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Abstract: This study redesigns the supply chain of agricultural products in southwest China under
the Belt and Road Initiative to improve its eco-efficiency by considering the associated agro-wastes
flowing into bioenergy enterprise for energy production. Two scenarios are created, in which the
first assumes that all waste flows into the enterprise, whereas the second only considers the inflow
of agro-waste produced by farmers and the wholesale market. A system dynamics simulation is
conducted by using carbon emissions per product as an indicator to obtain the optimal scenario for
managerial practice and design an incentivizing mechanism to drive supply chain operations. A case
study is provided to demonstrate application of the system dynamics. Finally, the limitations of the
study are discussed to lay the foundation for further improvement.
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1. Introduction

Since its launch in 2013, the Belt and Road Initiative has been emphasizing green cooperation
among the involved countries to highlight low carbon characteristics of the domestic and overseas
supply chain and enhance the value added to products [1,2]. Most countries involved in this initiative
are emerging and developing economic entities, where agriculture is a leading industry in their national
economies [3]. Nevertheless, their agro-product supply chains usually have low eco-efficiencies, which
leads to less utilization of agro-waste, thus having an impact on the formulation of reverse logistics [4,5].
As these agro-wastes generally contain large amounts of biomasses, recycling them for energy recovery
may yield greater economic and environmental benefits [6–8]. However, the incorporation of bioenergy
enterprises into the supply chain inevitably disturbs supply chain operations. For instance, it may
increase the number of stakeholders involved, hence complicating the coordination of the supply chain
network [9]. Meanwhile, additional costs including the cost of agro-waste collection, pretreatment,
and transportation may be incurred, causing an impact on the value added to the supply chain [10,11].

This study aims at redesigning the conventional agro-product supply chain to improve its
eco-efficiency by considering the associated agro-waste flowing into bioenergy enterprise for energy
production. Two operations scenarios are established, using system dynamics simulation to select
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the optimal scenario to enhance eco-efficiency for the proposed supply chain. In addition, an optimal
policy mechanism is developed to put the optimal scenario into supply chain management practice,
thus enhancing its sustainability. There are three contributions within this study: first, this study takes
the concept of sustainability into account for the agro-product supply chain with consideration to
its eco-efficiency; second, system dynamics enable us to offer a visual analysis for agribusinesses to
realize their critical processes; third, the analytical results provide the evidence to guide agribusiness
in improving their current performance toward sustainability under the Belt and Road Initiatives.

The remaining parts of this study are organized as follows: Section 2 presents the literature
reviews. Section 3 presents the method conceptualization and formulation. Results are discussed
in Section 4. Section 5 addresses the implications. Lastly, conclusions and research limitations are
expressed in Section 6.

2. Theoretical Background

Conventional optimization of the agro-product supply chain focuses on how to increase the
economic benefits. Xiao et al. [12] applied the CIF (Cost Insurance and Freight) business model
to investigate the impacts of transport delay, price, and freshness of agro-products on the supply
chain, consequently devising a cost-sharing mechanism to enhance its associated economic benefits.
Pathumnakul et al. [13] further considered the factors of technical maturity and seasonal market
demands, in turn optimizing the supply chain of fresh shrimps in Thailand to minimize the storage
cost. With regard to uncertainties in productivity, Bohle et al. [14] applied robust optimization to
the supply chain of wine grapes and developed an optimal grape harvesting scheduling. Similarly,
Paksoy et al. [15] considered production, transport capacity, and the uncertainties in market demand
to optimize the edible vegetable oil supply chain. Owing to the perishable nature of agro-products,
De Keizer et al. [16] combined multi-objective optimization and discrete event simulation to redesign
the supply chain and reduce the financial risk. Soto-Silva et al. [17] further optimized the coordination
mechanism of the agro-product supply chain to mitigate the decay of agro-products.

With the emergence of low-carbon agriculture, carbon emissions have been gradually incorporated
into the decision-making and optimization of the agro-product supply chain as an important
indicator to enhance eco-efficiency. Soysal et al. [18] used a beef supply chain as an example to
investigate the influences of road structure, vehicle and fuel types, weight loads of vehicles, and
traveled distances on the carbon emissions of the supply chain. Similar studies were conducted by
Accorsi et al. [19] and Chandrasekaran et al. [20], who aimed to minimize carbon emissions during
logistic processes to optimize the logistics network structure of the potato supply chain. On the other
hand, Jonker et al. [21] shed light on the greenhouse gas (GHG) emission intensity of the biomass
supply chain of sugarcane ethanol production by optimizing the sizes and locations of enterprises.
Meanwhile, Miranda-Ackerman and Azzaro-Pantel [22] incorporated the net present value (NPV)
and investment (I), global warming potential (GWP), and average variable unit cost (AVUC) as the
objective functions to construct a multi-objective model, revising the location, allocation of resources,
and production capacity of the supply chain of orange juice production.

In recent years, the agro-product supply chain has inclined toward a closed-loop transition
(i.e., optimization based upon a lifecycle assessment) to reinforce its sustainability [23]. Using the
closed-loop tangerine supply chain of a Korean brand, Kim et al. [24] designed the optimal structure of
the closed-loop supply chain based upon returnable transport items (RTIs). Similarly, Turki et al. [25]
optimized a closed-loop supply chain, by taking a combination of manufacturing, remanufacturing,
transport, and warehousing into account. Zabaniotou et al. [26] discussed the example of the
closed-loop supply chain of small-scale olive oil production and proposed a symbiosis approach
to transform waste into energy sources. Banasik et al. [27] constructed a closed-loop supply chain of
the mushroom industry and optimized the cost and environmental impact of mushroom cultivation
through a multi-objective model.
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Since most of the above studies targeted optimizing the network of an existing supply chain
structure, they lacked a comparison among different supply chain operation patterns and discussion
on the policy design postoptimization. Therefore, this study adopts system dynamics modeling and
proposes different operational scenarios of the agro-product supply chain to select the optimal scenario
based upon carbon emissions per unit product. This is followed by a discussion on the incentive
policies to facilitate the operation of the optimal scenario.

3. Method

3.1. Model Conceptualization

A simplified agro-product supply chain comprises farmers, market, consumers, and a municipal
waste disposal center. Farmers are mainly responsible for agricultural production. The “market”
indicates a retailer of a large-scale wholesale market, who purchases agro-products at a market price
and sell them to the consumers (i.e., urban residents). The agro-wastes from the farmers, retailers,
and consumers are sent to the municipal landfill for ultimate disposal. Due to bringing bioenergy
enterprises into the supply chain network, agro-wastes may be recovered for energy production.
Their power generation is merged into the local grid system to provide renewable energy consumed
by urban residents (consumers) and farmers, to reduce waste disposal in landfills and promote
energy savings.

To explore the optimal pattern for supply chain operations against this background, two scenarios
are fabricated in this study: in Supply Chain 1, all the agro-wastes produced by farmers, market,
and consumers proceed to the bioenergy enterprise for processing as shown in Figure 1a; in Supply
Chain 2, agro-wastes produced by consumers are sent to the landfill, whereas the wastes produced
by farmers and the market enter the bioenergy enterprise as shown in Figure 1b. Compared with
Scenario 1, the latter is set based upon possible complexities involved in waste classification and
pretreatment because of consumers’ individual rationalities which may result in less efficiency in
agro-waste collection.
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The modeling process usually entails four basic steps: structural analysis of the system, causal
loop diagram drawing, stock and flow diagram drafting, and model validation [28,29]. To determine
the key factors of the system and grasp their interrelations, the following hypotheses regarding the
supply chain design are proposed:

1. The prices of the same product do not vary significantly in different commercial regions;
2. The locations of the farms and the market as well as the logistic routes between different supply

chain nodes are relatively stable;
3. The supply chain only concerns the mobility of a single type of product.

3.2. Model Formulation

A casual loop diagram is drawn to illustrate the system structure and the interrelation among key
factors. In Figure 2, there are two reinforcing loops and three balancing loops. The first reinforcing
loop shows the increase in agro-wastes and the consequent increase in total agro-wastes due to
increased market acquisition, which leads to a higher production of biomass energy and a lower
consumption of traditional energies; this reduces the supply cost and eventually encourages more
market acquisition. As for the second reinforcing loop, the increased production of agro-products leads
to more agro-wastes and more total wastes; this stimulates biomass energy production and lowers
the farmers’ consumption of traditional energies, in turn reducing the supply cost and expanding the
production of agro-products.

In terms of the balancing loops, the first pertains to the increased energy consumption caused by
increased market acquisitions; this results in greater energy use and higher overall cost of the supply
chain, in turn shrinking the amount of market acquisitions. The second balancing loop examines
the decreased stock of agro-products due to increased market acquisitions, followed by a reduced
production of agro-wastes and, thus, biomass energy; as a result, the use of traditional energy increases,
increasing the overall cost and, eventually, lowering the number of market acquisitions. The last
balancing loop is about the increase in the stock of agro-products due to increased market acquisitions;
this leads to the increased use of traditional energies and then a higher supply cost, reducing the
market acquisitions.

Based on the above analyses, two-feedback-loop clusters are defined as follows:
Reinforcing loop clusters: Marketing acquisition→Marketing waste generation→ Total waste

generation→ Recycling amount of bioenergy plant→ Conventional energy consumption→ Cost
of energy use→ Marketing acquisition; Farmers’ agro-production→Waste generation in farming
stage → Total waste generation → Recycling amount of bioenergy plant → Conventional energy
consumption→ Cost of energy use→ Farmers’ agro-production.

Balancing loop clusters: Marketing acquisition→ Stock in farmers’ agro-production→Waste
generation in farming stage → Total waste generation → Recycling amount of bioenergy plant
→ Conventional energy consumption → Cost of energy use → Marketing acquisition; Marketing
acquisition→ Energy consumption in Marketing acquisition→ Conventional energy consumption
→ Cost of energy use→Marketing acquisition; Marketing acquisition→ Stock of agro-products in
marketing stage→ Conventional energy consumption→ Cost of energy use→Marketing acquisition.

With reference to the causal loop diagram, this study adopts Vensim 6.0 to compose a stock
and flow diagram to quantify the interrelation among the key variables as shown in Figure 3.
These variables can be divided into three groups: state, rate, and auxiliary variables. State variables
are factors that are cumulative over time [29], such as the inventory of agro-products. Rate variables
are integrals representing the difference between the input and output rates with respect to time [29].
An example is the integral difference between the stock of agro-products plus the rate of agro-product
production and the rate of market acquisition. Auxiliary variables are the intermediates between
state and rate variables [29]. An example is the variance of carbon emissions. All variables used in
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the model and their corresponding categories are listed in Table 1. The detailed system dynamics
equations are shown in the Appendix A.Sustainability 2018, 10, x FOR PEER REVIEW  5 of 15 
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Table 1. Key variables of the system dynamics (SD) model.

Key Variable Variable Type Input/Output

C (Cost) Constant Input
FECFS (Factor of Energy Consumption in Farming Stage) Constant Input
FECT (Factor of Energy Consumption in Transportation) Constant Input

FECMS (Factor of Energy Consumption in Marketing Stage) Constant Input
FECCE (Factor of Energy Consumption Converted into Carbon Emissions) Constant Input

CEFL (Carbon Emissions Factor of Landfill Disposal) Constant Input
BCF (Biomass-to-Energy Conversion Factor) Constant Input

TCEF (Factor of Carbon Emissions in Transportation) Constant Input
PLRF (Product Loss Rate in Farming Stage) Rate Input

PLRM (Product Loss Rate in Marketing Stage) Rate Input
PLRC (Product Loss Rate of Consuming Stage) Rate Input

IPA (Initial Production of Agro-Products) Constant Input
FMR (Factor of Marketing Revenue) Constant Input

AP (Acquisition Price) Constant Input
MP (Marketing Price) Constant Input

PIFS (Product Inventory in Farming Stage) State Output
PIMS (Product Inventory in Marketing Stage) State Output
PICS (Product Inventory in Consuming Stage) State Output

AL (Amount of Landfill Disposal) State Output
TAP (Total Amount of Products) State Output

TCE (Total Carbon Emissions) State Output
TRF (Total Revenue of Farmers) State Output

RABP (Recycling Amount of Bioenergy Plant) State Output
ECRL (Energy Consumption of Reverse Logistics) State Output

TEC (Total Energy Consumption) State Output
VECT (Variation of Energy Consumption in Transportation) Auxiliary Output
VECF (Variation of Energy Consumption in Farming Stage) Auxiliary Output

VECM (Variation of Energy Consumption in Marketing Stage) Auxiliary Output
CEP (Carbon Emissions Per Product) Auxiliary Output

PP (Profit Per Product) Auxiliary Output
MR (Market Revenue) Auxiliary Output

FII (Farmers’ Income Index) Auxiliary Output
FFI (Factor of Farmers’ Income) Auxiliary Output

FMP (Factor for Marketing Price) Auxiliary Output
FCD (Factor of Consumers’ Demand) Auxiliary Output

VFP (Variation of Farmers’ Production) Auxiliary Output
VMA (Variation of Marketing Acquisition) Auxiliary Output
VCP (Variation of Consumers’ Purchasing) Auxiliary Output

VC (Variation Consumption) Auxiliary Output
VFI (Variation of Farmers’ Income) Auxiliary Output

VP (Variation of Total Products) Auxiliary Output
VCE (Variation of Carbon Emissions) Auxiliary Output

VWRBP (Variation of Waste Recycling by Bioenergy Plant) Auxiliary Output
VCEWT (Variation of Carbon Emissions in Waste Transportation) Auxiliary Output

VCET (Variation of Carbon Emissions in Transportation) Auxiliary Output
VARF (Variation of Agro-Waste Recycling from Farmers) Auxiliary Output

VWRM (Variation of Waste Recycling from Market) Auxiliary Output
VCEL (Variation of Carbon Emissions in Landfill Disposal) Auxiliary Output

VWGC (Variation of Waste Generation in Consuming Stage) Auxiliary Output
VBP (Variation of Bioenergy Production) Auxiliary Output

CELD (Carbon Emissions of Landfill Disposal) Auxiliary Output
VECRL (Variation of Energy Consumption of Reverse Logistics) Auxiliary Output

VEC (Variation of Energy Consumption) Auxiliary Output

4. Results and Discussions

4.1. Case Background

This study uses yellow chives, which are often seen in southwest China, as typical agro-products
for our case study. Due to substantial market demand, an industrial pattern of large-scale chive



Sustainability 2018, 10, 668 7 of 15

production has been established. The supply chain comprises a production base, a large-scale wholesale
market of agro-products, main consuming towns in the neighborhood, a landfill for household waste,
and a bioenergy enterprise. Their geographical locations are illustrated in Figure 4. The production
base of the yellow chives is the biggest in southwest China, located in the city of Chengdu in the
Sichuan province, and produces more than 8000 tons annually with a sales volume of approximately
16 million RMB and a damage rate of around 20–30%. The damaged produce is transported to a nearby
landfill that processes urban household wastes. As the concept of green supply chain management
is put into practice, the agro-wastes from the production base are integrated with the surrounding
bioenergy enterprises to enhance the utilization of agro-waste and reduce energy consumption.
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The data in this study is mainly collected through field investigation and review of related statistics.
Two types of parameters are involved in the model. The first involves quantifiable, determinable
parameters obtained either through investigation, such as the market price of yellow chives, or from
previous literature, such as the carbon emissions of supply chain activities. The other group contains
parameters that are difficult to quantify, such as the influences of income and the damage rates of
agro-products at different stages of the supply chain, which are mainly obtained by the Delphi method
and interviews with experts. The detailed parameters are listed in Table 2.

Table 2. Measurements of the model input.

Variable Value Source

Cost (C) 0.72 Yuan/kg Field investigation
FECFS (Factor of Energy Consumption in Farming Stage) 0.0018 kg diesel/(kg·day) Field investigation

FECMS (Factor of Energy Consumption in Marketing Stage) 0.0044 kg diesel/(kg·day) Field investigation
FECCE (Factor of Energy Consumption Converted into Carbon Emissions) 3.1388 IPCC [30]

TCEF (Factor of Carbon Emissions in Transportation) 0.0347 kg CO2/kg·100 km Patel and Kumar [31]
PLRC (Products Loss Rate of Consuming Stage) 0.3 Delphi method

FECT (Factor of Energy Consumption in Transportation) 0.011 kg diesel/kg·100 km Giordano et al. [32]
CEFL (Carbon Emissions Factor of Landfill Disposal) 0.2708 kg CO2/kg waste Lee et al. [33]

BCF (Biomass-to-Energy Conversion Factor) 0.007 kg diesel/kg recycled waste AI-Hamamre et al. [8]
PLRF (Products Loss Rate in Farming Stage) 0.25 Delphi method

PLRM (Products Loss Rate in Marketing Stage) 0.1 Delphi method

4.2. Model Validation

Prior to the system dynamics simulation, it is necessary to validate the constructed model to
test its effectiveness in reflecting reality. There are typically two typical methods to ensure the model
accuracy, i.e., behavior sensitivity analysis and historical data comparison, to verify the extent to which
the model is consistent with the actual situation [34,35]. In this study, the latter is used to test the model
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performance, through comparing the discrepancies between the simulated and actual values through
error analysis of the model, in turn quantifying the accuracy of the model. The common practice is
to check whether the simulation result of a certain quantitative variable is in accordance with the
corresponding historical data, e.g., the total income of farmers. The simulation result is compared
against the actual statistics of the farmers’ income in the past few years. Table 3 reflects the differences
between the simulation results and the historical statistics for the past seven years, for which the
average relative error is shown as 3.93%. The error is considered within 15%, which validates the
reliability of the presented model [36].

Table 3. Comparison of simulated and historical values of farmers’ income.

Farmers’ Income
2010 2011 2012 2013 2014 2015 2016

(Ten Thousand Yuan)

Simulation result 206.79 220.01 206.19 221.34 216.33 220.48 217.23
Statistical data 205.12 214.32 220.67 212.83 230.59 225.34 229.03
Relative error 0.81% 2.65% 6.56% 4.00% 6.18% 2.16% 5.15%

4.3. Benchmark Scenario

In the benchmark scenario, the bioenergy enterprises are excluded from the supply chain activities,
and all the agro-wastes are delivered to the landfill that processes urban household wastes. Using
10 years as one simulation cycle, the simulation results of the carbon emissions per unit product in the
benchmark scenario are shown in Figure 5.
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4.4. Scenario Selection

Figure 6 reflects the simulation results of the carbon emissions per unit agro-product under the
two proposed scenarios. Compared with the benchmark scenario, both scenarios exhibit a significant
decline of carbon emissions during the simulation cycle. Scenario 1 produces a cumulative decrease
of 14.13%, whereas Scenario 2 shows a cumulative decrease of 18.02%. It is evident that Scenario 2 is
more effective in reducing carbon emissions. This conclusion indicates that although recycling and
processing agro-wastes generates a greater amount of bioenergy, this approach is undesirable because
the dispersion of consumers contributes to an increase in carbon emissions during waste collection
and transport and, consequently, an increase in total emissions.
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more effective in reducing carbon emissions. This conclusion indicates that although recycling and 
processing agro-wastes generates a greater amount of bioenergy, this approach is undesirable 
because the dispersion of consumers contributes to an increase in carbon emissions during waste 
collection and transport and, consequently, an increase in total emissions. 

 
Figure 6. Carbon emissions per unit product under two scenarios. Figure 6. Carbon emissions per unit product under two scenarios.

4.5. Development of Incentive Policies

The above analysis shows that, despite the substantial environmental benefits brought about by
a green supply chain, the energy production of the bioenergy enterprises is relatively small due to
external costs produced by measures for energy savings and emission reductions. The wide dispersion
of the agro-wastes leads to high costs of waste collection and logistics, which cripple the management
and implementation of the agro-product supply chain. Under this context, government measures such
as subsidies, green procurement, and tax incentives serve an important role in maintaining the stable
operations of a green supply chain. Given that Scenario 2 has been chosen as the preferred operation
mode, this section identifies the optimal incentive mechanism by observing how government subsidies
influence the emissions reduction of the supply chain.

4.5.1. Government Subsidies for Bioenergy Enterprise

Government investments and subsidies are effective in helping bioenergy enterprises improve
their operations and development [37]. This study assumes that, after subsidization, the bioenergy
enterprises will be able to choose a high-cost cleaner production plan to boost their energy conversion
efficiency to three times the original. Under such a context, the simulation results indicate an
insignificant drop in carbon emissions per unit product of 6.05%, as shown in Figure 7.
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4.5.2. Logistic Subsidies

In this scenario, the government considers subsidizing logistics to stimulate the transport
processes in the supply chain to shift from fossil energy driven to renewable energy driven. According
to Figure 8, the carbon emissions per unit product in this scenario decline by 11.29%. Compared
with subsidizing the bioenergy enterprises, logistic subsidies have significantly more economic and
environmental benefits. Therefore, any attempt to optimize the agro-product supply chain may give
priority to emissions reduction at the logistic stages.Sustainability 2018, 10, x FOR PEER REVIEW  10 of 15 

 
Figure 8. Carbon emissions per unit product under logistic subsidization. 

5. Implications 

The case example is used to demonstrate the application of system dynamics, which is employed 
to select an operations scenario for supply chain management practice to enhance its eco-efficiency, 
by using carbon emissions per unit product as the indicator for simulation. The results also provide 
insight into improvement of agro-product supply chain management of countries along the Belt and 
Road routes. For instance, subsidizing the logistic processes can effectively lower emission intensity. 
This is also an indirect proof that the carbon emissions of the agro-product supply chain largely 
originate from the logistic processes [38]. In comparison, subsidizing bioenergy enterprise is 
ineffective in terms of emission reduction. This finding indirectly verifies the research conclusion by 
Yue et al. [39], who state that the lack of a systematic coordination mechanism within bioenergy 
enterprises has hindered their electricity generation capacity and industrial scale, in turn limiting the 
benefits of introducing high-efficiency energy conversion technologies for reducing carbon 
emissions. Therefore, we suggest that sufficient consideration should be given to the coordination 
and balance among stakeholders of a supply chain, while bioenergy enterprises should be 
industrialized and expanded to a certain scale to gradually highlight their market competitiveness 
and eco-efficiency. 

There are several uncertainties in this study. First, choosing different types of supply chains 
during the case study to analyze emissions reduction policies often leads to varying conclusions. For 
instance, this study examines the supply chain of typical agro-products, represented by yellow 
chives, and concludes that subsidies are best provided to logistic processes for emissions reduction. 
However, during the study by Smith et al. [40] on the supply chain of a bioenergy generated by 
anaerobic fermentation in Africa, it was found that government subsidies should most preferably 
cover some of the investments in related infrastructure development. Moreira et al. [41] used the 
ethanol supply chain in Brazil as an example and argued that the optimal government policy for 
emissions reduction is to pay both upstream and downstream industries a subsidy of $10 USD per 
ton of carbon dioxide reduction. It is evident that different types of supply chains require different 
policies on emissions reduction. Second, the system boundaries also create uncertainties in the 
computation of carbon emissions. For example, in terms of electricity consumption, this study merely 
focuses on direct consumption, without further considering the indirect carbon emissions from 
secondary energy consumption by using electricity. In addition, the agro-product supply chain is 
highly uncertain and involves interaction among stakeholders. In particular, consumers’ preferences 
and needs have yet to be effectively predicted. Whether government subsidies for bioenergy 

Figure 8. Carbon emissions per unit product under logistic subsidization.

5. Implications

The case example is used to demonstrate the application of system dynamics, which is employed
to select an operations scenario for supply chain management practice to enhance its eco-efficiency,
by using carbon emissions per unit product as the indicator for simulation. The results also provide
insight into improvement of agro-product supply chain management of countries along the Belt
and Road routes. For instance, subsidizing the logistic processes can effectively lower emission
intensity. This is also an indirect proof that the carbon emissions of the agro-product supply chain
largely originate from the logistic processes [38]. In comparison, subsidizing bioenergy enterprise
is ineffective in terms of emission reduction. This finding indirectly verifies the research conclusion
by Yue et al. [39], who state that the lack of a systematic coordination mechanism within bioenergy
enterprises has hindered their electricity generation capacity and industrial scale, in turn limiting the
benefits of introducing high-efficiency energy conversion technologies for reducing carbon emissions.
Therefore, we suggest that sufficient consideration should be given to the coordination and balance
among stakeholders of a supply chain, while bioenergy enterprises should be industrialized and
expanded to a certain scale to gradually highlight their market competitiveness and eco-efficiency.

There are several uncertainties in this study. First, choosing different types of supply chains
during the case study to analyze emissions reduction policies often leads to varying conclusions.
For instance, this study examines the supply chain of typical agro-products, represented by yellow
chives, and concludes that subsidies are best provided to logistic processes for emissions reduction.
However, during the study by Smith et al. [40] on the supply chain of a bioenergy generated by
anaerobic fermentation in Africa, it was found that government subsidies should most preferably
cover some of the investments in related infrastructure development. Moreira et al. [41] used the
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ethanol supply chain in Brazil as an example and argued that the optimal government policy for
emissions reduction is to pay both upstream and downstream industries a subsidy of $10 USD per ton
of carbon dioxide reduction. It is evident that different types of supply chains require different policies
on emissions reduction. Second, the system boundaries also create uncertainties in the computation
of carbon emissions. For example, in terms of electricity consumption, this study merely focuses on
direct consumption, without further considering the indirect carbon emissions from secondary energy
consumption by using electricity. In addition, the agro-product supply chain is highly uncertain and
involves interaction among stakeholders. In particular, consumers’ preferences and needs have yet
to be effectively predicted. Whether government subsidies for bioenergy enterprises will result in
rent-seeking behavior and dependence on the subsidies is yet to be examined.

6. Conclusions

Against the strategic background of the Belt and Road Initiative, this study redesigned a regional
agro-product supply chain by taking bioenergy enterprises into account to reduce ago-wastes and
enhance eco-efficiency. Two operational scenarios were created, in which Scenario 1 assumes that
all the agro-waste flows into the bioenergy enterprise, whilst Scenario 2 only takes the agro-wastes
produced by farmers and the wholesale market for energy production into account.

System dynamics offer a powerful tool to select the optimal scenario to enhance the eco-efficiency
of the proposed supply chain. The simulation result shows that Scenario 2 has greater potential in
improvement of the eco-efficiency of the agro-product supply chain, particularly reflected in its carbon
emission reduction.

In order to drive such a scenario into management practice, an incentivizing mechanism was
designed based upon governmental subsidy for the bioenergy enterprise or the logistic processes.
The simulation result shows that subsidy for the logistic processes is better for facilitating supply chain
operations. It is expected that the results may provide insight into the optimization of agro-product
supply chain management in countries along the Belt and Road routes.

However, there are limitations to this study. For example, it concentrates on the effectiveness
of emissions reduction without considering the marginal cost of such reduction. While focusing
on the effects of incentivizing policies on the supply chain, it fails to consider other marketing
measures. Future studies should determine the cost of carbon emission reduction in supply chains
while coordinating and optimizing such emissions and incurred costs. They may even apply game
theory to the interactive mechanism among stakeholders of an agro-product supply chain under
different political contexts to facilitate policy implementation.
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Appendix A

VFP = IF THEN ELSE (PIFS < 1000, FFI × IPA, 0)

PIFS(n) = INTEGRAL(VFP(n) − VMA(n) − VARF(n), PIFS(0))

PIFS(0) = 1000
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FFI = 1 × FII

FII = VFI/DELAY1I(VFI, 1, 10 Million)

VFI (Variation of Farmers’ Income) = PP (Profit Per Product) × VMA

(Variation of Marketing Acquisition)

PP (Profit Per Product) = AP (Acquisition Price) − C (Cost)

AP (Acquisition Price) = <Time> = ([(0,0) − (10,10)], (1,5.5), (2,6), (3,7.5), (4,8), (5,9), (6,8.8),

(7,10), (8,10), (9,10.2), (10,9))

PP (Profit Per Product) = C (Cost)

VMA = IF THEN ELSE (PIFS ≤ 0,0, IF THEN ELSE (PIMS > INVENTORYCAPACITY, 0,

1000 × FMR))

FMR = MP - AP

FMR = FMR/DELAY1I(MR,1, MR(0))

MR(0) = 1

PIMS(n) = INTEGRAL(VMA(N) − VCP(n) − VWRM(n), PIMS(0))

PIMS(0) = 1000

VCP = IF THEN ELSE (PIMS > 0, 1000/(FMP × FCD), 0)

FCD = PICS/DELAY1I(PICS, 1, VCP(0))

VCP(0) = 0

FMP = MP/DELAY1I(MP, 1, MP(0))

MP(0) = 8

MP(Marketing Price) = <Time> = ([(0,0) − (10,10)], (1,8), (2,9.7), (3,10), (4,10.8), (5,11), (6,10.6), (7,11.8),

(8,12), (9,13), (10,12.5))

PICS(n) = INTEGRAL(VCFP(N) − VC(n) − VWGC(n), VCFP(0))

VCFP(0) = 100

VECRL = (PLRF × PIFS + PLRM × PIMS) × FECT

ECRL(n) = INTEGRAL(VERAL(n),0)

In Scenario 1 of the redesigned supply chain,

AL = 0, CELD = 0.

In Scenario 2 of the redesigned supply chain,

AL(n) = INTEGRAL(VWGC(n),0) CELD(n) = AL(n) × CEFL

VWGC (Variation of Waste Generation in Consuming Stage) = VCP (Variation of

Consumers’ purchasing) × PLRC (Product Loss Rate of Consuming Stage)

In Scenario 1 of the redesigned supply chain,

VWRBP = VARF + VWRM,
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VARF = FIFS × PLRF, VWRM = PLRM × PLMS, VWGC = VCP × PLR.

In Scenario 2 of the redesigned supply chain,

VWRBP = VARF + VWRM, where VARF = FIFS × PLRF, VWRM = PLRM × PLMS.

VEC (Variation of Energy Consumption) = VECF + VECT + VECM + VECRL − VBP

TEC (Total Energy Consumption) = INTEGRAL(VEC(n),VEC(0))

VEC(0) = 0

VECF = PIFS × FECFS, VECT = FECT × VMA, VECM = PIMS × FECMS

VCE (Variation of Carbon Emissions) = VCET (Variation of Carbon Emissions in

Transportation) + VCEWT (Variation of Carbon Emissions in Waste Transportation)

TCE(n) = INTEGRAL(VCE(n),TCE(n − 1))

TCE(0) = 1000

VP (Variation of Total Products) = VFP (Variation of Farmers’ Production)

TAP(n) = INTEGRAL(VP(n),0)

CEP (Carbon Emissions Per Product) = TCE (Total Carbon Emissions)/TAP

(Total Amount of Products)
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