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Abstract: Public transportation can have an efficient role ingainingtraveler satisfaction while
decreasing operation costs through establishing an integrated public transit system. The main
objective of this research is to propose an integrated multimodal transit model to design the best
combination of both railway and feeder bus mode transit systems, while minimizing total cost.
In this paper, we have proposed a strategy for designing transit networks that provide multimodal
services at each stop, and for consecutively assigning optimum demand to the different feeder modes.
Optimum transit networks have been achieved using single and multi-objective approaches via
metaheuristic optimization algorithms, such as simulated annealing, genetic algorithms, and the
Non-dominated Sorting Genetic Algorithm II (NSGA-II). The used input data and study area were
based on the real transit network of Petaling Jaya, located in Kuala Lumpur, Malaysia. Numerical
results of the presented model, containing the statistical results, the optimum demand ratio, optimal
solution, convergence rate, and comparisons among best solutions have been discussed in detail.

Keywords: integrated transit; multimodal feeder; network design; metaheuristics; multi-objective
optimization

1. Introduction

The mobility of modern metropolises strongly relies on urban mass rapid transit systems, due to
such heavy dependence, inefficiencies that are resulting from a poor feeder service will eventually
make urban mass transit systems unsustainable. Moreover, to deal with the problem of environmental
issues, network congestion, and vulnerable road users, the efficiency of the surface mass public
transport system should be improved [1].

In high demand metropolitan cities, an integrated transit system plays essential role to provide
sustainable public transportation. This integrated transit service consists of rail lines and a number of
feeder routes which are connected at different transfer stations. Accordingly, designing an appropriate
feeder services that can provide well accessibility to an existing rail system and coordinate schedule of
transit service are significant issues.

Feeder network plays a great role in providing a quality service to the user of the mass rapid
transit. Such public transit routes evolve over time due to changes in demand that are caused by many
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variations. There are demand/supply interactions due to implementation of new technologies or
changes in mode of service [2]. Especially, in regions where more than one feeder modes, such as bus
and van with distinctive characteristics of service, are available, these issues are more complicated.

The feeder network design problem (FNDP) is a type of public transit network design problems.
The travelers are carried from the local bus stops to the rail stations of rapid transit network by feeder
lines. The main target of the feeder network design and frequency setting problems is to plan number
of feeder routes and set service frequency for every route, such that the objective function of the total
costs is minimized [3].

Transfer coordination is a major part of this problem. The global network schedule should take
into account each transfer point and its associated routes in order to allow efficient transfer between
lines. Transferring between lines can be supported according to various criteria, including the number
of travelers. Wirasinghe et al. [4] designed a multimodal transit system that served peak travel of
an urban area and a central business district. They achieved results using three related variables
(i.e., inter station spacing, feeder bus zone boundary, and train headways) to minimize the total
operator and user costs.

Moreover, feeder bus network design with schedule coordination has been studied by Shrivastava
and O’Mahony [5]; Verma and Dhingra [6] and Shrivastava and Dhingra [7]. They optimized coordinate
scheduling while minimizing waiting and transfer times for the rail stations.

Regarding the solution method of FNDP, an analytic model introduced by Kuah and Perl [8] to
design an optimum feeder bus network for getting access to a current railway. In order to reduce
costs, they utilized a mathematical technique to avoid the synchronized combination of the decision
variables. A heuristic algorithm was promoted to integrate suburban train and bus services by
Shrivastav and Dhingra [7]. They optimized feeder bus schedules in coordination with those of
suburban trains. Kuan et al. [9] utilized metaheuristic approaches to determine a best solution of the
FNDP. They produced several random tests to evaluate the performance of efficiency and accuracy
of the solution. A series of studies by Almasi et al. [10–12] continuously improved the mathematical
model of FNDP and the efficiency of the solution using Genetic Algorithms (GA), Particle Swarm
Optimization, and Ant Colony Optimization.

The number of literature considering more than one mode for feeder line in FNDP is limited.
Mohaymany and Gholami [13] presented a solution method for multimodal feeder network design
problems (MFNDP). In that study, rail stations are assumed to be destinations, and transfer time at
the stations and the waiting time on the rail system, i.e., coordination between feeder and main lines,
are not included. The coordination among different levels of public transit such as train and feeders is
an important issue in transit service problems. Well-defined information and advanced scheduling in
an intermodal system will lead to a higher level of satisfaction for users and operators. Hence, one of
major contributions of current study is to propose an optimal coordination method between feeder
and main lines.

In this paper, an improved mathematical model for integrated multimodal transit systems
using single- and multi-objective approach is proposed, with multiple modes for feeder line, a new
methodology for determining demand proportion rate, and more realistic consideration of variables,
e.g., dual time, user in-vehicle time, and waiting time.

The structure of this paper is arranged as follows: Section 2 presents a description and definition of
the problem and outlines the assumptions used. In Section 3, the methodology and solving approaches
are discussed in detail. The computational optimization results obtained by applied optimizers and the
corresponding discussion of the same are in Section 4. Finally, the concluding remarks are presented in
Section 5.

2. Problem Definition

Designing appropriate feeder services that provide good accessibility to the presented rail
network and that coordinate with the schedules of corresponding transit services are significant
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issues. The main aim of this study is to provide a strategy for designing an integrated multimodal
transit system to increase the efficiency and coordinate schedules by minimizing costs while achieving
an optimal balance between the operators and users’ costs. Operating costs can be decreased by an
overall coordination among public transportation modes. The profit can be improved by the optimal
proportion of demand for feeder modes at each stop and shorter route. Regarding the user cost,
passenger satisfaction is increased by broader coverage area, decreased access cost, shorter travel times,
and smaller delay. Travel time components are significant variables that have been identified as key
components on how the public perceives the quality of public transportation. Also, transfer time at
rail stations and different waiting and in-vehicle time for multiple feeder modes should be included
for better coordination between feeder and mainlines. Quality of travel time plays a critical role in
increasing likability of public transport among the public. The objective function of the proposed
model given in the following sections is based on the components of travel time shown in Figure 1.
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Figure 1 shows the schematic diagram of a multimodal feeder under mass transit service.
There are two important issues in this research; one is designing multimodal feeder services, and
the other is coordinating with an integrated transit system. Moreover, the strategy for splitting
demand among/between modes should be completed with the aim of minimizing the total cost.
Therefore, the methodology is focused on designing a feeder network, determining the optimal
proportion of demand between feeder modes at each stop, and determining the optimum frequency on
each feeder route and train line, such that the objective function of sum of operator and user costs are
minimized. This approach including M feeder modes with different characteristics that are connected
to the coordinated mass transit services would provide a flexible network that is more sustainable.
Most of assumptions made in this study are as given in the literature [10]. The methodology and
solving strategy are provided in detail in the following section.

3. Methodology and Solving Procedure

The main processes to solve the presented problem include the following steps:

(a) Defining the objective function: Defining the mathematical model, objective function,
and constraints.

(b) Defining an optimum Demand Proportion Ratio(DPR) among/between feeder modes at each
bus stop.

(c) Network Analysis Procedure(NAP): It assigns the transit demands, defines the service frequencies
on each feeder route and determines various performance measures such as total vehicle kilometer,
total fleet size, and waiting cost.

(d) Network Generation Procedure(NGP): Generate initial candidate transit networks using
heuristic methods.

Optimization algorithms: Improvement of the transit network using metaheuristics (e.g., GA and
Simulated Annealing (SA)) with respect to the single and multi-objective optimization approaches.

The flowchart of solution framework is demonstrated in Figure 2.
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The aforementioned steps are iterated using the optimization algorithms until the termination
criterion is met.

3.1. Defining the Objective Function

The total network cost is considered to be the objective function in this study. The total cost of the
intermodal transit model is formulated as follows:

CT = Cu + Co (1)

where CT, Cu, and Co represent total cost, user cost, and operator cost, respectively. To present the
mode more comprehensively, this research considers more cost terms when formulating user costs and
operating costs. User cost is related to travelers and is formulated as the product of passengers’ travel
times and user’s value of travel time (i.e., value of time for passenger’s waiting and in-vehicle cost).

The operation cost of feeders or railway system was classified into four parts: in-vehicle
cost, maintenance cost, fixed and personnel costs. Personnel cost which includes the drivers and
administrative costs is dependent on the fleet size, hourly pay, and insurance rate. These cost data
come from Mohaymany and Gholami [13]. The cost is formulated as the product of the number
of feeders and trains per round trip per each unit of time. In support of nomenclature clarity and
convenience purposes, all of the parameters and variables of the formulated intermodal transit model
are described in Table 1.
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Table 1. Description of used parameters in the proposed model.

Parameters Description Unit

CT Total system cost ($/h)
Cu User cost ($/h)
Co. Operation cost ($/h)
Ca Accessing cost ($/h)
Cw Waiting cost ($/h)
Cui User in-vehicle cost ($/h)
Cf Fixed costs ($/h)
Coi Operating in-vehicle cost ($/h)

Cm
duiF Dwell user cost of feeder mode m ($/h)

Cm
duiT Train dwell user cost ($/h)
Cm Maintenance cost ($/h)
Cp Personnel cost ($/h)
AF Average frequency of feeder (veh-h)
µm

a Unit passenger accessing cost of feeder mode m ($/passenger-h)
µm

w Unit passenger waiting cost for arrival of feeder mode m ($/passenger-h)
µm

I Unit passenger riding cost on feeder mode m ($/passenger-h)
λm

f Unit fixed cost of mode m ($/veh-h)
λm

l Unit vehicle operating cost of feeder mode m ($/veh-km)
λm

I Unit vehicle operating cost of feeder mode m ($/veh-h)
λm

m f Unit maintenance cost of feeder mode m ($/veh-km)
λm

p Unit personnel cost of feeder mode m ($/veh-h)
λm

lT Unit operating cost of train ($/veh-h)
Vm Average operating speed of feeder mode m (km/h)
Sm

kj Slack time of route kth at station jth for feeder (h)
taF Average accessing time to get to the stop of feeder mode m (h)
taTj Average accessing time to reach to the rail station jth via feeder mode m (h)
tdT Dwell time for boarding and alighting from the train (h/passenger)
TTj Linked riding time among station jth and train destination (h)
tm
dF Dwell time for boarding and alighting from the feeder mode m (h/passenger)
tm
ih Linked in-vehicle time between nodes ith and hth of feeder mode m (h)

Tm
k Linked in-vehicle time of route kth for the feeder mode m (h)

Fm
opt,k Optimum frequency of feeder mode m on route kth (veh/h)

Fm
req,k Required frequency of feeder mode m on route kth (veh/h)
Fm

k Frequency of feeder mode m on route kth (veh/h)
FT Optimum frequency of trains (veh/h)

f m
min The minimum frequency of feeder mode m (veh/h)

f m
max The maximum frequency of feeder mode m (veh/h)
Nm Total fleet size of feeder mode m (veh)
LF Load factor of feeder mode m (passenger/seat)
Cm Capacity of feeder mode m (passenger/veh)
lm
min The minimum length of one route for feeder mode m (km)

lm
max The maximum length of one route for feeder mode m (km)
VT Average operating speed of train (km/h)
TT Train link travel time from 51 to 54 (h)
qm

nk Demand of node nth in route kth of feeder mode m (passenger/h)
Nm

k Number of stops in route kth of feeder mode m -
Q Total demand (passenger/h)
qm

i Demand of feeder mode m at node ith (passenger/h)
Qm

k Demand of route kth of feeder mode m (passenger/h)
lih Travel distance from node ith to hth (km)
Lm

ijk Travel distance from each stop ith to station jth in route kth of feeder mode m (km)
Lm

k Length of route kth for the feeder mode m (km)
Xm

ihk Binary variable; value of 1 if stop ith precedes stop hth on route kth of mode m -
Ym

ij Binary variable; value of 1 if stop ith is assigned to station jth via mode m -
I Number of stops -
J Number of stations -

M Number of feeder mode
NR The maximum number of routes in feeder modes -
H Any proper subset of I + J, containing all stations -
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The total network cost of the intermodal transit model includesoperation parameters,
user parameters, and decision variables. The objective function is specified as the sum of the operating
and user costs, which is presented in the following equation:

Minimize CT =


User︷ ︸︸ ︷

(Ca + Cw + Cui) +

Operating︷ ︸︸ ︷(
C f + Coi + Cm + Cp

) (2)

Consequently, the mathematical formulation of all cost terms substitution can be presented
as given:

MinimizeCT =
M
∑

m=1



µm
a

(
taF

I
∑

i=1
qm

i
+

J
∑

j=1
taTj

I
∑

i=1
qm

i
×Ym

ij

)
+ µm

w

(
Km

∑
k=1

[(
1

2Fm
k
+ 1

2FT

)
×Qm

k

])
+ λIT

(
I

∑
i=1

qm
i
× tdT + (2FT × TT)

)
+

µm
I

(
Km

∑
k=1

[
I

∑
i=1

qm
i

J
∑

j=1
Tm

ijk
+

Nk

∑
n=1

qm
n

(
Nk

∑
n=n+1

qm
n + 1

)
× tm

dF

]
+

J
∑

j=1

I
∑

i=1
qm

i
×Ym

ij

[
TTj +

(
J

∑
j=j+1

I
∑

i=1
qm

i
×Ym

ij
+ 1

)
× tdT

])
+

(
λm

f + λm
p

) Km

∑
k=1

[(
2Fm

k × Tm
k
)
+
(
Qm

k × tm
dF
)
+
(

Fm
k × Sm

kj

)]
+ λm

I

Km

∑
k=1

Qm
k × tm

dF +
(
λm

l + λm
mF
) Km

∑
k=1

2Fm
k × Lm

k


(3)

which is subject to
Km

∑
k=1

I+J

∑
h=1

Xm
ihk
≤ 1 i = 1, . . . , I m = 1, . . . , M (4)

I

∑
i=1

I+J

∑
j=I+1

Xm
ijk
≤ 1 k = 1, . . . , Km m = 1, . . . , M (5)

I+J

∑
h=1

Xm
ihk −

I

∑
d=1

Xm
dik ≥ 0 i = 1, . . . , I k = 1, . . . , Km m = 1, . . . , M (6)

∑
i/∈H

∑
h∈H

Km

∑
k=1

Xm
ihk
≥ 1 m = 1, . . . , M ∀H (7)

I+J
∑

h=1
Xm

ihk
+

I
∑

d=1
Xm

dik −Ym
ij
≤ 1 i = 1, . . . , I j = I + 1, . . . , H k = 1, . . . , Km m = 1, . . . , M (8)

lm
min ≤ Lm

K
≤ lm

max m = 1, . . . , M k = 1, . . . , Km (9)

f m
min ≤ Fm

k ≤ f m
max m = 1, . . . , M k = 1, . . . , Km (10)

Km

∑
k=1

[
(2Fm

k × Tm
k ) + (Qm

k × tm
dF) +

(
Fm

k × Sm
kj

)]
≤ Nm m = 1, . . . , M (11)

Rm

∑
r=1

rm ≤ NR m = 1, . . . , M (12)

Decision variables include two binary variables, Xm
ihk and Ym

ij , whichrepresent the transit network
configuration, as shown in Table 1. Other decision variables are demand ratio for each feeder stop
amongst the feeder modes at stops (qm

i ), and feeder frequency of each route in each mode (Fm
k ).

The first term in Equation (3) is the access cost for multimode transit passengers, which is the
production of local demand, with the value of time and accessing time.

The second term that is seen in Equation (3) is user waiting costs, which contains passengers that
are waiting for the feeders and trains.

The third term in Equation (3) relates to the operating cost for a rail service, which depends on
passenger demand, fleet size of the rail network, and route station distance. The derivation of this cost
is indictedin the literature in detail [10].
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The fourth and fifth terms given in Equation (3) are user in-vehicle costs, which contain in-vehicle
time, passenger demand, and the value of user in-vehicle time. This cost, Cui, is formulated based
on the average trip time and is determined in two main parts: the user dwell time and the user
running time.

Dwell time is the time that a vehicle stays at the bus stop to load/unload other passengers.
When considering the variation in time spent, the geometric series equation presentedby
Almasi et al. [10,11] has been revised in this study. Figure 3 demonstrates the actual condition for
traveler demand and dwell time at each feeder stop along the route, rth, connected to the rail station.

As shown in Figure 3, the dwell time distribution depends on demand at each stop along the
route. qn denotes the demand at feeder stop, nth, in the feeder route. Tn is user dwell time because
of demand, qn. At feeder stop n − 1, the boarding and alighting time (Tn−1) will be imposed to the
passenger demand of nth feeder stop (qn). Consequently, the dwell time will be increased by increasing
passenger demand in consequent feeder stops. Therefore, the dwell user cost of route, kth, and feeder
mode, mth, is formulated with the summation of dwell time for demand at each feeder stop and unit
time value, as follows:

Cm
duiF = µm

I
[qm

1 × (1 + qm
2 + . . . + qm

N) + qm
2 × (1 + qm

3 + . . . + qm
N) + . . . + qm

N ] (13)

Therefore, formulation of the network dwell cost is obtained as follows:

Cm
duiF = µm

I

 Nm
k

∑
n=1

qm
nk

 Nm
k

∑
n=n+1

qm
nk + 1

× tm
dF

 (14)

Similarly, spending dwell time at each rail station is different. Therefore, the number of traveler
and dwell cost would be different. Figure 4 demonstrates the real situation of trip demand at each
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Qj denotes the passenger demand at rail station, jth, in the rail line. Tj is user dwell time by
demand, Qj. The boarding and alighting time at station j − 1 (Tj−1) will be imposed to the demand of
jth station (Qj). Consequently, the dwell time will be increased by increasing the demand in consequent
rail stations. Cm

duiT for every feeder vehicle is calculated by summation of dwell time for demand at
each station and unit time value. Therefore, the train user dwell cost is determined as follows:

Cm
duiT = µm

I

[
Qm

1 ×
(

1 + Qm
2 + . . . + Qm

J

)
+ Qm

2 ×
(

1 + Qm
3 + . . . + Qm

J

)
+ . . . + Qm

J

]
× tdT (15)

Thus, network user dwell cost for trains can be formulated as follows:

Cm
duiT = µm

I

(
J

∑
j=1

I

∑
i=1

qm
i
×Yij

[
J

∑
j=j+1

I

∑
i=1

qm
i
×Yij + 1

]
× tdT

)
(16)

Therefore, the dwell user cost for feeders and trains, for each mode, m, is given as:

Cm
dui = µm

I

 Km

∑
k=1

Nm
k

∑
n=1

qm
nk

 Nm
k

∑
n=n+1

qm
nk + 1

× tm
dF +

J

∑
j=1

I

∑
i=1

qm
i
×Yij

[
J

∑
j=j+1

I

∑
i=1

qm
i
×Yij + 1

]
× tdT

 (17)

The operating costs, formulated as the sum of Coi, Cm, Cp, and Cf, are presented in the sixth to
eighth terms of Equation (3). To improve accuracy, the dwell time and feeder-mode slack time are
used in this study. The stop delay time incurred at feeder stops, and the running cost for the feeders is
defined according to the round trip link time.

The route feasibility in the network design in terms of the constraints for the MFNDP would
confirm by Equations (4)–(8). These constraints are used by previousstudies [9,14,15]. Equation (9)
represents constraints on the minimum and maximum length of feeder routes. Similarly, limitations
for the minimum and maximum frequencies are specified in Equation (10), while Equation (11) shows
the maximum allowable number of vehicles in the fleet. Equation (12) presents the restriction for the
maximum number of routes in the proposed multimode network.

Equations (9)–(12) represents the constraints on the length of feeder routes, limitations for the
frequencies, allowable number of vehicles in the fleet, and the maximum number of routes in the
proposed multimode network.
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3.2. Network Generation Procedure

To identify a candidate network, a network generation module is designed. All of the routes are
built as described below.

First, a rail station is chosen at random, subsequently, stops, selected at random, are added to the
path linking to this rail station. The length of the path is checked after adding each stop. The current
path is terminated if it exceeds the maximum length (Lmax) and a new path will be constructed in the
same way. The process continues until all the stops have been contained in the network.

Random selection of stops with no restrictions may create a poor initial solution. Thus, the concept
of delimiter proposed by Breedam [16] is developed in this study. The delimiter is applied to both
station to the first bus stop, and bus stop to the next bus stop as given below.

(a) Station to the first bus stop: A selection constraint in terms of the distance among the stations
and stops is a delimiter. The delimiter is determined as shown in Equations (18) and (19) below.

For each feeder stop, ith, define the distance of its nearest rail station, jth (DistF
i

), using:

DistF
i = min

j
dij (18)

The initial delimiter DIF is equivalent to the maximum of the set of minimum distances determined
as given by (see Figure 5a):

DI = max
i

(DistF
i ) (19)

Therefore, the distance among the selected rail station and bus stops should be less than or equal
to DIF, otherwise a new stop will be selected. Similarly, the delimiter will intercept to link a station
and a stop that are too far apart.

(b) One bus stop to the next bus stop: Similarly, a range delimiter in order to narrow the search
distance among the selected random stops and the stops is provided. This range delimiter
prevents the selection of a sequence of stops that exceed the allowable distance (see Figure 5b):

Distb
i = min

s∈I
dis, i /∈ s (20)

DIB = max
i

(DistB
i ) (21)
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The stop sequence in each route is reordered to reduce the route distance, which in turn, may
reduce the total cost. In addition, a flowchart of the initial candidate network using the NGP is
presented in Figure 6.
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3.3. Defining Demand Proportion Ratio among/between Modes

Another purpose of the proposed MFNDP is to determine the optimal demand proportion for
feeder modes at each stop when considering the minimum total cost in the transit system. Normally,
after network optimization, the feeder mode will be decided at each route.

The objective function shows the impact of the demand density at each stop and network
configuration on dwell user cost. At each network configuration, the amount of passenger demand at
each bus stop highly influences the total cost. Therefore, importance ofthe demand ratio among the
feeder modes at each bus stop based on the network configuration is understood.

In the proposed strategy, an optimum demand proportion among the modes at each bus stop has
been found. This strategy helps to create a more flexible transit network with any range of demand
density. To identify the demand ratio amongst the feeder modes at each bus stop (qi

m) as decision
variables, an inner optimization task has been performed using a metaheuristic approach on the
given network.

The network information, total demand at each bus stop, and the design parameters are given as
input data. However, DPR at each bus stop are defined as decisions. Figure 7 shows an example of
the demand proportion ratio and modified routes on a simple network. The input network presents
two routes for mode one (Rm1

1
and Rm1

2 ) and two routes for mode two (Rm2
1

and Rm2
2 ). Metaheuristic

approaches determine the optimal demand ratio of the demand at each bus stop. Based on the defined
DPR at each bus stop, the network will be modified and cost will be evaluated based on the new
proposed transit network (see Figure 7).
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The proposed approach includes M feeder modes (e.g., bus and van) with different characteristics
connected to coordinated mass transit services that will provide a more sustainable flexible network.
Figure 8 illustrates an example of MFNDP after the DPR and modification on the given network. Some
stops are served by only one feeder mode, while others are served by both feeder modes that are based
on the designated DPR.Sustainability 2018, 10, x FOR PEER REVIEW  12 of 28 
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Figure 8. An example of for multimodal feeder network design problems(MFNDP) after demand proportion ratio.

3.4. Network Analysis Procedure

A process to analyze, evaluate different network structures, and conclude their associated route
service frequencies is described by NAP. Input data for the NAP contains the following items:

(a) Transit network information includes the location and the number of the nodes where the trip
demand originates and/or heads on the routes that are connected with each node through
connectors. The proposed solution network can be generated using a heuristic process (NGP) or
using metaheuristic optimizers.
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(b) Demand data, which includes a demand matrix expressing the number of travelers that are using
transit and DPR between/among feeder modes at each bus stop.

(c) Design parameters that refer to some parameters that are identified by the plannerssuch as load
factor at each route, the feeder capacity, the maximum number of bus routes, cost parameters,
and so forth.

Once a specific transit network is proposed by NGP or network improvement, NAP is utilized
to evaluate the different network and calculate route frequencies. NAP procedure can be illustrated
as follows.

First, a trip assignment is employed to assign the trip demand to specified routes associated
through the presented multimodal transit network configuration. Then, Fk for each route is calculated
using the frequency setting procedure. The optimum Fk isrelated to the transit network configuration.
The analytical approach is used to determine the optimum Fk by setting the first derivative of the cost
function with respect to the feeder mode frequency, equating it to zero, and solving it. Thus, the optimal
feeder frequency can be formulated as follows:

Fm
opt,k

=

√√√√ µm
w .Qm

k

4Lm
k

[(
λm

l + λm
mF
)
+ 1

Vm
k

(
λm

f + λm
p

)]
+ 2Sm

kj

(
λm

f + λm
p

) (22)

Moreover, the minimum required frequency for route, kth, is taken as follows:

Fm
req,k

=
Qm

k
LFm × Cm (23)

The given frequency for route, kth, is acquired by choosing the maximum value of Freq,K and Fopt,K
as shown in Equation (24):

Fm
k = max(Fm

req,k
, Fm

opt,k
) (24)

Then, the output data show the optimal transit network design, service frequencies, and demand
information, with an extensive variety of performance measures. Figure 9 gives the flowchart for NAP.
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3.5. Improvement Strategy

In this research, we have applied several operators in order to modify/change/amend a
multimodal transit network, as given in the following sections. Also, a criterion for choosing the
neighborhood has been suggested.

3.5.1. Delimiter Value

Usually, the stops required to perform the move are selected at random. In this case, because of
the large search space, a number of bad move selections can be involved.

In order to narrow the search space and make the process more intelligent, a criterion, called the
range delimiter, has been proposed to prevent the selection of too many bad moves (Breedam 2001).
The concept of delimiter value is similar to the generation of an initial solution described in the
previous Section.

The range of delimiter is equal to the travel distance limitation between nodes of the different
routes selected at random for the move. This travel distance limitation is calculated for each solution
network with k routes (R1, R2, . . . , Rk), as given in Equation (25) below.

First, wecalculated the distance (i.e., Euclidian distance) between stop, ith, in route, Rk, and its
nearest neighboring stop, jth, belonging to another route, Rm:

NNi = min
j/∈Rk

dij , i ∈ Rk (25)

D = max
i

NNi (26)

Therefore, the distance between the stops of two different routes selected at random for the
exchange move must be less than the delimiter value (D), so that in this case there is a higher potential
for generating a move that will improve the quality of the neighborhood solution. Hence, to prevent
bad moves by choosing far distance stops, the delimiter value strategy has been carried out for every
proposed operator.

3.5.2. Defining Neighborhood Moves

Number of solutions defines by the neighborhood structure that can be achieved in one single
or multiple move(s) from a current solution. These types of moves are aimed at improving a feasible
solution by moving feeder stops within or between/among routes. The purpose is to rearrange the
feeder stop sequence in every single route and transit network to reduce the total cost.

Five types of moves are considered in this paper. They are the swap operator, insertion operator,
single-point crossover operator, uniform crossover operator, and mixed operator. Figure 10 shows an
example of each of first four operators. Mixed operator is a combination of those four operators. All of
the operators are applied only for feeder stops and we assumed that for a candidate transit network
rail stations are fixed. The details of operators used are represented below.

Swap operator:The swap operator exchanges the positions of two feeder stops from two different
routes in a particular column. However, in this paper, the swap operator used is equal to the maximum
number of stops in a route in a given MFNDP. In fact, for each column of a transit network, one single
swap operator is utilized.

It is worth mentioning that the choice of stops for a swap operator is performed using the strategy
given in the section of delimiter value for both previous and selected feeder stops. If the distance
between a selected stop and the previous feeder stop is equal to or smaller than the D, then the swap
operator can be appliedfor that particular column. Hence, the feeder stops are chosen at random,
while their new positions depend on the delimiter criterion. This concept is applied to all of the
operators that are considered in this paper. Figure 11 demonstrates an accepted move using the
swap operator.
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Figure 11. Schematic view of an accepted move using the swap operator.

Insertion operator: The insertion operator tries to improve the transit network by removing a stop
from a route and inserting it into another route in a particular column. There is difference between
the swap and insertion operators. In the insertion operator, a stop is removed from a route and
is added to another route, while in the swap operator, stops are exchanged. Similar to the swap
operator, the insertion operator obeys the concept of delimiter value for both stops and rail stations (see
Figure 12). If the delimiter condition is satisfied, then the insertion operator is allowed to be applied.
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Swap operator is applied equal to the maximum number of stops in a route in a given MFNDP.
As MFNDP aims to minimize the total cost, while satisfying network constraints, a candidate transit
network with a large number of routes may not provide an appropriate transit network. Figure 10b
depicts the application and usefulness of this operator in practice.

Single-point crossover operator: By selecting two random routes, a single cut (point) is randomly
chosen. After selecting two routes and a single cut number, if the delimiter value (D) condition
allows, two strings of stops can be exchanged at a given cut number. The delimiter criterion should be
checked for both stops, locating as first stop in strings to be allowed for exchange purpose. Figure 13
depicts a successful exchange using the single-point crossover over two different routes. Furthermore,
a schematic view of this operator is shown in Figure 10c.
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Uniform crossover operator: For the uniform crossover operator, as for the single-point crossover,
two random routes from the transit network are selected. Then, between two selected routes, the route
with a minimum number of stops is taken as the reference route, and the other one is called the subject
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route. Based on the basic concept of uniform crossover, a random binary vector is generated as a
decision vector in which 1 means ‘exchange’ and 0 means ‘do not exchange’.

Based on the binary decision vector, the reference and subject routes collaborate with each other.
An example of this operator is given in practice, as shown in Figure 10d. Figure 14 illustrates the
process of this useful operator.
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Mixed Operator: The mixed operator is a combination of the swap, insertion, single-point, and
uniform operators in one single update for the transit network. In fact, using the mixed operator,
all the good chances gather in one place; however, using this operator too many times may increase
the chance of getting stuck in local optima. In applying the aforementioned operators, we have used
unbiased selection and equal chance for each operator. Next, brief and concise explanations of the
applied optimizers are provided.

4. Applied Optimization Algorithms

Metaheuristic optimization algorithms have shown their capabilities for finding the near-optimal
solution to the numerical real-valued test problems for which exact and analytical methods may not
be able to produce within a reasonable computation time, especially when the global minimum is
surrounded by many local minima. Network design problem has been known to be NP-complete, so it
would be proper to apply metaheuristic approach in real-world size network problems.In this section,
the metaheuristic optimization algorithms that are used to modify/improve the multimodal transit
network have been explained in brief.

4.1. Genetic Algorithms

GA is categorized as evolutionary optimization algorithms and is considered as one of the widely
used optimizers in the literature. The basic idea of GA first proposed by Holland [17]. The GA is based
on the process of evolution by natural selection seen in nature. Indeed, evolution shows selection and
replication of better solutions. Simplicity of concept and usage may be considered as an advantage in
theefficiency of GA for solving complicated optimization problems [18].

Regarding the search operators used in GA, crossover, mutation, and selection strategy are the
most important factors. Like other population based optimization method, GA starts with an initial
population of individuals, the so called population of chromosomes. Usually, initial population
randomly generated at starting of the optimization task in the most optimizers as for GA. Population
size is a user parameter value and can be varied from few chromosomes to thousands ones.
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Next, is function evaluation process to see how fit/good the solutions are based on the cost/fitness
function defined by given problem. After calculating the fitness/cost function, the selection strategy
should be defined due to selection process of parents for creating offspring using the crossover search
operator. Selection process tries to choose the best solutions among (between) other solutions. There are
different methods for selection process, such as roulette wheel selection, however the fundamental idea
is the same, selecting better individuals with a higher chance to be selected for the next generations.

In this step, after selecting better chromosomes, crossover operator will be applied by combining
some aspects of selected individual. For instance, from two selected parents, two offspring will be
generated by transferring their features, then, a population of offspring can be formed. However, for
having more diversity in the population of chromosomes, mutation search operator is applied with
little bit randomness into the population features. The ratio of mutation rate is a small number and
will apply to the entire population with a random selection. Finally, by combining three populations,
including the current population, populations that are formed using crossover and mutation, we have
a new population having more than the predefined population size. After sorting the new combined
population, only chromosomes that are equal to the size of population will be kept and the rest
of chromosomes will be discarded from the optimization task. The aforementioned processes will
continue till the stopping condition is met.

4.2. Simulated Annealing

SA is inspired by the annealing process, the process of slow cooling of a hot metal. This inspiration
first proposed in 1953 introducing a new optimization technique for solving global optimization
problems [19].

The concept and implementation of SA is easy to understand and apply, and that is why this
optimization method is one of the well-known optimization methods for solving both continuous and
discrete problems. Back to the annealing process, by increasing the temperature in a metal, its atoms
start to move around with large movements. By slow cooling of the metal, the atoms have sufficient
time to allocate in their best location in finding the lowest level of energy, resulting in better metal in
terms of strength and durability.

The SA simulates the aforementioned slow cooling process by a small random movement of
an atom. Regarding the application point of view, energy level is resembled as objective function.
The optimization task starts at high temperature. If the new change resulting in negative energy state,
then the applied movement is accepted. However, if the new change applied by the small displacement
is resulted in positive energy state, then, with a probability, there would be a high chance to accept the
applied small displacement. The Boltzmann probability is used for this selection, given as follows [20]:

P = exp
(
−∆E

kT

)
(27)

where k and T are the Boltzmann constant and the current temperature, respectively. The variable ∆E
plays the role of cost function (fitness function) used in SA approach and it means that the difference
of objective functions (current cost–previous cost). Equation (27) will be compared with a random
uniform distribution value between zero and one. If the random value is smaller than the Boltzmann
probability, then the new change is accepted. As the temperature reduces, the chance of selecting bad
moves will decrease till at final iterations, almost no bad configurations would be accepted aiming for
having more exploitation [21].

Although, the SA would be computational expensive in finding global optimum point, however,
it can find near optimum solution with fewer design evaluations when comparing with other
existing optimizers.
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4.3. Water Cycle Algorithm

The basicinspiration of the water cycle algorithm (WCA) is derived by water cycle process in
nature and is based on the observation of how rivers and streams flow into the sea. Indeed, the WCA
tries to formulate the surface runoff of streams and rivers seen in nature. The WCA starts with an
initial population called the population of streams. First, let us assume that raining has been happened.
Afterwards, the best individual which is the best stream is selected to be as a sea in the WCA model [22].

Afterwards, the initial population is sorted and due to choosing rivers and sea, a predefined
number of best streams (Nsr) are considered to be as rivers. Based on their intensity of flow, water from
the streams is absorbed to the rivers and sea. Also, it would be possible for some streams directly flow
into the sea. Therefore, new movement formulations for streams and rivers are suggested, as follows.

→
X

i+1

Stream(t + 1) =
→
X

i

Stream(t) + rand× C× (
→
X

i

River(t)−
→
X

i

Stream(t)) (28)

→
X

i+1

Stream(t + 1) =
→
X

i

Stream(t) + rand× C× (
→
X

i

Sea(t)−
→
X

i

Stream(t)) (29)

→
X

i+1

River(t + 1) =
→
X

i

River(t) + rand× C× (
→
X

i

Sea(t)−
→
X

i

River(t)) (30)

where t and rand are an iteration number and a uniformly distributed random number between 0
and 1. In case of finding better solution using new generated streams, the position of streams and its
corresponding river will be switched. In fact, Equations (28)–(30) represent the exploration phase in
the WCA.

In order to conduct the exploration phase in the WCA, if the Euclidian distance between the sea
and a specific stream/river is less than a predefined value (dmax), then, the evaporation condition
is applied and a new stream/river can be generated. Figure 15 displays the schematic view of the
movement strategy of WCA, where circles, stars, and the diamond resemble to the streams, rivers,
and sea, respectively. a and b are current distance between a stream and new position of an updated
stream, and its corresponding river, respectively [23].
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4.4. Non-Dominated Sorting Genetic Algorithm II

Non-dominated sorting strategy has been used for converting GA into an efficient multi-objective
optimizer. The optimization strategy behind of Non-dominated Sorting Genetic Algorithms II
(NSGA-II) is based on the standard GA. The selection process in the NSGA-II is based on the binary
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tournament selection with replacement as for GA. Regarding the exploration phase; a random mutation
operator is applied to a small portion of solution to ensure searching unobserved regions.

If the new generated solution does not satisfy the applied constraints during recombination
and/or mutation operators, the solution is ignored and another new solution will be created using
the aforementioned operators until a feasible solution is obtained. For evaluating the fitness function,
there are two steps. Talking about the first step, as the name of non-dominating approach shows,
the solutions are ranked based on Pareto dominance.

After sorting based on the rank scores, the solutions are sorted based on their crowding distance
values. In the crowding distance mechanism, the extreme values for each objective are assigned infinite
values, for keeping these values as best solutions [24]. The rest of the search operators that are used in
NSGA-II, such as crossover and mutation, act the same in GA.

4.5. Non-Dominated Sorting Water Cycle Algorithm

The non-dominated sorting WCA (NSWCA) as for NSGA-II has used the concept of
non-dominated sorting strategy as its name represents. In standard WCA, only one objective function
should be minimized or maximized and in this situation, a number of best obtained solutions are
chosen as the sea and rivers. However, for multi-objective optimization problems (MOPs), there is
more than one function to be minimized or maximized.

Therefore, the multi-objective version of WCA needs to be modify enabling selection of the sea
and rivers in the multi-objective space. Due to find the best solutions including sea and rivers for each
population (iteration), a crowding distance mechanism introduced by Deb et al. [24] is utilized.

Proper selection of sea and rivers (few obtained best solutions) affects both the convergence
capability of the NSWCA, as well as the ability to maintain a good distribution of non-dominated
solutions [25]. Therefore, for all of the iterations, solution having the highest crowding-distance values
should be determined nominating as sea and rivers in order. Also, the magnitude of flow for the rivers
and sea are evaluated using the concept of crowding-distance mechanism [25].

Moreover, the non-dominated solutions have been saved in an archive to generate the Pareto
front sets. This archive is updated at each iteration, and dominated solutions are removed from the
archive by iteration continues. As it obvious, new found non-dominated solutions will be added to the
Pareto archive.

However, there is a limitation of the size of Pareto archive, which is a user parameter in the MOPs.
Therefore, when the number of members in the Pareto archive exceeds the Pareto archive size, the
crowding distance strategy will be applied again in order to delete as many non-dominated solutions
as necessary.

5. Numerical Results and Discussions

The proposed solution methodology for the MFNDP was applied to the data set in the
literature [11]. The case study region is an area of 5.5 × 6.5 km2 in the south of Petaling Jaya in
Malaysia, and included the Kelana Jaya Line at Kuala Lumpur railway. There were four stations in the
study area.

A total of 54 nodes is defined to describe the service area and associated network connectivity.
All 54 nodes are selected from the existing transit network, which consists of public bus routes with
fixed schedules operated by the public transportation companies such as Rapid KL and Metrobus, etc.
Network connectivity is generated from street links that connect these 54 nodes and are suitable for bus
operations. The generation of the demand matrix is based on a questionnaire survey data collection.
By extracting the abstained results from survey, the demand matrix was determined. The parameters
are based on the data collection from field as well as ridership and financial reports, which were
publicized by Barton [26] and Valley Metro [27].
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More information about design-related parameters used in the models is represented in Table 2.
Two modes were considered in this study (i.e., bus and van); however, using the proposed approach,
there was no limitation with the number of modes.

Table 2. Values of the parameters used in reported study region.

Unit Value for Mode 1 (Bus) Value for Mode 2 (Van) Value for Train

µm
a $/passenger-h 8 8 8

µm
w $/passenger-h 8 8 8

µm
I $/passenger-h 4 4 4

λm
f $/veh-h 14.37 4 -

λm
l $/veh-km 0.36 0.07 -

λm
I $/veh-h 8.94 1.63 -

λm
m f $/veh-km 0.75 0.25 -

λm
p $/veh-h 10.2 10.2 -

λm
lT $/veh-h - - 180

Vm km/h 25 25 -
VT km/h - - 40
Sm

kj min 15 15 -
taF min 7.5 7.5 -
taTj min - - 4
tdT min/passenger - - 0.03
tm
dF min/passenger 0.096 0.15 -
FT veh/h - - 10

f m
max veh/h 20 20
Nm veh 100 100 -
LFm pass/seat 1.2 1 -
Cm pass/veh 36 13 -
lm
max km 5 5 -

Three metaheuristic optimization algorithms (i.e., GA, SA, and WCA) were employed to optimize
the transit models for the benchmark data set. These optimizers have illustrated their capability
as efficient optimization tools with great potential for solving optimization problems [25,28,29].
The transit model and the reported optimizers were coded and run in MATLAB programming software
provided by Mathworks (Natick, MA, USA). The optimization procedure of MFNDP was performed
in 30 independent runs for each solution algorithms.

Initial parameters for the reported optimizers were determined after performing the sensitivity
analyses. These parameters for the WCA were a population size of 50, an Nsr of four, and a dmax of
1 × 10−5. For the GA, a population size of 50, a scattered crossover fraction of 0.8, and a mutation rate
of 0.4 were used. Accordingly, for the SA, the initial and final temperatures of 100 and 0.1, respectively,
were set as user parameters.

In regards to the stopping condition, the maximum number of function evaluations was set to
150,000 for all of the applied optimizers for both single and multi-objective optimization problems.
Note that for the multi-objective approach, the same user parameters were considered. In the single
objective approach, the WCA was utilized only for the demand proportion strategy inside the codes
(acts as inner optimization method) for both GA and SA optimizers.

The following sections represent the comprehensive numerical optimization results for the
applied solution methods for both the single objective and multi-objective approaches. Furthermore,
performance comparisons and characteristics that are underlying the MFNDP are discussed.

5.1. Single Objective Approach

The obtained results in this section include comparison of multimode and single mode feeders
using the considered optimization methods for the fixed feeder demand. The results that were obtained
by applying a multimode and single mode feeder via applied optimization methods are summarized
in Table 3.
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Table 3. Summary of the results obtained by applying multimode and single mode feeder.

Characteristics Measures

Genetic Algorithm Simulated Annealing

Multi-Mode (A) Single Mode
Bus (B)

Single Mode
Van (C) Multimode (D) Single Mode

Bus (E)
Single Mode

Van (F)

Cost ($/h)
Total 7881.4 8434.8 8800.2 8362.4 9116.1 9047.9

Operating 1777.5 1849.3 1830.1 1849.7 1871.8 1927.4
User 6103.9 6585.4 6970.1 6512.7 7244.3 7120.6

Passenger Length (km) Total 3745.8 3943.6 3858.7 3891.0 4122.6 4610.1

Trip Demand (%) Bus 74% 100% 0% 54% 100% 0%
Van 26% 0% 100% 46% 0% 100%

Number of route (#)
Total 23.0 0.0 22.0 26.0 20.0 20.0
Bus 11.0 20.0 - 11.0 20.0 -
Van 12.0 - 22.0 15.0 - 20.0

Fleet Size (%)
Total 53.0 45.0 77.0 61.0 45.0 81.0
Bus 56% 100% 0% 40% 100% 0%
Van 44% 0% 100% 60% 0% 100%

Routes Length (km)
Total 54.3 53.0 56.1 58.5 56.2 63.2

Bus % 53% 100% 0% 47% 100% 0%
Van % 47% 0% 100% 53% 0% 100%

Vehicle Length (km)
Total 544.4 492.0 778.0 598.6 518.2 924.5

Bus % 60% 100% 0% 44% 100% 0%
Van % 40% 0% 100% 56% 0% 100%

Headway (minutes)
Min. 6.2 7.4 3.3 5.6 6.3 3.0
Max. 33.4 42.9 20.0 41.4 50.0 17.1

Average 12.8 13.0 8.6 12.1 14.0 8.2

It can be observed that the best result in terms of the total cost, as well as operating and user costs,
are associated with the proposed multimode network (Scenario A) (i.e., $7881.4, $1777.5, and $6103.9,
respectively, and 23 feeder routes) using the GA. The range of service headways is from 6.2 to 33.4 min
and the average headway is 12.8 min, as shown in Table 3. The obtained total cost using Scenario A
shows a 7% improvement with respect to the best result using the single mode. Figure 16 shows the
best total cost comparison for the all optimized scenarios attained by the GA and SA.
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The percentage of demand proportion rate for the proposed multimode network by GA and SA
was 74% and 54% for the bus mode (Mode 1), respectively (see Table 3).

The proposed single mode (Scenario B) suggested the lowest total route length and operated bus
kilometers with values of 53 km and 492 km per peak hour, respectively. However, total passenger
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kilometer per peak hour was about 5.3% higher than the proposed multimode network (Scenario A).
The reason for having these lowest values, in spite of the largest number of routes, is that the proposed
Scenario A was operated with 40% van usage when compared with the other services.

Therefore, Service A provided a lower passenger trip length, and consequently, the user cost gave
the lowest value with respect to the other services. As the Feeder mode bus (Mode 1) provided more
capacity, consequently the smallest fleet size that was obtained by the proposed single mode networks
B and E comprised of 45 buses. The detailed comparison of cost terms that were obtained by two
metaheuristic algorithms used in the MFNDP is tabulated in Table 4. All of the cost values are in USD.

Table 4. Comparison of attained cost terms for the transit service model (Scenarios A and D) using the
reported methods.

Methods CW Cui Cf Cm Cp Coi Cu Co CT AF

Genetic Algorithm 1907.1 1515.2 355.2 298.4 536.2 587.7 6103.9 1777.5 7881.4 4.7
Simulated Annealing 1928.6 1902.4 364.4 281.8 623.8 579.7 6512.7 1849.7 8362.4 5.0

Looking at Table 4, GA outperformed the SA in regards to all of the cost terms, except Coi and Cm.
The reason behind of these values was that the proposed service with SA (Scenario D) was operated
with 56% van vehicle length when compared with 40% van vehicle length that is used in Scenario A.
It is worth pointing out that the van mode required less maintenance and incurred lower in-vehicle
costs, along with a lower service life year. In terms of the proportion rate between user and the
operating costs, both of the algorithms (i.e., GA and SA) show nearly the same results, and these costs
are illustrated graphically in Figure 17.
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Accordingly, Table 5 demonstrates the comparison of statistical optimization results by reported
optimizers for the MFNDP.



Sustainability 2018, 10, 734 23 of 28

Table 5. Comparison of statistical results achieved by applied optimizers.

Methods Best
Cost

Average
Cost

Worst
Cost SD a p-Value (α = 0.05)

Genetic Algorithm 7881.4 8323.4 8753.0 258.2
9.67 × 10−4

Simulated Annealing 8362.4 8625.8 9168.6 182.1
a ‘SD’ stands for standard deviation.

The significance level (α) for a given hypothesis test is a value for which a p-value less than or
equal to is considered statistically significant. Typical values for α are 0.1, 0.05, and 0.01. These values
correspond to the probability of observing such an extreme value by chance. By observing Table 5,
the p-value is 0.000967, so the probability of observing such a value by chance is less than 0.05, and the
result is significant at the 0.05 level. As it can be seen from Table 5, even with α = 0.01, the obtained
results with (i.e., 9.67 × 10−4) are statistically significant and trustworthy.

The GA provided better statistical optimization results. In addition, looking at the obtained
p-values using the Friedman test for each experiment, the same conclusion could be obtained.

The p-values that were obtained from the optimization results given in Table 5 are significantly
smaller than the predefined α. This indicates that the null hypothesis was rejected at a 95% confidence
level, meaning that the average values of total cost of the two reported algorithms were not the same.

Figure 18 demonstrates the convergence rate (cost reduction history) of applied optimizers.
Looking at Figure 18, the cost reduction for the GA is faster and more subtractive than the SA in
achieving their optimum solutions. Next, the multi-objective approach is given for the MFNDP.Sustainability 2018, 10, x FOR PEER REVIEW  24 of 28 
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5.2. Multi-Objective Approach

It is important for the transit authority how to assign new multimodal transit network to satisfy
operators and users in an attempt to create an optimum situation. Therefore, as well as forrecognizing
a single compromising solution using the single objective approach, the proposed model identified
non-dominated solutions using the reported algorithms.

In fact, the two objective functions, including user and operating costs, were contradicting each
other. Therefore, the improved multi-objective optimization model was applied to explore the Pareto
front set for the considered case study. Figure 19 plots the Pareto frontier obtained by the used
optimizers (i.e., NSGA-II and NSWCA).
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A two-dimensional illustration of the determined solutions can be utilized to visualize the
trade-offs between the user and the operating costs with the aim of support decision makers to evaluate
the effects of various multimodal transit network plans for the reported study area. Each circle in
Figure 19 represents a set of multimode transit services. Decision makers can visualize and evaluate
the trade-offs in order to organize an appropriate transit service.

As seen in Figure 19, the range of hourly user costs that were obtained by the NSGA-II and
NSWCA are between $2324.8 and $1486.8, respectively. Accordingly, the hourly cost range that was
attained using the NSGA-II and NSWCA were, respectively, $289.7 and $292.6. This indicated that the
NSGA-II offers a wider range of user cost when compared with the NSWCA, while outperforming the
NSWCA over NSGA-II in terms of wider range of operating cost.

The developed model revealed the quantitatively interactive relationship of the two objectives
and helped optimize the multimodal transit network plans. Generally, user costs decrease with the
increase of operating cost. This is because despite more agency investment is needed to promote the
service situation, the consequent decrease of user cost results in an overall.

5.3. Best Compromised Solution

Having obtained the Pareto optimal set, choosing the best compromise solution is crucial to
the decision making process. In this paper, a fuzzy membership approach was used to find a best
compromise solution [30]. Due to the imprecise nature of the decision-maker’s judgment, the ith
objective function, fi, of individual, k, is represented by a membership function, µk

i , defined as:

µk
i =


1 fi ≤ f min

i
f max
i − fi

f max
i − f min

i
f min
i < fi < f max

i

0 fi ≥ f max
i

(31)
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where f min
i and f max

i are the minimum and maximum value of the ith objective function among all
of the non-dominated solutions, respectively. For each non-dominated solution, k, the normalized
membership function, µk is computed as:

µk =

N
∑

i=1
µk

i

P
∑

k=1

N
∑

i=1
µk

i

(32)

where P is the total number of non-dominated solutions and having a maximum value of µk is the best
compromise solution.

Table 6 summarizes the best compromise results that were obtained by the reported multi-objective
optimizers. By observing Table 6, the best compromise solutions are nearly close to each other.
The NSGA-II obtained better operating and total costs, while the NSWCA attained a better solution
with respect to the user cost.

Similar to single objective approach section, the same discussion can be carried out using
multi-objective optimizers. Furthermore, Table 7 demonstrated the comparison of the winners
(non-dominated solutions) for all of the considered cost terms utilizing the employed multi-objective
optimization engines. The main costs (i.e., operating and user costs) are graphically illustrated to
provide more detail in Figure 20.

Table 6. Summary of the results obtained by multi-objective optimization methods.

Characteristics Measures NSWCA NSGA-II

Cost ($/h)
Total 8464.4 8432.2
Operating 1838.7 1792.2
User 6625.8 6640.0

Passenger Length (km) Total 3645.3 3435.9

Trip Demand (%) Bus 54% 53%
Van 46% 47%

Number of route (#)
Total 25.0 24.0
Bus 10.0 10.0
Van 15.0 14.0

Fleet Size (%)
Total 70 59
Bus 39% 40%
Van 61% 60%

Routes Length (km)
Total 59.5 53.5
Bus % 43% 48%
Van % 57% 52%

Vehicle Length (km)
Total 601.7 546.0
Bus % 43% 47%
Van % 57% 53%

Headway (minutes)
Min. 5.0 5.6
Max. 34.8 38.1
Average 11.0 11.2

Table 7. Competition of attained cost terms for the transit service model with applied methods.

Method CW Cui Cf Cm Cp Coi Cu Co CT AF

NSWCA 1958.8 1985.4 360.6 278.6 620.8 578.6 6625.8 1838.7 8464.4 5.5
NSGA-II 1899.9 2058.4 352.0 263.8 601.0 575.3 6640.0 1792.2 8432.2 5.4
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As seen in Figure 20, the proportion rate for user cost (operating cost) shows 22% (78%) and 22%
(79%), using the NSWCA and NSGA-II, respectively. Thus, NSGA-II proposed a service with more
user satisfaction compare than operation costs. The demand proportion rate between the user and
operation costs as obtained by both algorithms (i.e., NSGA-II and NSWCA) show nearly the same
results. The reported optimization results of the MFNDP in this study would provide more accurate
and efficient solutions of multimodal transit services.

6. Conclusions

The current study has focused on the development of new approaches for MFNDP, including rail
service, feeder modes, and frequency setting problems. An effort has been made in this research to
fill the gaps of the preceding studies by providing an improved model and by providing proposed
solution methods. Although developing feeder-bus routes is related to a variety of stakeholders and
other important factors, this paper has proposed a multimodal transit model that uses the single
and multi-objective approaches to identify a compromise solution between the concerns of users and
operators. In this paper, a strategy for designing transit networks that gives multimodal services
at each stop, and for consecutively assigning the optimum demand (demand proportion ratio) to
different feeder modes has been suggested.

Therefore, four well-known optimization algorithms, namely GA, SA, NSGA-II, and NSWCA
have been used. The case study on which this research has been based is the real transit network
of Petaling Jaya in Malaysia. The output has shown that the multimodal networks acquired better
statistical optimization results than did the single modes. The best solution is the one obtained by the
GA with the minimum total hourly costs of $7881.4, including hourly user costs of $6103.9 and hourly
operation costs of $1777.5 per hour.

In addition to the single objective approach, a multi-objective approach has been considered.
The two objectives (i.e., user and operating costs) were integrated to evaluate the trade-offs between
them in a two dimensional format. The multimodal transit network case study was performed with the
multi-objective optimization model. The Pareto optimal set has been obtained through optimization,
and the fuzzy membership approach was utilized to propose the greatest compromise solution for the
decision-making process.
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When compared to single-objective optimization models (either simply one objective or converting
user and operating cost objectives to a single one), the multi-objective model presents valuable results
with more information to a decision maker and is able of running a thorough examination of the
realistic multimode transit network space (Pareto optimal solutions).

Future research can include the social cost term in the objective function. It would increase the
complexity of multi-objective approach, but consideration of the indirect cost could help analyse the
problem more comprehensively.
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