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Abstract: In recent years, the increasing gap between available funding and preservation needs has
influenced district pavement engineers to select and prioritize projects to effectively use funding.
However, currently, projects are often selected after an informal assessment, based on local conditions
and local district engineers’ experience, in the absence of a statewide systematic process. The primary
objective of this study is to determine network-level project sections for effective sustainable pavement
management using logistic regression analysis. A large volume of inventory data, documented using
pavement-management information systems (PMIS), was used to develop the logistic regression (LR)
model for selecting candidate sections. The LR model was subsequently validated using a single
50/50 split sample method. The findings of this study will assist the Austin, Texas, USA district to
select and evaluate candidate projects. Furthermore, the study will eventually contribute to improved
efficiency in project selection and prioritization by reducing not only the amount of time necessary to
review the district PMIS data to identify project candidates, but also the potential for human error.
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1. Introduction

The Texas Department of Transportation (TxDOT) is concerned about effectively allocating their
limited resources to current pavement-preservation efforts. In practice, repairing and maintaining
pavements that are in good condition costs less than repairing them after they deteriorate [1]. However,
the current funding level has not kept pace with Texas’ pavement-preservation needs. In recent years,
the TxDOT preventive-maintenance rehabilitation funding has continuously decreased, as shown in
Figure 1 [2–9].

In 2011, the Texas 2030 committee warned that, although only 13 percent of the current road miles
in Texas have been rated as fair, poor, or very poor, insufficient funding for pavement maintenance will
significantly adversely affect future pavement quality. Eventually, nearly all of the pavements in Texas
will reach poor or very poor conditions, based upon the current funding trend [10,11]. The increasing
gap between available funding and preservation needs motivated the district pavement engineers to
select and prioritize projects in order to use funding effectively [12]. To enable sustainable pavement
management in Texas, district pavement engineers are requested to submit a list of pavement projects
to the Four-Year Pavement-Management Plan Committee (PMPC). The 25 individual district plans
are combined to create the statewide Four-Year Pavement-Management Plan, which is reviewed at all
levels within TxDOT, including local or lower management levels, district or network management
levels, and statewide or upper management levels.
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Figure 1. TxDOT’s expenditures for preventive maintenance and rehabilitation. 

When district pavement engineers suggest projects for the Four-Year Pavement-Management 
Plan, they must determine and prioritize which projects should be funded first. Currently, each 
district in Texas uses locally developed methods to select and prioritize projects. Specifically, the 
Austin district previously assessed and prioritized project sections based on local factors and district 
experience, e.g., traffic level, pavement type, distress type, and maintenance costs. Based on their 
assessment, projects were created by combining adjacent project sections. Then, the projects were 
possibly modified based on funding source, project timing, and public or political issues, to support 
funding allocation. In particular, the network-level assessment generally required the district 
pavement engineers to spend almost two months manually evaluating the inventory data stored in 
the Pavement Management Information System (PMIS).  

TxDOT does not have standard procedures for selecting and ranking candidate projects. As a 
result, projects are currently selected after an informal assessment based on local conditions and local 
district engineers’ experience, without a statewide systematic process. A data-based project-selection 
model that applies common rules based on district engineers’ knowledge is immediately needed to 
achieve a rational, transparent, and effective statewide Four-Year Pavement-Management Plan.  

The primary objective of this study is to determine network-level project sections for effective, 
sustainable pavement management using logistic regression analysis. The study will (1) develop a 
logistic regression model using the data documented in PMIS, (2) determine the factors that 
significantly affect network-level project decisions, (3) select network-level project sections, and (4) 
prioritize those sections for projects that will later be listed in the Four-Year Pavement Management 
Plan. The findings of this study will establish a solid foundation for project prioritization based on a 
thorough analysis of pavement needs and project evaluations. The results will assist the Austin 
district in selecting and evaluating candidate projects. Furthermore, the study will ultimately 
contribute to improving project selection and prioritization efficiency by reducing not only the 
amount of time necessary to review the district PMIS data to identify project candidates, but also the 
potential for human error. 

2. Background 

2.1. Pavement Management Information System (PMIS) 

In 1993, the Texas Department of Transportation (TxDOT) developed the Pavement 
Management Information Systems (PMIS) to manage their pavement assets and to improve the 
overall conditions of Texas pavements [13,14]. This database is one of the largest pavement databases 
in the U.S., containing relevant pavement information for more than 300,000 road sections, each 
roughly 0.5 m in length [15]. 
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Figure 1. TxDOT’s expenditures for preventive maintenance and rehabilitation.

When district pavement engineers suggest projects for the Four-Year Pavement-Management
Plan, they must determine and prioritize which projects should be funded first. Currently, each district
in Texas uses locally developed methods to select and prioritize projects. Specifically, the Austin district
previously assessed and prioritized project sections based on local factors and district experience,
e.g., traffic level, pavement type, distress type, and maintenance costs. Based on their assessment,
projects were created by combining adjacent project sections. Then, the projects were possibly modified
based on funding source, project timing, and public or political issues, to support funding allocation.
In particular, the network-level assessment generally required the district pavement engineers to spend
almost two months manually evaluating the inventory data stored in the Pavement Management
Information System (PMIS).

TxDOT does not have standard procedures for selecting and ranking candidate projects. As a
result, projects are currently selected after an informal assessment based on local conditions and local
district engineers’ experience, without a statewide systematic process. A data-based project-selection
model that applies common rules based on district engineers’ knowledge is immediately needed to
achieve a rational, transparent, and effective statewide Four-Year Pavement-Management Plan.

The primary objective of this study is to determine network-level project sections for effective,
sustainable pavement management using logistic regression analysis. The study will (1) develop
a logistic regression model using the data documented in PMIS, (2) determine the factors that
significantly affect network-level project decisions, (3) select network-level project sections, and
(4) prioritize those sections for projects that will later be listed in the Four-Year Pavement Management
Plan. The findings of this study will establish a solid foundation for project prioritization based on a
thorough analysis of pavement needs and project evaluations. The results will assist the Austin district
in selecting and evaluating candidate projects. Furthermore, the study will ultimately contribute to
improving project selection and prioritization efficiency by reducing not only the amount of time
necessary to review the district PMIS data to identify project candidates, but also the potential for
human error.

2. Background

2.1. Pavement Management Information System (PMIS)

In 1993, the Texas Department of Transportation (TxDOT) developed the Pavement Management
Information Systems (PMIS) to manage their pavement assets and to improve the overall conditions of
Texas pavements [13,14]. This database is one of the largest pavement databases in the U.S., containing
relevant pavement information for more than 300,000 road sections, each roughly 0.5 m in length [15].

An annual PMIS data-collection survey is conducted at the beginning of each fiscal year from
September to December to update the database with new pavement-condition and other inventory data.
The pavement information stored in the system typically includes road type, location characteristics,
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and other indices, e.g., pavement-condition score, distress score, and ride score. The database is
generally used by district pavement engineers to select pavement projects.

2.2. Logistic Regression Analysis

The logistic regression model, also referred to as a logit model, is commonly used to predict
the presence or absence of an outcome with predictor variables [16]. Compared to other traditional
regression techniques, logistic regression is mostly used for binominal models. The dependent variable
is usually dichotomous, and the independent variables can take any form, e.g., categorical or numerical
variables. Therefore, logistic regression does not need to be normally distributed like linear regression.
The logit transformation [17,18] converts a probability measurement between 0 and 1 into values in
the interval (−∞, ∞). The logit transformation is defined as

Logit(p) = ln
[

p
1 − p

]
, (1)

where Logit (p) = the natural log of the odds, ln = the natural logarithm, and p = the probability
of success.

After the dependent variable is transformed into a logit variable, it can be predicted by the
independent variables using the maximum likelihood estimation. In a logistic regression model, the
regression coefficients (β) can be interpreted as in linear models. Thus, βk represents the logit change of
the probability associated with a unit change in the kth predictor, holding all other predictors constant.
The regression equation is described below

logit(p) = b0 + β1X1 + β2X2 + . . . + βkXk, (2)

where logit (p) = the log odds of the dependent variable, b0 = a constant, βk = a regression coefficient,
and Xk = k independent variables.

3. Model Development Process

The main goal of this study is to prioritize network-level project sections to support the
Four-Year Pavement Management Plan. To effectively achieve this goal, logistic regression analysis
was conducted using inventory data recorded from the PMIS and a list of projects for Austin
district included in the statewide Four-Year Pavement Management Plan. Using the logit model,
a large number of project sections that consistently matched with actual projects were selected
and prioritized for sustainable pavement management. Figure 2 shows an overview of the
model-development process.

3.1. Factors Affecting Pavement Treatment Decisions

To identify the relevant factors for a pavement-preservation decision, a number of pavement
engineers from the Austin district of TxDOT participated in the research meetings. The participants
were asked to evaluate an initial list of potential factors presented by the research team. Based on
expert opinions, the research team identified five relevant factors documented in the PMIS database.
These factors included (1) total average daily traffic (total ADT), (2) truck ADT, (3) posted speed limit,
(4) condition score, and (5) change in condition score [19–22]. Each factor can be broken down into
several categories that are relevant to the district pavement engineers. These factors are defined below:

• Total average daily traffic (total ADT): volume of traffic in both lanes.
• Truck average daily traffic (truck ADT): volume of truck traffic in both lanes.
• Posted speed limit: legally assigned numerical maximum speed limit.
• Condition score (CS): description of the overall pavement condition, combining the distress score

and ride quality (1 = worst condition, 100 = best condition).



Sustainability 2018, 10, 686 4 of 10

• Change in condition score: change in condition score since last year (condition score in previous
year—condition score in current year).
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3.2. Data Source and Preparation

This study used two main data sets obtained from the TxDOT Austin district, including (1) the
PMIS database and (2) a list of Austin district’s pavement preservation projects for TxDOT’s four-year
plan. The PMIS database for Austin district includes 8423 road sections, each roughly 0.5 m in length,
with relevant pavement information, e.g., a pavement condition summary and route characteristics.
Austin district’s preliminary list of pavement preservation projects included 409 pavement maintenance
projects. This project data typically consisted of sections more than one-mile long, created by combining
several related sections.

To link the relevant pavement information between the two different data sets, the selected
projects were split into 0.5-m-long sections (network-level data), and 3800 sections were obtained.
These sections were matched with those in the PMIS database, and the relevant pavement information
was loaded from the PMIS database. However, missing or zero-value pavement information may
often result in inaccurate inference. To avoid this, listwise deletion method was used and as a result,
an entire record is excluded from analysis if any single pavement information is missing or zero-value.
After removing missing or zero-value pavement information, 3076 sections were identified that had
been selected for projects, and 4839 sections were identified that had not been selected for projects.
Table 1 summarizes the statistics of the variables included in the analysis.

3.3. Logistic Regression Analysis

A total of 3958 sample project sections (training set: 50.0% of the total), which were randomly
selected from the total samples (7915 sections), was used to build the logistic regression model for
selecting pavement-preservation projects. The PMIS variables selected by expert input were set as the
independent variables for the model, and the final decision on the Four-Year project selection was
set as the dependent variable. For easy and consistent interpretation of the relative impact, the most
severe categories were selected as references. These variables were dummy coded to evaluate their
impact on project selection with the reference categories (marked * in Table 1).

Using the Statistical Package for Social Sciences (SPSS® 19.0), a logistic regression model was
developed with the combined data from the PMIS database and the preliminary list of projects for
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TxDOT’s four-year plan. In the model, the coefficients and standard errors of the parameters were
determined using the maximum-likelihood method based on p-values less than 0.5.

Table 1. Statistics of project-selection variables for pavement preservation.

Variable Category Frequency Percentage (%)

Total ADT (vehicles)

(1) 0–1000 2018 25.5
(2) 1001–5000 2454 31.0

(3) 5001–10,000 1372 17.3
(4) 10,001–50,000 1781 22.5

* (5) 50,001+ 290 3.7

Truck ADT (vehicles)

(1) 0–100 1788 22.6
(2) 101–1000 4650 58.7
(3) 1001–5000 1108 14.0
(4) 5001–7500 103 1.3

* (5) 7501+ 266 3.4

Posted Speed Limit

(1) 0–35 mph 78 1.0
(2) 36–45 mph 627 7.9
(3) 46–55 mph 1927 24.3

* (4) 55–80 mph 5283 66.7

Condition Score

* (1) 1–50 516 6.5
(2) 51–70 776 9.8
(3) 71–90 1202 15.2

(4) 91–100 5421 68.5

Change in Ride Score Since Last Year

* (1) −99–−30 364 4.6
(2) −29–−15 602 7.6

(3) −14–0 1415 17.9
(4) 1–15 3851 48.7
(5) 16+ 1683 21.3

* Indicates reference categories in logistic regression analysis.

3.4. Logistic Regression Analysis

The study adopted a cross-validation technique for validation, which was mainly used to assess
the estimate of model-generalization errors. The most common sample splits are 50/50 or 2/3:1/3.
In this study, a single 50/50 split sample validation was used to test the model. Therefore, the remaining
3957 sections (test sets: 50% of the total) were used to test the model after developing the LR model
with the training set. This validation process ultimately supports the degree to which the logistic
regression model can be generalized from the independent variables.

4. Results

The results of the logistic regression analysis showed that all the independent variables, except
truck ADT, were significant predictors of project selection. Table 2 shows the logistic regression
coefficient, Wald test, and odds ratio for each of the predictors. Using a 0.05 criterion of statistical
significance, the total ADT, speed limit (less than 35 mph), condition score (above 50), and changes in
CS (above +15) had significant effects. The independent variables that were not significant indicated
coefficients that were not significantly different between selected and unselected projects. The following
is the final model that was fit to the data:

logit(p) = log(odds) = ln[p/(1 − p)]
= 2.119 − 0.870 × Total ADT (4)− 0.450 × Total ADT (2)− 0.706 × Total ADT (3)
−1.104 × Total ADT (4)− 1.320 × Speed Limit (1) + 0.059 × Speed Limit (2)− 0.058
×Speed Limit (3)− 0.367 × ConditionScore (1)− 0.780 × ConditionScore (2)− 2.049
×ConditionScore (3)− 0.250 × Change in CS (1) + 0.254 × Change in CS (2)− 0.341
×Change in CS (3)− 0.521 × Change in CS (4)

(3)

The logistic regression model showed a significant relationship between the dependent variable
(project/non-project) and the independent variables. In the model, the dependent variable is presented
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on the logit scale, which is the natural log of the odds. Accordingly, the variable estimates indicated
the increase or decrease in the predicted log odds of a pavement maintenance project being selected
with a one-unit increase in a predictor, holding all other predictors constant. In addition, the constant
represented the expected odds of project selection when all the predictor variables were included in the
(0) categories (all reference variables: above 50,000 total ADT, above 7500 truck ADT, above 55-mph
speed limit, less than 50 condition score, and less than −30 change in CS).

In the total ADT, for example, the odds ratio of total ADT (1) is 0.419 (Exp (−0.870)). This means
the odds of being selected for preservation projects, compared to those of not being selected for the
projects, significantly decreased by a factor of 0.419 when the section decreased the total ADT from
above 50,000 (total ADT (0): reference) to less than 1000 (ADT (1)). Consequently, the inverted odds
ratios for these dummy variables indicate that the odds of selecting the section with total ADT (0) for
preservation projects were 2.39 times (1/Exp[B]) more likely to be selected for a pavement-preservation
project than not to be selected for the project.

Similarly, the odds for selecting a section with a speed limit above 55 mph were 3.7 times (1/0.267)
higher than with a speed limit of less than 35 mph. Moreover, the odds for selecting a section with
a condition score of less than 50 were 2.18 times (1/0.458) higher than that with a condition score
between 70 and 90, and 7.75 times (1/0.129) higher than with a condition score between 90 and 100.

This can be more easily understood when the odds ratio is converted to the probability for project
selection. Equation (4) computes the probability of being selected for a project from the log odds (logit).
If the section has all reference categories, the model predicts an 89.3% chance of it being selected for a
project. By controlling all other predictors as reference categories, the model predicts that 77.7% of
the sections with an ADT between 10,000 and 50,000 will be selected for a pavement-maintenance
project, while 68.9% of the sections with a speed limit of less than 35 mph will be selected for the
project. Therefore, the probabilities of being selected for a project are improved when the sections have
a greater total ADT, higher speed limit, lower condition score, and greater negative changes in the
condition score. Based on the probability of being selected for a project, each section can be prioritized
using the default cut-off value of 0.5. Table 3 shows examples of sections prioritized based on their
probability for being selected as a project. The following is the equation for calculating probability of
project selection:

P(probability) =
eb0+β1X1+β2X2+ ...+βkXk

1 + eb0+β1X1+β2X2+ ...+βkXk
(4)

Table 2. Logistic regression analysis results.

Variables B S.E. Wald df Sig. Exp(B)
95% CI for EXP(B)

Lower Upper

Constant 2.119 0.268 62.399 1 0.000 8.319 2.119

Total ADT (0) * 60.722 4 0.000
Total ADT (1) −0.870 0.191 20.793 1 0.000 0.419 0.288 0.609
Total ADT (2) −0.450 0.187 5.763 1 0.016 0.638 0.442 0.921
Total ADT (3) −0.706 0.197 12.878 1 0.000 0.493 0.336 0.726
Total ADT (4) −1.104 0.196 31.748 1 0.000 0.332 0.226 0.487

Speed Limit (0) 11.265 3 0.010
Speed Limit (1) −1.320 0.406 10.554 1 0.001 0.267 0.120 0.592
Speed Limit (2) 0.059 0.140 0.181 1 0.671 1.061 0.807 1.396
Speed Limit (3) -0.058 0.085 0.470 1 0.493 0.943 0.798 1.115

Condition Score (0) 240.822 3 0.000
Condition Score (1) −0.367 0.188 3.807 1 0.051 0.693 0.479 1.002
Condition Score (2) −0.780 0.188 17.307 1 0.000 0.458 0.317 0.662
Condition Score (3) −2.049 0.185 122.940 1 0.000 0.129 0.090 0.185

Change in CS (0) 51.869 4 0.000
Change in CS (1) −0.250 0.223 1.255 1 0.263 0.779 0.503 1.206
Change in CS (2) 0.254 0.219 1.350 1 0.245 1.289 0.840 1.980
Change in CS (3) −0.341 0.221 2.373 1 0.123 0.711 0.461 1.097
Change in CS (4) −0.521 0.223 5.439 1 0.020 0.594 0.383 0.920

* The (0) class of each variable (in bold and Italic style) indicates the reference category in the analysis.
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Table 3. Examples of section prioritization based on probability

Rank

Variables Decision

Total
ADT (1)

Total
ADT (2)

Total
ADT (3)

Total
ADT (4)

Speed
Limit (1)

Speed
Limit (2)

Speed
Limit (3)

CS
(1)

CS
(2)

CS
(3)

∆CS
(1)

∆CS
(2)

∆CS
(3)

∆CS
(4) Prob. Pred. Act.

1 × × 0.833 1 1
2 × × 0.818 1 1
3 × × 0.781 1 1
4 × 0.734 1 1
5 × × × × 0.712 1 1
6 × × × 0.708 1 1
7 × × 0.682 1 1
8 × × × 0.643 1 1
9 × × × × 0.641 1 1
10 × × 0.621 1 1
11 × × × 0.620 1 1
12 × × × × 0.584 1 1
13 × × × 0.528 1 1
14 × × × 0.473 0 1
15 × × × 0.367 0 1
16 × × × 0.273 0 1
17 × × × 0.242 0 1
18 × × × × 0.212 0 1
19 × × × 0.202 0 1
20 × × × × 0.193 0 1

× Indicates that each section has × marked categories.
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5. Logistic Regression Model Validation

A single 50/50 split sample validation was used to validate the LR model. After developing the
model with 50% of the samples, the remaining 3957 samples were used to test the model. Table 4 shows
the correct-classification rate of the LR model compared to the results of the validation. The LR model
shows a higher correct-classification rate on selecting non-projects, while it has a relatively lower
correct-classification rate for projects. On the other hand, the validation results showed somewhat
similar rates for selecting projects or non-projects, with 72.6% and 64%, respectively. However, the
research team found that the LR model consistently produced an overall correct-classification rate of
about 70%, compared to the validation results.

Table 4. Correct-classification rate of the LR model vs. validation.

Prediction
Percentage Correct

Non-Project Project

Actual Observation
Non-Project 2025 (2071 *) 345 (398) 85.4% (72.6%)

Project 822 (781) 766 (707) 48.2% (64.0%)

Overall Correct Classification 2847 (2852) 1111 (1105) 70.5% (70.2%)

* ( ) Indicates the results of the cross validation.

6. Discussion

The primary purpose of this study was to develop a logistic regression model to select and
prioritize project sections that were supported for the Four-Year Pavement Management Plan.
This study was rigorously conducted with a huge number of samples. Although this study focused
on the Austin district of Texas, other districts and states can employ similar methods to select
and prioritize projects. As discussed with Austin district pavement engineers, the maintenance
history was a critical factor for selecting projects. Although the LR model partially considered the
pavement maintenance history by using the ‘changes in condition score’ factor—if maintenance occurs,
the condition score increases significantly—the correct classification rate could be improved when the
factor is directly included.

The findings of this study will be used to assist district pavement engineers in evaluating
pavement sections for the statewide management plan. It will also improve the project selection
and prioritization efficiency by providing the LR model, which potentially reduces human errors.
Moreover, the study’s findings should significantly reduce the time necessary to review the district
PMIS data to identify candidate projects, which could potentially maximize the budget-allocation
efficiency and improve the pavement conditions. In a nutshell, the study will eventually contribute to
improved efficiency in project selection and prioritization by reducing not only the amount of time
necessary to review the district PMIS data to identify project candidates, but also the potential for
human error. In addition, the findings of the study suggest further studies on pavement-treatment
selection, by extracting expert knowledge using the inventory data. Optimizing the funding allocation
for pavement-project efficiency would expand these research findings as well.

7. Conclusions

This study attempted to predict network-level sections that would be selected for
pavement-preservation projects using logistic regression analysis. A large number of samples were
used to develop a logistic regression model. The model results indicated that all of the predictors,
except the truck ADT, were significant at the 95% confidence level. These predictors included the total
ADT, speed limit, condition score, and changes in condition score since last year. Based on the model,
the probabilities of being selected for a project are improved when the sections have a greater total
ADT, higher speed limit, lower condition score, and greater negative changes in the condition score.
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Based on the probability of being selected for a project, each section can be prioritized using the default
cut-off value of 0.5.

In addition, a single 50/50 split sample validation was used to validate the result. The validation
results also confirmed the LR model by producing about a 70% correct-classification rate. The LR
model shows a higher correct-classification rate on selecting non-projects, while it has a relatively lower
correct-classification rate for projects. On the other hand, the validation results showed somewhat
similar rates for selecting projects or non-projects, with 72.6% and 64%, respectively. However,
the research team found that the LR model consistently produced an overall correct-classification rate
of about 70%, compared to the validation results. Therefore, the findings of this study will assist the
Austin, Texas, USA district to select and evaluate candidate projects.
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