hand, the industrial sector has
accumulated a large amount of wealth, which significantly promotes comprehensive national strength;
on the other hand, some industrial by-products, such as sewage, noise, dust, and so on, have resulted
in a series of negative impacts both on the ecological environment and on human society. The Chinese
government has been aware of the significance of keeping the balance between environment and
economy. The Twelfth Five-Year Plan [3] approved by the National People’s Congress in 2010 put
an emphasis on green development for the first time, aiming at building a resource-conserving
and environment-friendly society to realize the transformation and upgrading of manufacturing
industry [4,5]. Furthermore, the Made in China 2025 Plan [6] and Industrial Green Development
Plan (2016–2020) [7] not only positively confirm the decisive status of industrial transformation, but
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also emphasize its “green” style. However, the 2018 Environmental Performance Index (EPI), issued
by Yale University and Columbia University [8], finds that air quality is the leading environmental
threat to public health, and it also shows that China’s EPI score is 50.74, ranked at the 120th among
180 countries. China’s environmental performance is still unsatisfactory, and displays a clear gap
compared with developed countries. Therefore, how to realize industrial sustainability will be a
long-term and arduous task in China.

The topic of industrial green transformation derives from an array of profound reflections on
unsustainable models of industrial development in current China. To date, however, few studies
are directly related to this topic, which show that not only is there an ambiguous definition of
industrial green transformation, but also a lack of unified measurement standard. The international
rules, conventions and theoretical frameworks about sustainable development [9–11] have been
extracted and employed in mainstream studies to evaluate the performance of industrial green
transformation. Owing to the characteristics of industrial production activities, however, scholars
think more about the potential of gaining economic benefits, as well as their malign environmental
impacts particularly [12–15]. Consequently, the statement of industrial green transformation can be
interpreted, by some scholars and institutions, as an industrial process towards “intensive energy
resource utilization, reduced pollutant emissions, reduced environmental impact, improved labor
productivity, and enhanced sustainable development ability” [16] (p. 6). In this context, some
scholars have attempted to develop an evaluation index system for industrial sustainability. Luken
and Hesp [17] analyzed the industrial policy effectiveness in developing countries on sustainable
development, depending on which economic, social and environmental parameters were used to
assess their contribution. Salvado et al. [18] also offered some proposals of a sustainability index
for the automotive industry with 14 secondary indices based on the principle of sustainability.
In view of China’s special national conditions, Li et al. [19] put forward the overall sustainable
development orientation of the manufacturing industry, including structure, technology, energy
and environment branch targets. Chen et al. [20] developed an evaluation index system of China’s
industrial green development in the perspectives of industrial green output, efficiency, innovation and
policy, and applied the analytic hierarchy process to calculate their indices’ weights and properties
respectively. Although these groups of homogeneous or analogical studies commence within the
integrated framework of sustainability, many index systems are difficult to be quantified objectively,
or lack information. The economic and environmental terms are considered adequately on the whole,
and explicit information on social impacts (e.g., structural unemployment) caused by industrial green
transformation is actually insufficient [21,22], particularly in developing countries.

The industrial green transformation needs to balance relevant aspects and maximize their
integrated benefits. Therefore, studies about the influencing factors of this field involve a variety
of perspectives. Changes in external environment and unreasonable allocation of internal resources
bring multiple constraints on industrial development, so that how to adjust the industrial structure
has become the focus of industrial transformation. A reasonable industrial structure is crucial to
the sustainability of industrial society [15]. Economic development level is an important guarantee
for regional reform, which is conducive to increasing the substantive capital, adjusting the structure
of human capital, and improving the ability of scientific and technological innovation in industrial
sectors [23]. However, the fact of the Environmental Kuznets Curve (EKC) [24] indicates an uncertain
relationship between economic development level and efficiency of industrial green transformation.
Technological innovation is also considered by some scholars, which has been proved to be a key
factor for industrial green development. Yang et al. [25], taking the energy-saving technology as
an example, thought further that technological sources affected the degree of technology spillover,
and the foreign direct investment (FDI) was the most important source. Midilli et al. [26] proposed
seven green energy strategies, which could decrease negative effects on the industrial, technological
and social progress, and thus was the particularly necessary adjustment of energy consumption
structure in industrial sectors. Finally, environmental regulation, under the constraints of resources and
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environment, is designed to encourage green technology innovation and then mitigate environmental
pollution. However, the function of environmental regulation rests with its various types, and presents
pronounced regional heterogeneity [27].

It can be seen that the research object of industrial green transformation includes measurement
standards and influencing factors domestically and abroad. Moreover, industrial transformation is
always accompanied by technology replacement or even industrial extinction, which leads to social
unrest, such as the short-term increase in unemployment. Hence, social affairs caused by industrial
green transformation should be fully considered, in order to elaborate on the connotation of “green”
based on the theory of the triple bottom line [28]. Given the above considerations, our research regards
30 regions in China, with the exception of Tibet, Taiwan, Hong Kong and Macau, as the research targets.
A hybrid measure of desirable and undesirable outputs in data envelopment analysis (DEA), combined
with a window analysis, is employed to measure the dynamic efficiency of regional industrial green
transformation in consecutive years. Then we analyze and discuss its influencing factors. Unlike
the previous studies, in the stage of DEA calculation, we add an indicator of unemployment on the
output side, emphasizing that social harmony and stability is not only the premise of industrial green
transformation, but also its core purpose. Furthermore, we provide an overall horizontal comparison
of resource and pollution elements in efficiency improvement, and then point out their contribution
to the efficiency of industrial green transformation. For the purpose of getting a more systematic
conclusion, we draw lessons from studies available and integrate all kinds of focused influencing
factors to provide sufficient evidence for industrial green transformation, nationally and regionally.

In the remainder of this paper, the DEA method with a window analysis used herein will be
introduced systematically, and the analytical framework, indicator selection and data collection will
also be presented. Then we present the empirical results in details and put forward some concrete
improvement plans for regional industrial green transformation, followed by a conclusion of this paper.

2. Methodology and Framework

2.1. DEA Method for a Hybrid Measure of Efficiency

First developed by Charnes et al. [29], DEA is an effective nonparametric analysis method which
is applied to the relative performance assessment for a homogeneous set of decision making units
(DMUs). This method constructs a production frontier which satisfies Pareto Optimality—gauging
the relative efficiency of each DMU by means of their inputs and outputs [30]. Since the efficiency
score of DMU ranges from zero (the worst) to one (the best) by standardization, the technical efficiency
gap between the objective unit and the optimal one can be expressed clearly and better understood.
In addition, DEA does not involve subjective weights assigned to all indicators [31], but gain the
relevant information from data themselves; it thus has great advantages in analyzing aggregation
problems and forms various models in a special context. One of the most significant applications is to
measure the environmental efficiency [32].

DEA efficiency implies that all DMUs on the production frontier should satisfy the fundamental
prerequisite of achieving maximum outputs and minimum inputs simultaneously. However, when
it comes to environmental issues, such as industrial production discussed herein, this prerequisite
should be adjusted appropriately. The output side of industrial metabolism needs to be divided into
two categories, including desirable (good) outputs, like all kinds of final industrial products, as well as
undesirable (bad) outputs, such as industrial waste and pollution. It is obvious that the efficiency score
without considering undesirable outputs, owning to their contribution to total outputs, is higher than
the real one. Accordingly, undesirable outputs should be treated as a deduction for total outputs in
order to make the efficiency score corresponds to its real level. In general, there are three categories for
the data processing of undesirable outputs with the DEA method [33]. The first one treats undesirable
outputs as inputs and adds them to a DEA model; the second one focuses on data transfer function,
such as the negative output method and the (non-)linear data transfer method; and the last one is based
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on the distance function method by which one can increase desirable outputs and reduce undesirable
outputs when the inefficient DMU is improved. This method can make up shortfalls of the former two.

In this paper, we follow the hybrid measure of efficiency with undesirable outputs, combined with
the slacks-based measure (SBM) model [34], which belongs to the distance function method. A hybrid
measure integrates two types of radial and non-radial approach simultaneously [31]. The radial
parts are subject to change proportionally, while the non-radial parts have no proportional change.
On the other hand, partial outputs have a non-separable relationship with one another, and they
are also not separate from some inputs. Therefore, all variables can be categorized into separable
input (xS), non-separable input (xNS), separable good output (ySG), non-separable good output (yNSG),
separable bad output (ySB) and non-separable bad output (yNSB). Separable inputs are the non-radial
variables which satisfy the efficiency status if no reduced input exists that can produce the observed
outputs, while non-separable inputs are radial variables which satisfy the efficiency status if there is no
proportionally reduced input that can produce the observed outputs [34]. Furthermore, non-separable
and separable outputs have the same characteristics and can be defined analogously.

The DEA method can adopt the constant returns to scale (CRS) model and variable returns to
scale (VRS) model. Compared to the VRS model, CRS model has higher discriminatory power and
can prevent the emergence of systematic bias [35]. Furthermore, the CRS model also avoids potential
problems of unfeasible solutions in the process of calculating mixed period efficiency. Hence, the
production possibility set PNS is defined under the CRS model by:

PNS =

{
(xS, xNS, ySG, ySB, yNSG, yNSB)

∣∣∣∣∣ λ ≥ 0, xS ≥ XSλ, xNS ≥ XNSλ, ySG ≤ YSGλ,
ySB ≥ YSBλ, yNSG ≤ YNSGλ, yNSB ≥ YNSBλ

}
(1)

where λ is a constant vector for the weight of each DMU. The fractional programming of a hybrid
model with undesirable outputs for DMUo is as follows:
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subject to:
xS

o = XSλ + sS− (3)

θxNS
o = XNSλ + sNS− (4)

ySG
o = YSGλ − sSG+ (5)

ySB
o = YSBλ + sSB+ (6)

θyNSG
o = YNSGλ − sNSG+ (7)

θyNSB
o = YNSBλ + sNSB+ (8)

ySG
r ≤ (1 + δ)ySG

ro (9)

sS−, sNS−, sSG+, sNSG+, sNSB+, λ, δ ≥ 0, 1 ≥ θ ≥ 0 (10)

where m = m1 + m2 and n = n1 + n2 + n3 + n4 denote the amount of input and output variables,
among which m1 and m2 are numbers of separable and non-separable inputs, n1, n2, n3 and n4 are
the amount of elements in separable good and bad inputs, as well as non-separable good and bad
inputs, respectively. XS, XNS, YSG, YSB, YNSG and YNSB respectively denote matrices of observed
variables. sS−, sNS−, sSG+, sSB+, sNSG+ and sNSB+ correspondingly denote matrices of their slacks.
On the output side, a reduction in non-separable bad outputs is accompanied by a proportionate
reduction in non-separable good outputs with 1 ≥ θ ≥ 0, which is designated by θyNSB and θyNSG,
respectively; on the input side, the non-separable inputs are assumed to be reduced with the same



Sustainability 2018, 10, 628 5 of 19

proportion, denoted by θxNS. Constraint (9) means that there is an upper bound to the expansion of
separable good outputs and the coefficient δ is a constant expansion ratio given externally.

DMUo is efficient if and only if ρo = 1 (i.e., sS−, sNS−, sSG+, sSB+, sNSG+, sNSB+ = 0; and θ = 1).
If DMUo is inefficient (i.e., ρo < 1), it can improve through and following the projection (target
value) [34]. Furthermore, we define factor efficiency index (FEI) as:

FEI =
(

projection value
observed value

− 1
)
× 100% (11)

for measuring its improved direction and quantities (percentage) of each variable, that is, if FEI > 0,
it means increasing the inputs and expanding the outputs; while if FEI < 0, it means decreasing the
inputs and reducing the outputs; the observed value achieves the optimal level when FEI = 0.

2.2. Window Analysis

As a nonparametric frontier analysis method, DEA has the special requirements for data
processing that the amount of DMUs should be at least treble numbers of the observed variables [31],
in order to enhance the discriminatory power of each DMU. This paper introduces DEA window
analysis [36], which can deal with the cross-sectional and time-varying data. This method abides by
the principle of moving average, and treats each DMU in a different year as an entirely new one in the
observed data set with a specified window width [35]. It is feasible to observe and compare how DMU
performs in different periods. Moreover, this method multiplies the number of DMUs so that it can
avoid inadequate DMUs.

Following the rationale of DEA window analysis, we assume that there are K DMUs (k = 1, 2, . . . , K)
that are observed in T periods (t = 1, 2, . . . , T), then the total amount of DMU is TK. If the window
width is d (≤T), there will be w (=T − d + 1) windows totally. Thus, the first window spans the period
1, 2, . . . , d; the second one spans the period 2, 3, . . . , d + 1; the ith one spans the period i, i + 1, . . . ,
d + i + 1. In the aspect of selecting window width, Asmild et al. [35] also point out that the window
width should be as narrow as possible to eliminate the unfairness, such as the technical change over
time [37]. This paper contains 30 regions (DMUs) in China over the time period spanning from 2006 to
2015. Meanwhile, the window width is fixed as 2 years so that the number of DMUs in each window
increases from 30 to 60 as independent entities. The process of measuring the overall efficiency with
DEA window analysis can be illustrated in Table 1. DMUs in the adjacent two years compose a new
observed window, and DMU in each year has two efficiency scores due to the overlap of windows,
with the exception of 2006 and 2015, which have only one value. Thus, the total mean (TMk) for the
measured values in all years can evaluate the efficiency of regional industrial green transformation in
horizontal comparison; while the row mean (RMi) in each year can depict continuous changes for the
performance of DMUs (regions) in vertical comparison.

Table 1. Illustration of window analysis for measuring the overall efficiency. DMU: decision
making unit.

DMU Total Mean Total S.D. Year
Window

Row Mean
W1 W2 . . . W8 W9

DMUk TMk TSDk

2006 E1,1 RM1
2007 E1,2 E2,2 RM2
2008 E2,3 . . . . . .
. . . . . . RMi

2013 . . . E8,8 . . .
2014 E8,9 E9,9 RM9
2015 E9,10 RM10
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2.3. Framework and Data

The industrial green transformation refers to a radical change in industrial sectors. This paper
follows the definition of industrial green transformation in [16], especially formulating the indicator of
its social attribute (unemployment), to measure the 30 regions’ dynamic efficiency of industrial green
transformation in China. We focus on both ends (i.e., inputs and outputs side) of industrial production,
and regard the interactive relationship of internal production as a black-box which is not the key
of DEA measurement. The industrial green transformation meets the theory of triple bottom line,
including social, economic and environmental dimensions. Variables should be selected appropriately,
in consideration of the characteristics of the DEA method, so that variables do not carry repetitive
information [31].

Figure 1 depicts the framework of extended industrial production, and illustrates the relations
between variables and triple bottom line. On the input side, land (x1) is introduced to judge the intensity
of industrial layout [38], and it also has been capitalized as an element of industrial production [39];
labor force (x2) and investment (x3) are the most fundamental elements in the process of industrial
production; water (x4) and energy (x5) are the major resources consumed by industrial sectors.
On the output side, gross regional product (GRP) (y1) is a commonly used indicator for wealth
accumulation and economic development, and it is the core output of industrial production; we regard
unemployment (y2) as the alternative variable of social stability, because transformation may cause
the turbulence of a particular industry, so that stable employment is a crucial focused principle of
industrial green transformation; waste water (y3) and waste gas (y4) are the main forms of pollution
of the production process, which has negative impacts on efficiency studies. Among all observed
variables, x4 and x5 directly involve with y3 and y4, and they are non-separable variables; x1, x2, x3

while y1, y2 are separable variables. Meanwhile, outputs are divided into good outputs (y1) and bad
outputs (y2, y3 and y4). The data resources are drawn from China Statistical Yearbook [40], China
Statistical Yearbook on Environment [41], China Energy Statistical Yearbook [42], China Industry
Statistical Yearbook [43] and China Urban Construction Statistical Yearbook issued by China Statistics
Press [44] from 2006 to 2015. The statistical description of the data is presented in Table 2.
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Table 2. Descriptive statistics of the variables for 30 regions in China (2006–2015) 1.

Variable Unit Mean Max Min S.D. Type

Inputs

Land (x1) sq·km 305.5 1364.3 7.0 260.7 S
Labor Force (x2) 104 persons 167.9 1055.4 4.7 153.5 S
Investment (x3) 108 yuan 8615.5 43,530.4 410.6 7707.5 S

Water (x4) 108 cu·m 46.5 239.0 2.4 45.2 NS
Energy (x5) 104 tons of SCE 3230.9 10,347.9 274.9 1984.3 NS

Desirable Outputs

GRP (y1) 108 yuan 6318.6 30,884.8 217.6 6105.9 S

Undesirable Outputs

Unemployment (y2) % 3.5 5.1 1.2 0.6 S
Waste Water (y3) 104 tons 75,562.1 287,171.0 5782.0 63,510.9 NS
Waste Gas (y4) 108 cu·m 18,051.3 79,121.3 860.0 14,200.7 NS

1 The variables are divided into two types, “S” represents separable variable, while “NS” represents non-separable
variable; “S.D.” represents standard deviation; “SCE” represents standard coal equivalent; “land” is the area of
industrial land use; “labor force” is represented by the annual average number of employees in industrial sector;
“investment” is the one in fixed assets in industry sector, obtained by perpetual inventory method; “water” and
“energy” are the value of industrial consumption; “GRP” is the gross regional product by industry sector, which
is transformed into prices in 2006 with a GDP deflator; “unemployment” is the overall value of the three major
industries; “waste water” is calculated by discharged volume; “waste gas” is calculated by emission volume.

3. Results

Following the explanation of the hybrid measure and collected data, this paper utilizes MaxDEA
Ultra software (Realworld Software Co., Ltd., Beijing, China) to measure the efficiency of the industrial
green transformation in 30 regions of China from 2006 to 2015, and reports further the potential of
resource saving and pollutant emission reduction in the light of their respective slack variables.

3.1. The Overall Efficiency of Regional Industrial Green Transformation and the Trends Over Time

Table 3 shows the averages of the overall efficiency score in China over time, which presents a
rising trend in fluctuation (there was a slight decline in 2010, 2013 and 2015, respectively). It also lists
the 30 regions’ respective efficiency score of industrial green transformation from 2006 to 2015 and the
ranking according to their efficiency scores on average over the ten years.
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Table 3. Thirty regions’ overall efficiency with window analysis yearly 1.

DMU and Ranking 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Mean S.D.

Beijing 4 0.805 0.905 0.898 0.897 1.000 0.899 1.000 0.916 1.000 1.000 0.935 0.063
Tianjin 2 1.000 0.898 1.000 1.000 1.000 0.910 0.921 1.000 1.000 1.000 0.970 0.042
Hebei 10 0.679 0.748 0.741 0.735 0.562 0.842 0.852 1.000 1.000 1.000 0.813 0.143
Shanxi 19 0.383 0.401 1.000 0.346 0.369 0.382 0.358 0.346 0.331 0.322 0.432 0.193

Inner Mongolia 9 0.382 0.709 0.725 0.766 1.000 0.872 1.000 0.845 1.000 1.000 0.845 0.187
Liaoning 20 0.359 0.388 0.373 0.396 0.427 0.425 0.407 0.411 0.395 0.392 0.400 0.02

Jilin 24 0.286 0.304 0.304 0.307 0.328 0.347 0.372 0.326 0.334 0.344 0.326 0.024
Heilongjiang 14 0.526 0.535 0.520 0.503 0.505 0.516 0.729 0.531 0.431 0.449 0.529 0.076

Shanghai 6 1.000 0.809 0.908 0.815 1.000 1.000 0.834 0.887 0.887 1.000 0.904 0.076
Jiangsu 5 0.704 0.835 0.873 0.891 1.000 0.888 1.000 1.000 0.933 1.000 0.919 0.091

Zhejiang 8 0.697 0.833 0.855 0.858 1.000 0.816 0.853 0.898 0.888 1.000 0.872 0.084
Anhui 27 0.293 0.291 0.284 0.282 0.312 0.311 0.325 0.302 0.308 0.321 0.302 0.014
Fujian 7 1.000 0.705 1.000 1.000 0.799 0.794 0.856 0.909 1.000 1.000 0.896 0.105
Jiangxi 23 0.367 0.369 0.344 0.353 0.361 0.348 0.333 0.315 0.313 0.312 0.342 0.021

Shandong 3 1.000 1.000 0.665 1.000 0.941 0.908 0.922 1.000 1.000 1.000 0.937 0.099
Henan 11 0.535 0.754 0.749 0.746 0.799 0.768 0.859 0.683 0.929 1.000 0.784 0.122
Hubei 26 0.293 0.328 0.324 0.301 0.327 0.306 0.308 0.316 0.291 0.343 0.313 0.016
Hunan 18 0.374 0.383 0.379 0.365 0.397 0.401 0.405 0.434 0.538 1.000 0.443 0.184

Guangdong 1 1.000 1.000 1.000 0.912 1.000 0.935 1.000 1.000 1.000 1.000 0.983 0.031
Guangxi 22 0.330 0.335 0.343 0.351 0.383 0.396 0.403 0.384 0.397 0.413 0.374 0.029
Hainan 15 0.272 0.312 0.303 1.000 0.383 0.394 0.362 0.324 1.000 0.361 0.488 0.267

Chongqing 25 0.271 0.293 0.284 0.270 0.303 0.333 0.365 0.385 0.313 0.398 0.320 0.044
Sichuan 21 0.352 0.350 0.339 0.354 0.382 0.426 0.428 0.381 0.412 0.428 0.385 0.034
Guizhou 29 0.238 0.250 0.256 0.281 0.269 0.268 0.258 0.270 0.284 0.291 0.267 0.016
Yunnan 17 0.420 0.353 0.338 0.359 0.343 0.349 1.000 0.389 0.442 0.444 0.445 0.189
Shaanxi 12 0.476 0.480 0.566 0.731 0.502 0.520 1.000 0.795 1.000 1.000 0.704 0.216
Gansu 28 0.275 0.304 0.293 0.293 0.310 0.307 0.305 0.292 0.278 0.295 0.296 0.011

Qinghai 13 0.318 0.332 0.322 0.700 0.359 1.000 0.496 0.586 1.000 1.000 0.606 0.28
Ningxia 30 0.197 0.242 0.200 0.196 0.237 0.249 0.238 0.232 0.227 0.230 0.226 0.019
Xinjiang 16 0.380 0.373 0.347 1.000 0.339 0.319 0.302 0.291 1.000 0.303 0.479 0.269

Mean 0.507 0.527 0.551 0.600 0.565 0.574 0.616 0.582 0.664 0.655 0.584 0.048
1 The data are collected and calculated by authors, according to the method introduced in Table 2.
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From the statistical results (Table 3), we can gain the following information: (1) the best
performance of industrial green transformation includes two regions, Tianjin and Guangdong, whose
annual efficiency score is equal to 1 (DMUs lie on the optimal frontier) in most of the years, and the
average efficiency score over ten years is more than 0.95. This also means that these two regions are the
most efficient in converting resources into social, economic and environmental products, comparing
to other regions; (2) the suboptimal regions (the average efficiency score is greater than 0.85 and less
than 0.95) upgrade to a year’s benchmark (e.g., Beijing in 2010, Shanghai in 2011, Jiangsu in 2012,
Zhejiang in 2010, Fujian in 2014 and Shandong in 2015; their efficiency score is equal to 1), and they
are relatively efficient in a certain year; (3) three regions, Guizhou (0.267), Gansu (0.296) and Ningxia
(0.226), located in the west of China, have the lowest average efficiency scores below 0.3, and give the
worst performance of industrial green transformation; (4) among 30 regions, Qinghai gains the highest
standard (0.280) which reflects the fluctuation of efficiency scores from 2006 to 2015; the industrial
green transformation of Qinghai is absolutely efficient in 2014 and 2015, whereas its efficiency score
only achieves 0.318 in 2006, which causes a significant gap among years.

Figure 2 schematically shows the intuitive diversity in efficiency among regions. The whole
efficiency interval is divided into five segments. In addition to the two benchmark regions whose
average overall efficiency score is greater than 0.95, we observe that those regions whose average overall
efficiency score is no less than 0.85 also effectively achieve regional industrial green transformation,
including Beijing (0.935), Shanghai (0.904), Jiangsu (0.919), Zhejiang (0.872), Fujian (0.896) and
Shandong (0.937). Therefore, it can be clearly visualized that regions with remarkable achievements of
industrial green transformation are distributed in North China centering on Beijing and spreading
along the southeast coast. In these areas, the phenomenon of urban and industrial agglomeration is
remarkable, which brings the naissance of the three largest economic circles, namely the Jing-jin-ji,
Yangtze River Delta and Pearl River Delta economic cooperative zones. As the core of the Jing-jin-ji
cooperative zone, as well as the political, economic and cultural center of China, Beijing hosts vigorous
industrial activities and has enjoyed a considerable development by constant accumulation. Not only
do industrial sectors attract a large amount of investment, human capital and technology, but also
government’s policies can be effectively implemented and monitored, owing to its special status
and location. On the other hand, as the window of reform and open policy, southeast coastal areas
have gained long-term policy supports, especially in Jiangsu, Zhejiang and Guangdong where the
introduction of foreign capital not only brings the advanced technology, but also contribute to a
profound reform in the industrial structure. In addition, there are many port cities in southeast
coastal areas, which is conducive to their international exchange and co-operation, and promotes
capital-intensive or technology-intensive industry to form a strong pillar, and then the production
service industry was born and developed. The multiplier effect of port development is released, and
the regional competitiveness is significantly enhanced. Figure 2 also depicts that regions in Midwest
and Northeast have a bad performance of industrial green transformation, where the efficiency score
of most regions is less than 0.7. Thus, the industrial green transformation path of these regions needs
to be re-planned thoroughly and draw lessons from the experience of regions with good performance.
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Figure 2. Map of efficiency level of industrial green transformation in 30 regions of China. The efficiency
score is divided into five grades, the interval of (0.95,1.00) is the optimal level, the interval of (0.85,0.95)
is the sub optimal level, the interval of (0.50,0.85) is the average level, the interval of (0.30,0.50) is the
poor level, and the interval of (0.00,0.30) is the worst level; due to the lack of data and inconsistency in
statistical caliber, Tibet, Taiwan, Hong Kong and Macau are not included in this map.

3.2. Resource and Pollution Efficiency

In the process of measuring the overall efficiency score, MaxDEA Ultra software is used to present
the direction of slack movement of all variables and calculate their projection values. With these
data and Equation (11), we can acquire the average FEI of the 30 regions in China between 2006 and
2015 (Figure 3). Resource and pollution mainly refer to the economic and environmental attribute of
industrial green transformation, including land, labor force, investment, water, electricity and land,
as well as waste water and waste gas. From the line chart, all variables’ FEI is beneath 0, which
indicates that there needs to be a reduction for the observed values of these variables in order to make
resource consumption and pollution emissions more efficient. Among all the above indicators, FEI of
labor force is the closest to the horizontal zero line, which explains that the efficiency of labor force is
relatively the best; while water obtains a minimum value of FEI, it needs a great improvement to reach
the goal of projection value. The performance of the remaining indicators is somewhere in between.

From the perspective of resource efficiency, the indicator of labor force has a relatively good
performance, followed by land and investment, whose FEI curve remains stable between −0.2 and −0.1
over the ten years. Specifically, there is a continuous improvement in efficiency of labor force, in line
with the trend of transforming the endowment structure in industrial sectors from a labor-intensive
style to a capital-intensive one. The efficiency of land and investment has been steady so that there
is room for promotion. Energy efficiency is lower than the former three, but it is better to have a
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rising trend, which is inextricably linked to the fact that the current energy crisis has forced its reform,
and the utilization of energy has been improved with technological progress. China is a country with
a shortage of water resources, and the rapid development of industry has exacerbated this situation.
In the chart, the efficiency of industrial water is a severe issue, and exhibits a significant wave shape
during the research period. How to improve the efficiency of water use is a major challenge for
industrial sectors in the future.
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From the perspective of pollution efficiency, FEI curves of waste water and waste gas coincide
with each other, and present a trend of gradual improvement. In addition to the influence of the
inherent economic cycle factors, the biggest restriction of China’s economic development in recent
years lies in the environmental issues, which have aroused wide attention, including the academia,
government and residents. Most of the pollutants are mainly derived from the production activities
of the heavy chemical industry, so that the industrial reform with the idea of green transformation
has become a long-term national policy. What is worth affirming is that the continuous adjustment of
energy consumption structure and the application of green technology have a great contribution to
enhancing the environmental quality. However, the emergence of environmental crisis is not a short
duration of time, and it is a process of constant accumulation from quantitative to qualitative change.
Therefore, the treatment of environmental pollution should be sustained, and be more targeted.

4. Discussion

In the preceding section, we utilize the nonparametric DEA method to measure the overall
efficiency based on five input variables and four output variables. The results not only describe
the holistic performance of China's industrial green transformation in the past ten years, but also
present the differences and trends of efficiency among 30 regions. As shown in Figure 1, however,
the calculation process of the DEA method does not reveal the black-box to analyze the internal logic
structure and its interrelation; or in other words, what are the critical factors that can affect the overall
efficiency? To solve this problem the econometric methods will be used accordingly.

4.1. Presumption of Influencing Factors and Their Regression Results

According to Equation (2) and its implication, the overall efficiency conveys the information
about social, economic and environmental factors. From the literature review mentioned in the
Section 1 (introduction), the mainstream of related studies decomposes the influencing factors
into industrial structure, environmental regulation, technological innovation, energy structure,
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economic development level [45–48], to name a few. This paper will also use these similar indicators
as influencing factors for the industrial green transformation. The sales output value share of
pollution-intensive industry is selected to indicate the second industrial structure (X1). In China,
the industrial water and air pollution are the most serious challenges for environmental governance.
Accordingly, related and influential industrial sectors, including power, textile and paper [49],
are regarded as the representatives of pollution-intensive industry. State-owned property has so large
a proportion of the national wealth that we use the proportion of sales output value of state-owned
industry in gross industrial sales output value to represent the ownership structure (X2). Endowment
structure (X3) is measured by the capital-labor ratio of industrial sector. Data of capital is obtained with
the method of perpetual inventory, and the ratio is via logarithmic processing. The productive service
industry is usually defined as an industry which maintains the continuity of industrial production
process, promotes the technological progress, and then improves the production efficiency. Thus,
the concentration of productive service industry (X4) is selected as an influencing factor, measured by
the proportion of employment in productive service industry. Investment in treatment of industrial
pollution belongs to one of the forms of environmental regulation (X5). Here we use the proportion
of environmental investment budget over regional GDP as an influencing factor to measure its
contribution to the overall efficiency. The percentage of thermal power generation over total power
generation (or total electricity consumption, taking the larger one) is one of the expression forms
for energy structure (X6). The thermal power represents the energy consumption and conversion of
coal-based fossil fuels, and the higher the percentage, the worse the clean energy use. The GDP per
capita can be referred to as measuring the regional economic development level (X7). Meanwhile,
we introduce the square of the GDP per capita in the model in view of the impact of EKC, and the
logarithm is also taken for this variable. In addition, what needs to be stressed is that this paper does
not adopt the technical progress due to the difficulty of its characterization. The number of scientific
researchers and patents or R&D investment are mainly regarded as the variables of measuring the
technical progress in relevant literature reviews [13,50], but it is not suitable for our research because
of the missing data and inconsistent statistical caliber.

In this paper, the dependent variable, namely the overall efficiency score, can only range from
0 to 1. Since the dependent variable is truncated or censored, the regression model of ordinary
least squares (OLS) may generate asymptotically biased estimators [51]. To overcome the impact
of truncated or censored data, we resort to the limited dependent variable model [52], namely the
Tobit model proposed by Tobin [53]. Here, we employ Tobit regression with log maximum likelihood
estimation to investigate the relationship between overall efficiency and variables mentioned above.
The Tobit model for our research is provided as follows:

Yit = β0 + β1X1it + β2X2it + β3Ln(X3it) + β4X4it + β5X5it + β6X6it + β7Ln(X7it) + β8Ln2(X7it) + εit (12)

In the equation, the dependent variable Y denotes the overall efficiency score collected from the
results of DEA measurement; βj (j = 0, 1, . . . , 8) denotes the estimated parameters that respectively
correspond to the intercept (constant term) and the regression coefficients of independent variables;
ε is the random error which obeys the normal distribution; the subscript i and t refer to region and
year. Utilizing EViews 9.0 software (IHS Global Inc., Irvine, CA, USA), we get Tobit regression results
in Table 4.
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Table 4. Results of Tobit regression model 1.

Variable
Coefficient (z-Statistic)

National Eastern Central Western

X1
0.0930 0.0588 −0.9119 * −0.8822 −0.3373 −0.2512 0.1257 −0.0051

(0.3349) (0.2103) (−1.6799) (−1.6213) (−0.7120) (0.5375) (0.2798) (−0.0119)

X2
−0.1594 * −0.1972 ** −0.3194 −0.4090 * −0.2416 −0.2397 0.4977 *** 0.5211 ***
(−1.7936) (−2.0662) (−1.5070) (−1.6665) (−1.4867) (−1.5043) (3.5611) (3.9096)

Ln(X3)
0.0112 0.0124 0.0249 0.0263 0.0391 0.0373 −0.1071 *** −0.0683 *

(0.4252) (0.4674) (0.4969) (0.5229) (0.7708) (0.7498) (−2.8114) (−1.8003)

X4
0.7179 *** 0.6823 *** 0.5877 * 0.5789 * 0.0138 0.0877 −0.3638 −0.2536
(2.7877) (3.6749) (1.74173) (1.6871) (0.0339) (0.2176) (−1.3479) (−0.9784)

X5
−2.8894 −2.3419 1.6533 2.5972 −10.5726 ** −12.7390 *** −1.0525 −1.7053

(−1.2064) (−0.9564) (0.3285) (0.4982) (−2.5269) (−2.9642) (−0.2714) (−0.4596)

X6
−0.1594 ** −0.1470 ** −0.5463 *** −0.5733 *** 0.3010 ** 0.3196 ** −0.3213 *** −0.3544 ***
(−2.1904) (−1.9970) (−2.8259) (−2.9118) (2.1335) (2.3031) (−2.7012) (−3.1103)

Ln(X7)
0.3074 *** −0.4801 0.0469 −1.2030 0.0914 5.5381 * 0.3925 *** −4.4295 ***
(9.8224) (−0.6615) (0.6859) (−0.7090) (1.4625) (1.7138) (6.5079) (−3.1270)

Ln2(X7)
0.0383 0.0585 −0.2730 * 0.2455 ***

(1.0856) (0.7369) (−1.6858) (3.4031)

C
−2.6192 *** 1.4290 0.5548 7.2312 −0.5894 −27.7391 * −2.9327 *** 20.5303 ***
(−7.0064) (0.3817) (0.6686) (0.7953) (−0.8332) (−1.7207) (−4.2575) (2.9694)

Log Likelihood −46.9507 −46.3562 −22.5407 −22.2653 19.4564 20.8483 2.3203 8.0867

Sample Size 300 300 110 110 80 80 110 110
1 In this table, “National” refers to the 30 researched regions except Tibet, Taiwan, Hong Kong and Macau. The regional division refers to the classification of the National Bureau
of statistics of China: Eastern China includes Beijing, Tianjin, Hebei, Shanghai, Jiangsu, Zhejiang, Fujian, Shandong, Guangdong and Hainan; Central China includes Shanxi, Anhui,
Jiangxi, Henan, Hubei and Hunan; Western China includes Inner Mongolia, Guangxi, Chongqing, Sichuan, Guizhou, Yunnan, Shaanxi, Gansu, Qinghai, Ningxia and Xinjiang. Because
there are only three provinces, Liaoning, Jilin and Heilongjiang, in the Northeast, with a small number of samples, we divide them into Eastern China and Central China, respectively.
Liaoning belongs to Eastern China, while Jilin and Heilongjiang belongs to Central China. Symbol *, ** and *** respectively indicate the significance level of 10%, 5% and 1%. The value in
parentheses is a z-Statistic.
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4.2. Transition Pathways from National and Regional Perspective

Table 4 explains the impact of second industrial structure, ownership structure, endowment
structure, concentration of productive service industry, environmental regulation, energy structure,
and economic development level on the overall efficiency of China’s industrial green transition.
Moreover, the selected 30 regions are divided into three parts based on their geographical locations,
including Eastern China, Central China and Western China. Then we discuss different transition
pathways among regions in order to explore a relatively feasible scheme for the regional industrial
green transformation in China. The model consists of two categories, one of which contains a quadratic
term for the investigation of environmental Kuznets effect. Details are summarized as follows.

First, the second industrial structure represents the share of each sector in sales output value,
and growth in one sector means shrink in other sectors. The regression results show that the variable
of second industrial structure does not pass the significance test in the whole nation, Central and
Western China, which means that changes in second industrial structure have a quite weak impact on
the performance of industrial green transformation. However, regions in Eastern China have been
in a significantly negative relationship between second industrial structure and overall efficiency
score, or in other words, decreasing the proportion of pollution-intensive industry is beneficial to
its green transformation. The results reveal that Western China, compared to other regions with
higher industrialization level, has a relatively weak industrial base which is barely strong enough
to support the industrial green transformation, and its industrial development still needs to rely on
pollution-intensive industry in the short term. It is also worth mentioning that there is still a negative
correlation, although the coefficient is not significant, in Central China. Consequently, the gradual
replacement of pollution-intensive industry is a prerequisite for its industrial green transformation.

Second, from a national perspective, the ownership structure has had a significantly negative
impact on the overall efficiency score, with one percent decline in the proportion of state-owned
property and 0.16% growth in the overall efficiency score. Intuitively, the oversize of state-owned
property is not conducive to industrial green transformation. However, it is not to say that it is
a necessary way to cut down the proportion of state-owned property, and the key is to realize its
optimization and upgrading [16]. Meanwhile, the reform of state-owned enterprises needs to take
into account of a series of social problems such as unemployment. In Western China, for example, the
ownership structure has been a significantly positive impact on the overall efficiency score, that is,
with a one percent increase in the proportion of state-owned property, the score will increase by 0.5%
accordingly. The state-owned enterprise is often considered to be a representative of low efficiency [54].
However, Western China’s level of industrialization and infrastructure is relatively backward. With the
strong economic strength, state-owned enterprises can play a greater role in promoting early industrial
development in the region. By comparison, it is very difficult for private or foreign enterprise to
undertake social responsibility due to the profit-driven nature of capital. Thus, a positive correlation
between ownership structure and overall efficiency score is evident.

Third, capital deepening is the inevitable trend of industrial transformation and upgrading,
but there is an obvious difference in the influential direction from the regional perspective. The positive
effect appears but not significantly in the whole nation, Eastern and Central China, while the
negative effect is obvious in Western China. According to the stage characteristics of industrial
development, capital deepening is currently dominated by heavy chemical industry, which will
aggravate the environmental pollution and ecological crisis. By contrast, Eastern and Central China
have a comparative advantage in technology and capital structure, which can offset the negative
impact on the environment [20], so that the positive effect is reasonable to a certain extent. Moreover,
Eastern China is better than Central China, in terms of the influence degree, which is consistent with
their respective technical level.

Fourth, the productive service industry fills the gap among various industries, and becomes a
booster for improving the efficiency of industrial production [55]. On the whole, the concentration
of productive service industry is beneficial to the industrial green transformation, and has a deeper



Sustainability 2018, 10, 628 15 of 19

impact in Eastern China. By comparison, this effect is negative in Western China, although the
significance test is not passed. The reason for this disparity could be that the productive service
industry has the characteristics of strong specialty and active innovation, and the release of impetus
needs industrial integration and coordination as a prerequisite. It is obvious that Eastern China has an
excellent industrial base and industrial diversification, providing a platform for the development of a
productive service industry which reacts to the industrial sectors and leads them to the high-end of
industrial value chain.

Fifth, the impact of environmental regulation on the overall efficiency score is quite different,
and there is a negative coefficient in the whole nation, Central and Western China, while a positive
one occurs in Eastern China. The literature shows that the effect of environmental regulation varies
in types [27]. In this paper, the data selected belong to command-control environmental regulation
in view of their availability. In Central China, the most polluted region, the significant negative
coefficient implies that command-control environmental regulation plays an opposite role in industrial
green transformation. The possible reason is that the command-control environmental regulation
cannot effectively promote green technological innovation to control the environmental pollution, but
increase the economic burden of enterprises, as well as the possibility of increasing production by
polluting enterprises.

Sixth, the proportion of thermal power generation is regarded as the main indicator of energy
structure. This variable has a significant negative impact on the overall efficiency score nationally,
that is, a one percent decline in the proportion of thermal power generation and 0.16% growth in the
overall efficiency score accordingly. Coal-based fossil fuels are not only the major industrial energy,
but also the main contributor to air pollution. Although the reduction of fossil fuels is likely to cause
the replacement of related industries, it is imperative, in the long run, to reduce the proportion of fossil
energy use gradually and explore alternative energy sources.

Finally, the economic development level affects the performance of regional industrial green
transformation through two paths. On the one hand, the strong economy usually means sufficient
funds and resources to be allocated and transferred, which can provide excellent infrastructure and
fiscal policy, as well as introduce advanced technology and talents, and all these will contribute
to the implementation of industrial green transformation; on the other hand, the environmental
pollution degree changes along the inverted “U-shaped” curve with the improvement of the
economic development level, and then affects the performance of industrial green transformation with
indeterminate results. We represent the economic development level by the GDP per capita. Table 4
indicates that the economic development level, as a whole, plays a positive role in the performance of
industrial green transformation. In addition, the square term of the GDP per capita has a significant
coefficient, with an inverted “U-shaped” relationship between economic development level and overall
efficiency score in Central China, and a “U-shaped” in Western China. This diversity among regions
has also been confirmed by some scholars [56]. From the results of the regression, it is worth noting
that the inverted “U-shaped” curve in central China indicates the existence of a vertex. Once across this
vertex, the economic development level will have an adverse effect on industrial green transformation.

5. Conclusions

The industrial sector is the lifeblood of the national economy, and it has laid a solid foundation
for the development of other sectors. As the biggest developing country in the world, China’s
development has attracted worldwide attention, along with some serious problems. Based on a sound
relevant literature review, we conceptualized the industrial green transformation with reference to the
theory of triple bottom line, setting input and output variables which can reflect the economic, social
and environmental dimensions comprehensively, especially the social attributes of industrial green
transformation. According to the research objectives and the characteristics of variables, we utilized
the DEA method in a hybrid model with undesirable outputs to measure the performance of industrial
green transformation, and gave overall efficiency scores of 30 regions in China with a time span from
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2006 to 2015, respectively. The results show that regions with the best performance of industrial
green transformation includes Beijing, Tianjin, Shanghai, Jiangsu, Zhejiang, Fujian, Shandong and
Guangdong, whose average overall efficiency score is more than 0.85. From the perspective of
geographical location, regions in the southeast coast have a better performance than other regions.
Meanwhile, DEA software was used to provide the projection value of each variable, followed by the
introduction of the FEI to measure their improved direction and quantities. The results of FEI show
that the variables of resource and pollution need to reduce their corresponding input or output value
in order to improve the overall efficiency score.

In the first stage, we gained the relative overall efficiency score by the DEA method, but did
not clarify exactly what affects the overall efficiency score. Since the dependent variable (overall
efficiency score), which ranges from 0 to 1, is truncated or censored, we employed Tobit model
in the second stage to regress the following hypothetical affecting variables, including industrial
structure, ownership structure, endowment structure, concentration of productive service industry,
environmental regulation, energy structure and economic development level. The regression results
reveal significant differences at national and regional levels. Nationally, variables of industrial structure,
endowment structure and environmental regulation have a weak impact on the performance of
industrial green transformation, and the other three variables pass the significance test, in which
the concentration of the productive service industry, energy structure and economic development
level can increase the overall efficiency score, while the ownership structure has the opposite effect.
Analogously, we discussed the affecting factors at the regional level.

On the one hand, the essence of industrial green transformation is to persistently boost
productivity under the unified framework of economy, society and environment. On the other
hand, policy making should not only meet the national interests, but also focus on the actual situation
of regional development. Therefore, targeted comprehensive policy making is the most important
prerequisite for the implementation of industrial green transformation. According to the results of
the two stages, this paper can provide some policy implications. First, the second industrial structure
should be continuously optimized. In particular, the state-owned enterprises must apply the principle
of efficient and simple administration, gradually completing the transfer of inefficient state-owned
property and cutting the excessive industrial capacity. Relying on technical advantages and developed
private enterprises, Eastern China should focus on the development of advanced manufacturing
industry at the core of capital-intensive enterprises and productive service industry, so that the
combination of the two sectors promotes the diffusion of advanced and green technology, and then
drives the industrial green transformation in Central and Western China. Conversely, when the
regions with a poor performance of industrial green transformation attract all kinds of capital or accept
the transfer of eastern industry, the governments should pay more attention to the environmental
impact from the new industry, obtaining the win-win of economic benefit and ecological sustainability.
Second, although the increased proportion of clean energy use is the inevitable trend, in the short
term, the promotion of fossil energy efficiency is the top priority, in order to reduce various pollution
emissions. Therefore, the governments could actively guide enterprises to introduce green technology
and equipment, encouraging the innovation of green technologies and improving the efficiency of
resource and energy use. Meanwhile, the consumption of fossil energy should be controlled by
means of price mechanism as an auxiliary policy, and be gradually replaced by clean and renewable
energy. Furthermore, for the coal producing provinces, the structural adjustment of energy industry
may lead to a rise in the unemployment rate in related industries, so that the governments should
properly arrange the transfer of labor force, ensuring the social stability and the normal operation
of the economy. Third, the industrial green transformation needs a better environmental regulation
system. The proposed scheme is not only to meet the principle of terminal reduction, but also to focus
on source reduction. Therefore, taking the command-control and market-incentive environmental
regulation as a core, the local governments should carry out differentiated and dynamic standards
of environmental regulation, strengthening the law enforcement, improving the fiscal and taxation
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policies (e.g., environmental protection tax started from 2018 in China), and then maximizing the
effectiveness of environmental regulation. What needs to be considered is that the environmental
regulation in Central China should take full account of the characteristics of its current energy structure,
and then encourage enterprises to strengthen the innovation of pollution control technology to
achieve the green production. Finally, the industrial green transformation is a dynamic process and
simultaneously an interactive outcome between governments and enterprises. Increasing investment is
expected to be put in environmental education along with the function of a reward mechanism exerted
to mobilize enterprises’ enthusiasm on energy conservation and emissions reduction, thus enabling
industrial enterprises to consciously carry out green actions.

With the following limitations, future research is to be carried out to better satisfy the queries. First,
the DEA method requires that the number of DMUs and variables should satisfy certain conditions.
The selection of variables is limited and more information of the research object cannot be fully revealed.
Second, the lack of relevant data (e.g., environmental regulation) and inconsistent scale (e.g., energy
structure) have brought some difficulties for formulating a holistic policy for the industry in question.
Third, limited by the length of this paper, we did not consider the lag effect of environmental investment.
Only when these problems are solved can we provide adequate information for policy makers to
formulate strategies for industrial green transformation.
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