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Abstract: China’s tremendous economic growth during the past three decades has resulted in
worsening air quality in most of its cities. However, the spatiotemporal patterns and underlying
drivers of air pollution in China remain poorly understood. To address this issue, we used stepwise
regression to identify major socioeconomic, climatic, and urban form factors influencing air pollution
in 69 major cities across China. Our results showed that social factors such as population size and
density were positively correlated with emissions of PM2.5, PM10, NOx, and SO2. Economic factors
such as Gross Domestic Product (GDP) and GDP of secondary industry were positively correlated
with industry and transportation emissions but negatively correlated with residential emissions of
air pollutants. Urban form attributes such as measures of urban fragmentation and contiguity were
important in explaining patterns of emissions from residential, power generation, and transportation
sectors. As for climatic factors, higher precipitation, higher wind speed, and higher temperatures were
all negatively correlated with air pollution levels. We also found that the effects of socioeconomic,
climatic, and urban from factors on air pollution levels varied considerably among seasons and
between the annual and seasonal scales. Our findings have useful implications for urban planning
and management for controlling air pollution in China and beyond.
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1. Introduction

Over the past three decades, rapid urbanization in China has been unprecedented in terms
of both speed and scale and more than half of its population now live in cities [1,2]. However,
China’s tremendous economic achievements have resulted in a number of environmental problems,
including the deterioration of air quality [3–6]. Increased air pollution may lead to the cardiopulmonary
morbidity and mortality of people, especially the young and elderly [1,7,8].

High PM2.5 concentrations have occurred over a vast region of China since the end of the 20th
century [9–11]. Increased SO2 emissions have mainly resulted from human activities, such as industrial
emissions [12]. Emissions of nitrogen oxide (NOx) and carbon monoxide (CO), and concentrations of
ozone (O3) increased dramatically due to the increased number of vehicles [13], and were accompanied
by an increase in emissions of greenhouse gases (e.g., CO2) [14,15]. Recent studies have related
these spatial patterns of air pollution to environmental and socioeconomic factors depending on
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distinguished mechanisms [6,16–19]. For example, wind not only dissipates air pollutants in the
city, but also transports pollutants from industrial areas to urban areas [12,20]. Compact cities with
mixed land uses were reported to have less transportation emissions than sprawl cities [17,21], but
also could trap more air pollutants from urban construction, thereby leading to higher pollution
concentrations [22]. Bechle et al. (2011) [6] found that air pollution levels first increased with
rising income levels (GDP per capita), and then decreased when GDP per capita exceeded $30,000,
an observation that seems consistent with the Environmental Kuznets’ Curve [23].

Overall, air pollution and its spatiotemporal patterns are influenced by a number of socioeconomic
and environmental factors [6,16,21,22,24–28]. However, a comprehensive understanding of the
underlying drivers of air pollution in China’s cities is still lacking from multiple perspectives (air
pollutant emissions and concentrations) and time scales (year and season). Thus, the main objectives
of this study were (1) to identify the major factors influencing urban air pollutant emissions, and (2)
to understand how climatic, socioeconomic, and urban form factors may affect urban air pollution
patterns in China.

2. Materials and Methods

2.1. Study Cities

High concentrations of PM2.5—much higher than the 10 µg/m3 standard set by World Health
Organization (WHO) air quality guidelines—occurred over a vast region of China since 1999, ranging
from southern Inner Mongolia to Guangdong latitudinally, and from the east coast to central Sichuan
longitudinally, plus the southern part of Xinjiang Province [9,11]. In this study, we selected 69 cities
across this region based on data availability (Figure 1).
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2.2. Potential Socioeconomic, Climatic, and Urban Form Factors

Previous studies have shown that urbanization, industrialization, and economic development can
all contribute to air pollution [3,12,13,16,18,29,30]. Sand-dust storms in spring [4], secondary aerosol
generation O3, and PM2.5 pollution in summer [31], agriculture biomass burning in autumn [32], and
coal burning for winter heating [20] are the main drivers for seasonal air pollution events, whereas
climatic conditions, such as high humidity and low wind speed, are key environmental factors [33].
Thus, we collected air pollution data, socioeconomic data, climatic data, and land use/cover data for
the 69 cities in China based on data availability (Figure 1).

2.2.1. Air Pollution Measures

Air Pollution Index (API) and PM2.5, PM10, NOx, and SO2 emissions from industry, power
generation, residential sector, and transportation were used to represent air pollution levels (Table 1).
Daily API data for 69 cities in 2010 were downloaded from the Chinese Ministry of Environmental
Protection website (MEP) (http://www.zhb.gov.cn/). The API level is based on the levels of three
atmospheric pollutants, including SO2, NO2, and PM10 measured by monitoring stations for each city.

Table 1. Urban form, socioeconomic factors, climatic variables, and air pollution measures considered
in this study.

Category Measure References

Air pollution measures Emissions of PM2.5, PM10, NOx, and SO2 [26,34]
Air Pollution Index (API) [4,35]

Socioeconomic factors

Gross Domestic Product (GDP) [6]
GDP per capita [22]

GDP of secondary industry –
Per capita GDP of secondary industry –

Population size [6,36,37]
Population density [22,25,36–38]

Climatic factors

Temperature [22,26,30,39]
Precipitation [30]
Wind speed [6,30,39]

Relative humidity [30,39]
Sunshine duration [30]

Urban form metrics

Total built-up Area (TA) [22]
Mean Patch Area (MPA) [22,24]

Percentage of Landscape (PLAND) [40]
Patch Density (PD) [40]

Largest Patch Index (LPI) [16]
Edge Density (ED) [16]

Landscape Shape Index (LSI) [16]
Area Weighted Mean Fractal Dimension

(AWMFD) [16]

Clumpiness index (CLUMPY) [16]
Aggregation Index (AI) –

Anthropogenic emissions of air pollutants for each city in 2010 were extracted from the database
created by [34] which was generated according to the Multi-resolution Emission Inventory for
China (MEIC) (Table 1). The MEIC is a bottom-up emission inventory framework developed and
maintained by Tsinghua University, China, using a technology-based methodology to calculate
air pollutant emissions [34]. The database included emissions from more than 700 anthropogenic
sources that were aggregated into four categories: power generation, industry, residential sector, and
transportation [34]. For example, the emissions from combustion of coal, oil, gas, biomass, and waste
(e.g., municipal and industrial waste) for power generation were classified into power generation
category. The industry category included the emissions from combustion of coal, oil, gas, waste,
and biomass and non-combustion processes (e.g., brick production and iron sintering). The vehicle
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emissions from combustion of oil and gas were classified into transportation category. The emissions
from combustion of coal and biomass for heating and combustion of gas for cooking were classified
into residential sector.

2.2.2. Climatic Factors

Data on daily temperature (◦C), precipitation (mm), wind speed (m/s), relative humidity (%),
and sunshine duration (h) were obtained from the China Meteorological Data Sharing Service System
(http://cdc.nmic.cn) (Table 1). Annual and seasonal averaged values of each climatic factor were
calculated from daily data and selected as potentially climatic factors.

2.2.3. Socioeconomic Factors

Data on Gross Domestic Product (GDP in Chinese Yuan, CNY), GDP of secondary industry (CNY),
and population size (permanent residents) in 2010 were derived from the Statistical Yearbook of the
National Bureau of Statistics (http://www.stats.gov.cn/) as potential socioeconomic factors. For each
city, we divided the overall GDP and GDP of secondary industry by population to calculate per capita
GDP and per capita GDP of secondary industry. Population for each city was divided by its total area
within administrative boundary to calculate population density (Table 1).

2.2.4. Urban Form Metrics

Ten class-level landscape metrics were used to represent urban form in this study: Total built-up
Area (TA), Patch Density (PD), Mean Patch Area (MPA), Percentage of Landscape (PLAND), Largest
Patch Index (LPI), Area Weighted Mean Fractal Dimension (AWMFD), Edge Density (ED), Landscape
Shape Index (LSI), Clumpiness index (CLUMPY), and Aggregation Index (AI), all of which were
computed for the urban patch type (see Appendix A for detailed acronyms and descriptions of these
metrics). TA and PLAND are area-related composition indicators that represent total built-up area and
its proportion, respectively. PD, MPA, and LPI are different measures of the degrees of fragmentation
of built-up areas. ED indicates boundary abundance of built-up area patches. LSI and AWMFD are
measures of the shape complexity of built-up areas. CLUMPY and AI measure the degrees of clumping
and the aggregation of built-up areas. The main justification for choosing these 10 metrics is that
they have been widely used to characterize the spatial extent, fragmentation, shape complexity, and
connectivity of urban landscapes [41–47], and have been related to urban air pollution in previous
studies [6,16,17,21,22,24,26,48].

All these urban class-level metrics were computed using FRAGSTATS v4.2 [49], based on land
use/cover data in 2010 with a spatial resolution of 1 × 1 km. The land use/cover data were obtained
from the National Science & Technology Infrastructure of China, National Earth System Science Data
Sharing Infrastructure (http://www.geodata.cn). The original dataset had six land cover types (forest,
cropland, grassland, barren land, water body, and built-up area), and for the purpose of our analysis
they were classified into two classes: built-up area and non-built-up area. The built-up area is a
geographic region dominated by non-vegetated, human-constructed elements (proportion of built-up
area higher than other five land use/cover types), such as settlements, buildings, roads, runways, and
industrial facilities [2]. The non-built-up area included another five land use/cover types. The extent
of each city was delineated as the total area within administrative boundaries of a prefecture-level city.

2.3. Quantifying the Relationships of Air Pollution with Socioeconomic, Climatic, and Urban Form Metrics

We used two sets of stepwise regression models (21 in total) to address the two research objectives.
The first set of stepwise regression models (a total of 16) was used to identify the main factors
associated with the emissions of air pollutants. In these models, the independent variables included six
socioeconomic factors and 10 urban form factors, and the dependent variables were emissions of PM2.5,
PM10, NOx, and SO2 from industry, power generation, residential sector, and transportation, respectively.
Climatic factors were not included as the independent variables because they did not contribute to air
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pollutant emissions directly. The second set of stepwise regression models (a total of 5) was used to
examine which factors were important to explaining the variations of air pollution levels on multiple
time scales. In these models, the independent variables included five climatic factors, six socioeconomic
factors, and 10 urban form factors, and the dependent variables were annual and seasonal API in spring,
summer, autumn, and winter, respectively. The results of regression include correlation coefficient (R),
adjust coefficient of determination (Adj. R2), F-test value (F-value), and probability value (p-value).
Correlation coefficient is a measure of the strength between dependent and independent variables.
Adjust coefficient of determination equals the proportion of the variance in the dependent variable that
is predictable from the independent variables and gives some information about the goodness of fit of a
model. F-value is the ratio of explained and unexplained variance and is used to compare regression
models that have been fitted to data. Probability value is the probability of the statistical summary of a
given model would be the same as the actual observed results and usually provides a significance level
of the test. All these analyses were performed with SPSS v18.0 (IBM, Armonk, NY, USA).

3. Results

3.1. Spatial Patterns of Air Pollution in Chinese Cities

High values of API occurred in most of the 69 cities of China, especially those in the Northeast,
the Beijing-Tianjin-Hebei region, and central Sichuan, plus Urumqi in Xinjiang Province (Figure 2a).
High emissions of PM2.5, PM10, NOx, and SO2 occurred in cities located in the North China Plain
(Beijing, Tianjin, Hebei, Shandong, Henan, northern Jiangsu, and northern Anhui) and the middle and
lower reaches of the Yangtze River Basin (Figure 2b–e). Moreover, a large amount of SO2 was emitted
from those cities located in the Sichuan Basin (Figure 2e).
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3.2. Effects of Socioeconomic Factors and Urban Form on Emissions of Air Pollutants

3.2.1. Industrial Emissions

In general, air pollutant emissions from industry were positively correlated with socioeconomic
factors and urban form metrics. The regression models performed well in predicting industry emissions
of PM2.5, PM10, NOx, and SO2, with adjusted R2 values of 0.685, 0.707, 0.771, and 0.631, respectively
(Table 2). More specifically, these regression models identified population density, per capita GDP
of secondary industry, and clumpiness as the best predictor variables for PM2.5 and PM10 emissions;
population density and per capita GDP as the best predictor variables for NOx emissions; and
population density and GDP of secondary industry as the best predictor variables for SO2 emissions
(Figure 3a). All the above selected factors were significantly and positively correlated with the industry
emissions of air pollutants (Figure 3a).
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Table 2. Stepwise regression results of air pollutant emissions from different sources in relation to
socioeconomic and urban form factors for 69 Chinese cities.

Source Type of Air Pollutant R Adj. R2 F-Value p-Value

Industry

PM2.5 0.836 0.685 50.349 <0.001
PM10 0.849 0.707 55.733 <0.001
NOx 0.884 0.771 77.102 <0.001
SO2 0.801 0.631 59.222 <0.001

Power Generation

PM2.5 0.546 0.277 14.022 <0.001
PM10 0.544 0.275 13.873 <0.001
NOx 0.572 0.307 16.079 <0.001
SO2 0.5 0.227 10.981 <0.001

Residential Sector

PM2.5 0.683 0.441 18.894 <0.001
PM10 0.676 0.432 18.255 <0.001
NOx 0.768 0.564 23.004 <0.001
SO2 0.439 0.181 15.983 <0.001

Transportation

PM2.5 0.875 0.755 70.815 <0.001
PM10 0.875 0.754 70.536 <0.001
NOx 0.874 0.757 107.001 <0.001
SO2 0.867 0.744 99.606 <0.001

3.2.2. Emissions from Power Generation

Urban size and form had significant effects on air pollutant emissions from power generation.
The values of adjusted R2 of the regression models for power-generation emissions of PM2.5, PM10,
NOx, and SO2 were 0.277, 0.275, 0.307, and 0.227, respectively (Table 2). Total built-up area and
clumpiness index were the best predictor variables for emissions of PM2.5, PM10, and SO2 (Figure 3b).
Total built-up area and largest patch index of built-up area were the best predictor variables for NOx

emissions (Figure 3b). A significantly positive relationship was observed between the power-generation
emissions of air pollutants and the selected factors (Figure 3b).

3.2.3. Residential Emissions

In general, residential air pollutant emissions were positively correlated with urban size and
form metrics, but negatively with economic factors. The values of adjusted R2 of the regression
models for residential emissions were 0.441, 0.432, 0.64, and 0.181 for PM2.5, PM10, NOx, and SO2,
respectively (Table 2). More specifically, residential emissions of PM2.5 were positively correlated with
population size and patch density, but negatively with per capita GDP. Residential emissions of NOx

were positively correlated with population size and largest patch index of built-up area, but negatively
with per capita GDP. Residential emissions of PM10 were positively correlated with population size and
largest patch index of built-up area, but negatively correlated with per capita GDP (Figure 3c). Only
population size was significantly correlated with residential SO2 emissions, and a positive relationship
was observed between them (Figure 3c).

3.2.4. Transportation Emissions

Air pollutant emissions from transportation were positively correlated with socioeconomic factors
and urban form metrics. The regression models performed well in predicting transportation emissions
of PM2.5, PM10, NOx, and SO2, with adjusted R2 values of 0.755, 0.754, 0.757, and 0.744, respectively
(Table 2). More specific, major determinants of transportation emissions of PM2.5 and PM10 selected by
regression models were population density, GDP of secondary industry, and edge density (Figure 3d).
Population density and total built-up area were the best predictors for transportation emissions of
NOx (Figure 3d). Population size and percent built-up area were the two predictors for transportation



Sustainability 2018, 10, 776 9 of 14

emissions of SO2 (Figure 3d). All the above selected factors were significantly and positively correlated
with the transportation emissions of air pollutants (Figure 3d).

3.3. Effects of Climatic, Socioeconomic, and Urban Form Factors on API

In general, API levels were positively correlated with socioeconomic factors (e.g., population
size and density) and urban form metric (e.g., AWMFD), but negatively with climatic factors (e.g.,
humidity, precipitation, temperature, and wind). More specifically, the adjusted R2 value of regression
models for annual API was 0.408 (p-value < 0.001) (Table 3). The annual API was positively correlated
with population size but negatively with relative humidity and temperature (Figure 4a). The values
of adjusted R2 of regression models for seasonal API were 0.309 (p-value < 0.001) in spring, 0.269
(p-value < 0.001) in summer, 0.124 (p-value = 0.005) in autumn, and 0.359 (p-value < 0.001) in winter
(Table 3). Spring API was positively correlated with population density but negatively with relative
humidity (Figure 4b); summer API was positively correlated with population size but negatively with
relative humidity and temperature (Figure 4c); autumn API was positively correlated with population
size but negatively with precipitation (Figure 4d); and winter API was positively correlated with
AWMFD but negatively with humidity, temperature, and wind speed (Figure 4e).
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Table 3. Stepwise regression results of API in relation to climatic, socioeconomic, and urban form
factors in different seasons for 69 Chinese cities.

Dependent Variable R Adj. R2 F-Value p-Value

Annual API 0.665 0.408 12.704 <0.001
Spring API 0.574 0.309 16.181 <0.001

Summer API 0.549 0.269 9.348 <0.001
Autumn API 0.387 0.124 5.825 0.005
Winter API 0.63 0.359 10.512 <0.001

4. Discussion

4.1. Which Socioeconomic and Urban Form Factors Were Related to Pollutant Emissions?

Our results indicated that socioeconomic variables were the dominant factors in predicting
industry and residential emissions of air pollutants, with population density being the most important
factor for industry emissions (Figure 3). Population density as a social factor was consistently and
positively correlated with all kinds of emissions, followed by economic factors including GDP of
secondary industry or per capita GDP of secondary industry. This phenomenon was probably due to
the fact that industry dominated the economy in densely populated Chinese cities, which generally
emitted a large amount of air pollutants. Larger urban population size and higher density tended
to generate more residential and transportation emissions, and thus had higher contributions in
Figure 3c,d. We also found that high-income cities (per capita GDP) experienced lower residential
emissions. This might result from tighter environmental regulations and more public expenditures for
lowering air pollutants emissions in high-income cities [22]. Moreover, sprawling cities, with higher
patch density, lower mean patch size, and smaller largest patch index of built-up area, tended to
generate more emissions of air pollutants due to its lower energy use efficiency than compact cities.
A recent study has reported that the central heating systems in Chinese cities may reduce the urban
household energy consumptions and PM2.5 emissions [50].

In contrast with the main factors for industrial and residential emissions, the composition and
configuration attributes of the urban landscape were more important for explaining power and
transportation emissions. Large cities, which had more extensive total built-up areas and more
contiguous built-up areas (indicated by higher values of clumpiness index and largest patch index)
tended to have greater power demands. However, parts of these power demands were fulfilled
by those power plants located in other cities or even provinces, and needed a long distance power
transportation. This discrepancy between local usage and emissions at other places may be the reason
why the values of regression coefficients in the power generation sector were relatively lower than those
values in industrial, residential, and transportation sectors (local emissions dominated). Moreover,
fragmented cities with highly convoluted, irregular boundaries (higher edge density) were expected
to have higher non-point emissions (primarily from automotives) [16], as well as higher secondary
aerosol contributions (e.g., NO2 and SO2) to PM pollution [31]. In addition, higher GDP of secondary
industry and population size (or population density) tend to have higher demands for transporting
goods and commuting services, often leading to higher local air pollutant emissions.

4.2. How Did Effects of Climatic, Socioeconomic, and Urban Form Factors on Air Pollution Change
with Season?

Our results show that all the three kinds of factors (climatic, socioeconomic, and urban form
factors) may potentially affect API levels. Specifically, API levels were positively correlated with
socioeconomic and urban form factors, but negatively with climatic factors. More precipitation
helped decrease API levels due to the wet deposition effect [39]. In winter, relatively low horizontal
wind speeds and higher urban shape complexity (fractal dimension) may hinder the transport of
clean air over urban areas [29,30], thereby increasing API levels. More sunshine hours in winter
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can increase surface temperature and enhance temperature gradients in the vertical direction, thus
helping the dissipation of air pollution [51,52]. From an urban form perspective, cities with high shape
complexity (higher AWMFD) may decrease accessibility and enhance mobility needs and emissions of
air pollutants, and are expected to have higher air pollution levels [22].

4.3. Implications for Urban Planning and Management

Our results indicate that improving energy efficiency and structure would be important to improve
long-term air quality through implementing a series of economic, technological, and industrial policies.
For example, Beijing has closed high-pollution industries [53,54], but it still needs to control coal
consumption, improve energy efficiency, and promote cleaner energy. Moreover, tighter environmental
regulations are helpful for reducing primary emissions of NO2 and SO2 and preventing high levels
of secondary PM pollution [31]. From an urban form perspective, we found urban air pollution
(including emissions of pollutants and API) generally increased with city and economic size and both
the compositional and configurational attributes of urban form were related to air pollution. These
findings also indicate that concerns with air pollution in China should also be addressed through
spatial policies aiming at controlling the expansion of built-up areas and reducing urban fragmentation.
Continuous urban areas enhance connectivity, reduce mobility requirements and car dependency,
and promote cleaner transport options such as biking and walking [6,17,21]. In addition, enhancing
atmospheric convection is helpful for preventing air pollution events. For example, designing wind
corridors and decreasing building heights can facilitate pollutant dissipation.

5. Conclusions

Our study has disentangled the effects of socioeconomic, climatic, and urban form factors on air
pollution in 69 Chinese cities and has produced several important findings. Overall, our result supports
the view that a continuous and non-densely populated city can improve its air quality. China needs
to take drastic measures to improve its air quality because long-term exposure in a high pollution
environment has serious detrimental impacts on human health. The results of our study should
be useful for designing effective urban planning and policies to control air pollution by explicitly
recognizing major sources and drivers.
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Appendix

Table A1. Descriptions of the selected landscape metrics in this study [49].

Landscape Metric Equation Unit Description

Total Area (TA) TA =
n
∑

j=1
aij km2 where aij is the area (km2) of a patch ij.

Patch Density (PD) PD = ni
A Number of patches per km2

where ni is the number of patches of
class i* and A is the total landscape
area (km2).

http://www.geodata.cn
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Table A1. Cont.

Landscape Metric Equation Unit Description

Mean Patch Area (MPA)
MPA =

n
∑

j=1
aij

ni

km2 where aij is the area (km2) of a patch ij
and ni is the number of patches of class i*.

Percentage of Landscape(PLAND)
PLAND =

n
∑

j=1
aij

A × 100
%

where aij is the area (km2) of a patch ij
and A is the total landscape area (km2).
The result is multiplied by 100 to convert
to percentage.

Largest Patch Index (LPI)
LPI =

n
∑

j=1
max(aij)

A × 100
%

where max(aij) is the area (km2) of the
largest patch ij and A is the total
landscape area (km2). The result is
multiplied by 100 to convert to
percentage.

Area Weighted Mean Fractal
Dimension (AWMFD)

AWMFD =
m
∑

i=1

n
∑

j=1

[(
2 ln(0.25pij)

ln(aij)

)(
aij
A

)]
–

where m is the number of patch types, n is
the number of patches of a class, pij is the
perimeter (m) of patch ij, aij is the area (m)
of patch ij, and A is the total landscape
area (m2).

Edge density (ED) ED = Ei
Ai

km per km2
where Ei is the total length of patch edges
of class i* and Ai is the total area of
patches of class i*.

Landscape Shape Index (LSI) LSI = 0.25Ei√
Ai

–
where Ei is the total length of patch edges
of class i* and Ai is the total area of
patches of class i*.

Clumpiness index (CLUMPY)

Gi =

 gii
m
∑

k=1
gik


CLUMPY =

Gi−Pi
1−Pi

Gi ≥ Pi
Gi−Pi
1−Pi

Gi < P; Pi ≥ .5
Gi−Pi
−Pi

Gi < P; Pi < .5


–

Where gii is the number of like
adjacencies between pixels of class i*, gik
is the number of adjacencies between
pixels of class i* and class k, and Pi is the
proportion of the landscape occupied by
patch type i*.

Aggregation Index (AI) AI = gii
max−gii

× 100 %

where gii is the number of like adjacencies
(joins) between pixels of class i* and max
− gii is the maximum number of like
adjacencies between pixels of class i*. The
result is multiplied by 100 to convert to
percentage.
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