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Abstract: As the most efficient renewable energy source for generating electricity in a modern
electricity network, wind power has the potential to realize sustainable energy supply. However,
owing to its random and intermittent instincts, a high permeability of wind power into a power
network demands accurate and effective wind energy prediction models. This study proposes
a multi-stage intelligent algorithm for wind electric power prediction, which combines the
Beveridge–Nelson (B-N) decomposition approach, the Least Square Support Vector Machine (LSSVM),
and a newly proposed intelligent optimization approach called the Grasshopper Optimization
Algorithm (GOA). For data preprocessing, the B-N decomposition approach was employed to
disintegrate the hourly wind electric power data into a deterministic trend, a cyclic term, and a random
component. Then, the LSSVM optimized by the GOA (denoted GOA-LSSVM) was applied to forecast
the future 168 h of the deterministic trend, the cyclic term, and the stochastic component, respectively.
Finally, the future hourly wind electric power values can be obtained by multiplying the forecasted
values of these three trends. Through comparing the forecasting performance of this proposed method
with the LSSVM, the LSSVM optimized by the Fruit-fly Optimization Algorithm (FOA-LSSVM),
and the LSSVM optimized by Particle Swarm Optimization (PSO-LSSVM), it is verified that the
established multi-stage approach is superior to other models and can increase the precision of wind
electric power prediction effectively.

Keywords: wind electric power prediction; Beveridge-Nelson decomposition approach; LSSVM;
grasshopper optimization algorithm

1. Introduction

With the continuous emergence of global warming, smog weather, and other environmental
problems, the development of the conventional thermal power generation mode, which is
unsustainable and has large pollutant emissions, has been limited by the renewable energy power
generation mode due to its beneficial characteristics. Having been considered as the most efficient
renewable energy source for generating electricity in modern power systems, wind power has
experienced a rapid expansion throughout the world [1–3]. The global wind installed capacity reached
approximately 539 GW at the end of 2017, of which 53 GW was newly installed in the year of 2017 [4].
Specifically, China has equipped 188 GW, which accounts for 34.9% of global wind installed capacity.
According to the report ‘China Energy Outlook 2030’ issued by the China Energy Research Association,
China will strive to achieve 250 GW of wind installed capacity by 2020, accounting for 12.5% of total
installed capacity, and 450 GW by 2030 with 900 billion kWh of on-grid electricity [5].

Despite of the environmental benefits of wind energy [6], its stochastic and intermittent
nature [7] will pose lots of challenges in power system operations and large scale penetration.
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Wind-power-related uncertainties are able to put the security and reliability of the electricity network
at risk with the increasing penetration of wind power [8,9]. Due to the non-storage of electric power,
the power supply and power demand must reach a real-time balance [10]. One of the possible
approaches to solve the above issues is to forecast wind power over an extensive time period accurately.
Precise wind power forecasting can decrease operation costs (such as re-dispatch cost) and enhance the
technological convergence of wind power into the existing power network [11]. For market operators,
the precise forecasting of wind power production in a zone is essential to the balance and security of
the power network [12].

Hence, extensive efforts have been made to improve wind power prediction precision in the
literature, among which Numerical Weather Prediction (NWP) approaches [13,14] as well as statistical
approaches [15–17] are utilized to predict wind power output. Although several optimization
algorithms are utilized to improve wind power prediction accuracy, wind energy predictions are
still subject to high forecasting errors, in the scope of [8%, 22%], due to various factors, such as the
type of forecasting model, the geographic location, and the forecasting horizon [18].

The primary devotion of this research is to put forward a multi-stage intelligent algorithm
for wind electric power forecasting that combines the Beveridge–Nelson (B-N) decomposition
approach, the Least Square Support Vector Machine (LSSVM) model, and a newly proposed
intelligent optimization algorithm called the Grasshopper Optimization Algorithm (GOA). In the
data preprocessing stage, the B-N decomposition approach is utilized to disintegrate the wind electric
energy data into a deterministic trend, a periodic term, and a stochastic component. In the forecasting
stage, the future data of the three components are computed by the LSSVM, of which the parameters
‘c’ and the Radial Basis Function (RBF) kernel width ‘σ’ are optimally selected by the newly proposed
optimization algorithm GOA. Forecasting results illustrate that the proposed multi-stage intelligent
algorithm can effectively enhance the precision of wind electric power prediction. It can be safely said
that this study represents the first time that the B-N decomposition method and the GOA algorithm
have been employed in wind power prediction.

The other parts of this research are planned as below. Section 2 summarizes current studies about
wind speed and power forecasting. The basic theory of the B-N decomposition approach, the LSSVM
model, and the GOA model is introduced in Section 3. Section 4 proceeds with the framework
illustration of the proposed multi-stage intelligent algorithm. Numerical results of GOA-LSSVM are
analyzed in Section 5. Section 6 evaluates the prediction performance among LSSVM, FOA-LSSVM,
PSO-LSSVM, and GOA-LSSVM. Section 7 draws conclusions.

2. Overview of Current Wind Speed and Power Forecasting

Research in the field of wind power prediction has made great contributions to the stable operation
of a power network. Many models have been developed to accurately forecast future wind power,
and tools are classified into two main-stream approaches, which are the physical approach and the
statistical method. Additionally, an integration approach is also utilized to combine the merits of
both methods.

2.1. Physical Forecasting Approach

The physical prediction approach usually employs concrete physical characteristics to simulate
the on-site items for a wind farm location [19]. The physical approach conducts the enhancement of
the NWP data to consider the on-site requirements through a downscaling approach on the basis of
the physics of the lower atmospheric bound layer. In the downscaling method, the wind farms and
their surroundings, such as the wind turbine power curve, are required to be described in detail. Then,
the enhanced wind speed data can be fed into the wind power curve to compute the wind power
output. If on-line data can be accessed, the output statistics of the model can decrease the error of the
prediction [10]. Different from the statistical method, historical data are not necessary for the physical
approach. However, obtaining the physical data is the primary disadvantage of the approach.
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Risoe National Laboratory in Denmark developed the Prediktor, which considers local conditions
through using the NWP prediction from a High-Resolution Limited Area Model [20,21]. The University
of Oldenburg in Germany developed the Previento, which has a similar physical approach but employs
a different NWP forecast from the Lakelmodell of the German Weather Service [22]. AWS True Wind
Inc. in the USA developed the eWind, which has a similar physical approach to the Prediktor but
employs a high-resolution boundary layer model as a numerical weather model to consider the local
conditions [23].

The physical methods are developed on the basis of models employing essential physical
regulations for the conservation of momentum, mass, and energy in air flows. These models deal
with computational fluid dynamics for imitating the atmosphere. Although many computational
fluid dynamics models can be accessed, they are all based on the same fundamental physical theories.
The differences between them include how the grids are structured and scaled and how the numerical
computations are performed [10].

2.2. Statistical Forecasting Approach

The alternative mainstream approach utilized to predict wind power is the statistical forecasting
approach on the basis of the historical meteorological values and wind power data. This kind of method
usually elaborates the relationship between wind power or speed prediction and impact factors, such as
NWPs and on-site evaluated data. Representative statistical methods contain traditional statistical
methods and artificial intelligence techniques.

For the traditional statistical methods, time-series approaches are always utilized to forecast wind
electric power or wind speed. The Auto-Regressive Moving Average (ARMA) approach [24] and the
Auto-Regressive Integrated Moving Average (ARIMA) approach [25,26] are widely used to forecast
wind power. The Autoregressive Conditional Heteroscedastic (ARCH) approach, integrated with the
ARIMA approach and taking the heteroscedasticity effect into consideration, is utilized to predict
sub-wind speed series calculated by wavelet decomposition. Forecasting results, which are the sum of
the prediction values, illustrate that it can improve prediction precision [27]. Conventional statistical
approaches are developed on the basis of classical linear statistical models. However, wind power is
usually a nonlinear function considering its input characteristics [3]. Therefore, artificial intelligence
technologies have been developed to enhance the prediction precision of wind power.

Artificial intelligence techniques have been widely utilized in many research studies to forecast
wind power output [28]. The artificial neural networks (ANN) method with Gaussian procedure
simulation has been put forward for short-run wind power prediction [29]. A Back Propagation
(BP) neural network on account of Particle Swarm Optimization (PSO) has been conducted for input
parameter selection to decrease errors in wind speed prediction [30]. A reduced support vector
machine (RSVM) optimized by PSO has been utilized to conduct wind speed forecasting with feature
selection [31]. Additionally, recurrent neural networks [32], Multi-Layer Perceptron (MLP) neural
networks [17], and RBF neural networks [33] have been put forward for the prediction of wind
power. Although neural networks and support vector machines can mimic nonlinear input functions,
the learning capacity of a single method with conventional learning mechanisms has been constrained.
To handle with this issue, combinations of neural networks, support vector machines, and other
methods with optimization algorithms and data processing mechanisms have been put forward.

2.3. Combination Approach

The combination approach aims at integrating different approaches and maintaining the
advantages of each approach. Combined wind forecasting methods usually include weighting-based
combined methods [34–37], combined methods containing data pre-processing techniques [38–40],
combined methods consisting of parameter optimization techniques [41–44], and combined methods
comprising error processing techniques [45]. The study [46] proposed two univariate statistical
prediction models on the basis of LSSVM, which are the univariate LSSVM approach and the integrated
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model combining the LSSVM model with ARIMA. An integrated model integrating input chosen by
Wavelet Transform (WT) and Support Vector Machine (SVM) has been proposed and its superiority
has been verified in terms of wind speed forecasting [47].

Considering the high forecasting accuracy of the combination approach, this paper proposes a new
multi-stage intelligent algorithm for wind electric power prediction. During the data preprocessing
step, the B-N disintegration approach is used to disintegrate the nonlinear and unstable wind
electric power data series into a deterministic component, a cyclic term, and a stochastic impact
effect. In previous research, the B-N decomposition method has been used to discuss the influence
of a financial crisis on GDP and electricity consumption [48,49]. For this research, we explore
the possibility of applying the B-N decomposition method to a wind power forecasting issue.
Since the three decomposed sequences obtained from the B-N decomposition method can reflect
the changing tendency of history and the future, they are utilized to predict future wind electric power.
In the prediction process, a new nature-inspired optimization algorithm, named the Grasshopper
Optimization Algorithm (GOA) and established by Seyedali Mirjalili in 2017 [50], is utilized to
optimally select two parameters of the LSSVM approach to enhance the forecasting precision of
wind electric power. After comparing this proposed method with a single LSSVM model, FOA-LSSVM,
and PSO-LSSVM, it is verified that GOA-LSSVM has superior performance over other approaches.
Therefore, the proposed multi-stage intelligent algorithm for wind electric power forecasting has high
prediction accuracy.

3. Basic Theory of the Proposed Methodology

3.1. B-N Decomposition Approach

For the purpose of decomposing a first-order differential stable data sequence, the B-N
decomposition approach was put forward, which verified that a data sequence with a first-order
stable instinct could be resolved to a permanent component and a transitory term. For the permanent
component, it is made up of the deterministic component and the random term. For the transitory
term, it has a stable procedure with a zero mean value named the cyclic trend [51–54].

According to the B-N decomposition model and the calculation requirements, it is obligatory to
test if the data sequence is first-order stable before decomposing the data series. If it is verified that
the data sequence has a first-order difference, the details of the procedures of the B-N disintegration
approach are as below [49,51,52].

Suppose the natural logarithm data of the hourly wind electric power to be lnP under the
first-order stable condition. To calculate the deterministic trend in accordance with the Wold theorem,
we set:

∆ ln Pt = µ + εt +
∞

∑
i=1

λiεt−i (1)

where ∆ ln Pt = ln Pt − ln Pt−1, Pt demonstrates the wind electric power at time t, µ indicates
the average data of ∆ ln Pt in the long-term, εt~i.i.d.N(0, σ2) (i.i.d. denotes independently and
identically distributed), t implies the time point, and λi means the coefficient. The anticipated value of
Equation (1) is:

E(∆ ln Pt) = E(µ) + E(εt) + E(
∞

∑
i=1

λiεt−i) = E(µ) (2)

where E demonstrates the computational procedure of the anticipated value for every variable.
Since ∆ ln Pt means the natural logarithm value of the wind electric power, its first-order difference

indicates the proportion of increase of the wind electric power. In accordance with Equation (2),
the mean value of the proportion of increase of wind electric power is the long-run proportion of
increase of wind electric power. Based on the B-N disintegration logic, the deterministic component
DTt is disintegrated as [51]:

DTt = ln P0 + µt (3)
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where DTt illustrates the determinacy component at time t, and lnP0 denotes the original data of the
natural logarithm data of the wind electric power.

Moreover, lnPt is identified as the prediction value in terms of current information. Morley [55]
noted that this data sequence was much more precisely forecasted through utilizing a stable univariate
Auto Regressive (AR) Equation (1) method for its first differences, called:

(∆ ln Pt − µ) = ϕ(∆ ln Pt−1 − µ) + εt (4)

where ϕ is calculated by AR Equation (1) and |ϕ| < 1. Through considering the demonstrated Wold
form in AR Equation (1), the minimum mean squared error (MMSE) of the j-period prediction of the
first difference of ∆lnPt is:

Et[(∆ ln Pt − µ)] = ϕj(∆ ln Pt−1 − µ). (5)

Consistent with the disintegration identification of the B-N approach [51], Tt, the total tendency
component of the data sequence, is determined as the MMSE forecasting of the long-run level for the
sequence, which is computed as:

Tt = lim
j→∞

Et[ln Pt+j − jµ] = ln Pt + lim
j→∞

Et[∆ ln Pt+j − µ]. (6)

Hence, combining Equations (5) and (6), and employing the infinite sum expression of geometric
succession, Tt is computed as:

Tt = ln Pt + ϕ/(1− ϕ) ∗ (∆ ln Pt − µ). (7)

Meanwhile, the cyclic tendency of lnPt is calculated as:

Ct = −ϕ/(1− ϕ) ∗ (∆ ln Pt − µ) (8)

where Ct indicates the cyclic tendency at time t.
The stochastic shock component is computed based on Equations (3), (7), and (8):

STt = ln Pt − Ct − DTt = ln Pt + ϕ/(1− ϕ) ∗ (∆ ln Pt − µ)− (ln P0 + µt) (9)

where STt illustrates the stochastic component at time t.

3.2. The LSSVM Approach

LSSVM is an enhanced approach of SVM that alleviates the convex quadratic programming
related to SVM [56–58]. LSSVM owns the merits of making slackness through an equality restraint
as well as handling the regression issue as linear equations, which leads to faster training and higher
precision and stability [59–61]. The fundamental methodology of the LSSVM approach is elaborated
as follows [56,60].

Suppose a sequence of samples {xi, yi}m
i=1, regarding xi ∈ Rn as the input variable and yi ∈ Rn as

the outcome data for sample i. By utilizing a nonlinear function ϕ, the sample data are programmed to
a high dimensional space, hence, to roughly depict it in a linear formula:

yi = wTφ(x) + b (10)

where w indicates the weight vector and b implies the error.
In the initial space, LSSVM with an equality restraint is phrased as minJ(w, ξ) = 1

2 wTw + 1
2 C

m
∑

i=1
ξ2

i

yi = wφ(xi) + b + ξi

(11)
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where C represents the regularization parameter and ξi means the slackness variable.
The Lagrangian function L can be adopted [62]:

L(w, b, ξ, a) =
1
2

wTw +
1
2

C
m

∑
i=1

ξ2
i −

m

∑
i=1

ai

{
wTφ(xi) + b + ξi − yi

}
(12)

where ai demonstrates Lagrange multiplier.
The requirements of Karush–Kuhn–Tucker (KKT) for optimality are decided as

∂L
∂w = 0→ w =

m
∑

i=1
aiφ(xi)

∂L
∂b = 0→

m
∑

i=1
ai = 0

∂L
∂ξi

= 0→ ai = Cξi

∂L
∂ai

= 0→ wTφ(xi) + b + ξi − yi

. (13)

Eliminating the variables W and ξi, the optimized issue is converted into a linear equation as:[
0 QT

Q K + C−1 I

][
b
A

]
=

[
0
Y

]
(14)

where Q = [1, · · · , 1]T , A = [a1, a2, · · · , am]
T , and Y = [y1, y2, · · · , ym]

T . Consistent with the Mercer’s
term, the Kernel function is written as:

K(xi, xj) = φ(xi)
Tφ(xj). (15)

Then, the LSSVM for regression is introduced as:

f (x) =
m

∑
i=1

aiK(x, xi) + b. (16)

As the RBF has fewer parameters to be assumed, it is chosen to be K(x, xi) in this study and
illustrated as:

K(x, xi) = exp
{
−‖x− xi‖2/2σ2

}
. (17)

Consequently, two parameters are required to be identified by a complicated search process,
which are parameters ‘c’ and ‘σ’ [63,64]. The latest optimization algorithm GOA is utilized to identify
the best values of these parameters.

3.3. Grasshopper Optimization Algorithm (GOA)

Inspired by different movement characteristics in larval and adult phases of grasshoppers,
a novel optimization approach has been put forward by researcher Seyedali Mirjalili, namely the
grasshopper optimization algorithm (GOA) [50]. In the nymph phase, the primary characteristic
of a grasshopper swarm is slow movement and small steps, and they jump and move like rolling
cylinders. Along their movement path, almost all vegetation can be eaten. Then, they step into the adult
phase, in which long range and abrupt movement is the necessary characteristic of the grasshopper
swarm [65,66]. The searching procedure of the GOA is divided into two types: exploration and
exploitation. In exploitation, the search agents shift locally, while they tend to move abruptly in
exploration [67]. Since a grasshopper performs these two functions naturally, it is of great significance
to mathematically imitate this behavior and use the new nature-inspired optimization method to
obtain optimal results.

According to the behaviors of grasshoppers, the GOA is composed of five phases listed as below.
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Step 1: Parameters setting.
The primary parameters of the GOA comprise the number of grasshoppers SearchAgents_no;

the number of variables dim; the maximum number of iterations Max_iteration; the bottom limit
lb = [lb1, lb2, . . . , lbn], and the upper limit ub = [ub1, ub2, . . . , ubn] of variables.

Step 2: Population initialization.
The original population of grasshoppers in the GOA is set in a matrix as below:

G =


g1,1 g1,2 · · · g1,d
g2,1 g2,2 · · · g2,d

...
... · · ·

...
gn,1 gn,2 · · · gn,d

 (18)

where G indicates the position matrix of the grasshoppers, gij implies the j-th parameter’s (dimension
or variable) value of the i-th grasshopper, and i = 1, 2, . . . , n, j = 1, 2, . . . , d, and gij are computed
through using the stochastic distribution listed in Equation (19).

G(i, j) = (ub(i)− lb(i))× rand() + lb(i) (19)

where G(i,j) denotes the data of the i-th row and j-th column in the matrix, ub(i) and lb(i) respectively
illustrate the upper limit and bottom limit of the i-th grasshopper, and rand() denotes the random value
from a uniform distribution in the scope of [0, 1].

Step 3: Fitness function identification.
For the purpose of assessing every grasshopper, the fitness function f [*] is required to be decided

in an optimization procedure, and the matrix OG is applied to save the fitness data for grasshoppers
described as below.

OG =


OG1

OG2
...

OGn

 =


f [g11, g12, . . . , g1d]

f [g21, g22, . . . , g2d]
...

f [gn1, gn2, . . . , gnd]

 (20)

where OG represents the matrix for storing the fitness values of grasshoppers and n implies the amount
of grasshoppers.

Step 4: Iteration start.
The moving behavior of grasshoppers is imitated by the following mathematical model [68]:

Xi = Si + Gi + Ai (21)

where Xi represents the i-th grasshopper’s position, Si means the social connection, Gi indicates the
gravity force on the i-th grasshopper, and Ai implies the wind advection. On the purpose of providing
random behavior, the equation is described as Xi = r1Si + r2Gi + r3 Ai, where r1, r2, and r3 are random
digits in [0, 1].

Si =
N

∑
j = 1
j 6= i

s(dij)d̂ij (22)

where dij represents the distance from the i-th to the j-th grasshopper, which can be computed as
dij =

∣∣xj − xi
∣∣, s implies a function employed to identify the intensity of social force, which is displayed

in Equation (23), and d̂ij =
xj−xi

dij
denotes a unit vector from the i-th grasshopper to the j-th grasshopper.

The s function that identifies the social force is computed as below:

s(r) = f e
−r
l − e−r (23)
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where f implies the attraction strength and l means the attractive length scale.
Figure 2 in Reference [50] illustrates how function s affects the social connection of grasshoppers

and distances ranging from 0 to 15 are taken into account. Repulsion happens in the scope of
[0, 2.079]. If a grasshopper keeps 2.079 units away from another one, there exists neither a repulsion nor
an attraction force, which is named the comfort zone or comfortable distance. It can also be seen that
the attraction strength raises from 2.079 units of distance to nearly 4 and reduces to 0. Alternating the
parameters’ values of l and f in Equation (23) leads to various social behaviors in artificial grasshoppers.
The function s is re-drawn with various values of l and f independently. That figure illustrates that
these two parameters change the attraction zone, comfort area, and repulsion area obviously.

Although the function s can classify the space between two grasshoppers into an attraction area,
a comfort area, and a repulsion area, this function outputs values on the verge of zero with distances
longer than 10. Therefore, this function cannot employ strong forces between grasshoppers with long
distances. In order to deal with this problem, the distances between grasshoppers should be mapped
in the interval of [1, 4].

The Gi component in Equation (21) can be calculated as

Gi = −gêg (24)

where g indicates the constant of earth gravitation, and êg represents a unity vector to the center of
earth.

The Ai term in Equation (21) can be computed as

Ai = uêw (25)

where u is constant drift and êw is a unit vector for the wind direction. Since larval grasshoppers do
not have wings, their movements rely on wind direction to a great extent.

Substituting Equations (22), (24) and (25) into Equation (21), Xi is described as

Xi =
N

∑
j = 1
j 6= i

s(
∣∣xj − xi

∣∣) xj − xi

dij
− gêg+uêw (26)

where s(r) = f e
−r
l − e−r and N represent the amount of grasshoppers.

However, this mathematical model brings the grasshoppers to achieve the comfort area quickly
and the swarm does not verge on a particular point. Therefore, a revised model of this equation is put
forward as below:

Xd
i = c


N

∑
j = 1
j 6= i

c
ubd − lbd

2
s(
∣∣∣xd

j − xd
i

∣∣∣) xj − xi

dij

+ T̂d (27)

where ubd and lbd represent the superior and bottom limit in the D-th dimension, s(r) = f e
−r
l − e−r,

T̂d indicates the data of the D-th dimension in the target, and c implies a reducing coefficient to lessen
the repulsion region, comfort area, and attraction region. It should be pointed out that S is similar to
the Si section in Formula (21), and earth gravity has not been considered (not containing Gi term). It is
assumed that the wind direction (Ai part) is towards a target (T̂d).

For Equation (27), the first term (the sum) takes other grasshoppers’ position into account.
The second term (T̂d) mimics their trends to move towards the food. The inner c is devoted to the
decrease of attraction or repulsion strength between grasshoppers rational to the generation number,
while the outer c shrinks the search coverage around the target with the increasing of the generation
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count. For the aim of balancing exploration and exploitation, the parameter c should be reduced to
be rational to the generation number. This procedure encourages exploitation with the increasing of
generation. The coefficient c decreases the comfort area rational to the iteration number and can be
computed as

c = c max− l
c max− c min

L
(28)

where cmax indicates the maximum data, cmin implies the minimum data, l represents the present
generation, and L denotes the total amount of generations. In this method, 1 and 0.00001 are employed
for cmax and cmin.

Step 5: Optimal selection.
In this mathematical model, grasshoppers are required to move towards a target gradually over

a number of iterations. However, in a real search space, the global optimum is exactly unknown.
Hence, it is necessary to search for a target for grasshoppers in each step of a generation. In the GOA,
the fittest grasshopper (the one with the best objective value) is assumed to be the target, which can
help the GOA to store the most promising target in each generation and require grasshoppers to move
towards the target.

During the iteration, the positions of search agents will be updated based on Equation (27).
Additionally, the best target position obtained to date is updated in every generation. Positions are
required to be updated iteratively until they satisfy the terminal criterion. The location and fitness
value of the target are ultimately feedback as the best solution for the global optimum.

4. The Proposed Multi-Stage Intelligent Algorithm for Predicting Wind Electric Power

A novel multi-stage intelligent algorithm is put forward to improve wind electric power prediction
accuracy. Since hourly wind electric power data is non-stationary with periodic changing tendency and
under the interference of random factors, the B-N disintegration method is utilized to disintegrate the
virginal hourly wind electric power data into a deterministic trend, a cyclic component, and a stochastic
impact effect. Then, the GOA-LSSVM approach is employed to predict three disintegrated data
sequences, and final prediction wind electric power data are calculated. For LSSVM, parameters ‘σ’
and ‘c’ are required to be decided before predicting three decomposed data sequences. To enhance the
prediction precision, the GOA is applied to identify the optimum values of them.

The details of the procedures of the proposed multi-stage intelligent algorithm for wind electric
power prediction are summarized as follows.

Step 1: Unit root test.
In accordance with the basic rules of the B-N disintegration approach, we need to test if the

logarithmic sequence of the original data sequence is first-order stable. The Augmented Dickey–Fuller
(ADF) approach is utilized to carry out the stability examination.

Step 2: Initial data disintegration.
After confirming the first-order stability of the original data’s logarithmic sequence, the initial

data are disintegrated into a deterministic trend, a cyclic component, and a random impact effect
according to Equations (3), (8) and (9).

Step 3: Set Parameters.
In the GOA, five parameters are required to be set, embodying the amount of grasshoppers

SearchAgents_no; the amount of variables dim; the maximum amount of iterations Max_iteration;
and the bottom limit lb = [lb1, lb2, . . . , lbn] and the upper limit ub = [ub1, ub2, . . . , ubn] of variables.
We set SearchAgents_no = 50, dim = 2, Max_iteration = 100, lb = 0.001, and ub = 100.

Step 4: Optimization starts.
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Through employing the GOA to identify the optimum values of the two parameters in LSSVM,
the fitness function f [*] is required to be decided. The Root Mean Square Error (RMSE) expressed as
Equation (29) is applied to compose the fitness function.

RMSE =

√
1
n

n

∑
k=1

(x(k)− x̂(k))2 (29)

where x(k) is the objective data of wind electric power at time k and x̂(k) is the prediction data of wind
electric power at time k.
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The GOA optimizes the two parameters in LSSVM through generating a set of stochastic solutions.
Search agents renovate their locations in terms of Equation (27). The position of the best target found
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to date is updated in every generation. The distances between grasshoppers need to be normalized
in the interval of [1, 4] in every iteration. The locations of grasshoppers are employed to imply two
parameters in LSSVM, namely gi,1 = σ and gi,2 = c. Supposing that the objective data sequence {x(0)(1),
x(0)(2), . . . x(0)(n)} is employed in the first generation, the fitting sequence {x̂(0)(1), x̂(0)(2), . . . x̂(0)(n)} is
computed in terms of the LSSVM. Then, the fitness function is identified minimizing the RMSE of the
prediction value, written by

RMSE = min

√
1
n

n

∑
k=1

(x(k)− x̂(k))2. (30)

Positions and fitness values will be saved. Then, the remaining 99 iterations can be performed in
accordance with the optimization procedure of the GOA.

Step 5: Optimization termination.
Through the whole optimization procedure, various values of RMSEs are computed with varying

parameter values, and the minimum RMSEs can be discovered when the optimization procedure
is finished. The optimum values of ‘σ’ and ‘c’ can be gained through using the GOA in terms of
Equation (30). Then, the optimized LSSVM can be established, and the future data points of wind
electric power can be predicted.

The procedure of the proposed multi-stage intelligent algorithm for wind electric power prediction
is illustrated in Figure 1.

5. Numerical Results and Analysis for GOA-LSSVM

5.1. B-N Decomposition Results

In this research, hourly wind electric power data of one province in Northwest China will be
fed into the proposed multi-stage intelligent algorithm for future wind electric power forecasting.
According to the available data, 216 h (9 days) data will be treated as the training sample, and 168
h (7 days) data will be managed to be the testing sample to measure the performance of the
established model.

Firstly, the B-N decomposition model should be applied to decompose the logarithmic sequence
of the initial 384 (384 = 216 + 168) h wind electric power data. Before decomposition, it is necessary
to carry out a unit root test in accordance with the ADF test to examine if the logarithmic series is
first-order stationary. As listed in Table 1, the data sequence of the wind electric power is stable
after a first-order difference, which satisfies the requirement of the B-N disintegration approach that
the data sequence is first-order co-integrated. Therefore, Equations (3), (8) and (9) can be employed
to decompose the logarithmic sequence of original 384 h wind electric power data, and then the
deterministic component, cyclic term, and stochastic component in logarithmic form are obtained.
Since the deterministic term, cyclic component, and random term are in logarithmic form, we need to
transform them into natural numbers to apply the GOA-LSSVM model. The decomposition results of
these three terms in natural numbers are displayed in Figures 2 and 3. The deterministic trend means
that the time sequence increases steadily with the change of time. The periodic term indicates the
periodic variation of the time series. The stochastic component implies the impact of unexpected and
unobservable random factors on the time series.

Table 1. The ADF test results of the logarithmic series of the original 384 h wind electric power data.

Series Test Form (C,T,K) ADF Test Value p Value Conclusion

lnP (N,N,1) −1.336253 0.1681 Unstable
∆lnP (N,N,0) −12.94301 0.0000 stable
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5.2. GOA-LSSVM Prediction Results

The GOA-LSSVM approach is employed to predict the three components, respectively, and the
final wind electric power value is obtained by multiplying the predicted deterministic trend, cyclic
component, and random trend. Based on the data available, through using the GOA-LSSVM model
to forecast the deterministic trend, the deterministic trend in the last moment and the deterministic
trend at the same time yesterday will be fed into GOA-LSSVM. By utilizing the GOA-LSSVM model
to forecast the periodic component, the periodic component in the last moment and the periodic
component at the same time yesterday are handled as the input items for GOA-LSSVM. By utilizing
the GOA-LSSVM approach to forecast the stochastic trend, the stochastic trend in the last moment and
the stochastic trend at the same time yesterday are managed as the input terms for GOA-LSSVM.
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The forecasting procedure of GOA-LSSVM should start with normalizing the sample data in the
scope of [0, 1] utilizing the following formula:

z =
x− xmin

xmax − xmin
(31)

where xmin and xmax denote the minimum and maximum data of every input sequence.
In the GOA-LSSVM approach, the parameters ‘c’ and ‘σ’ of the LSSVM approach will be identified

by the GOA method. Through the optimization process, the optimal values of σ2 and c of LSSVM for
determinacy component prediction, cyclic term prediction, and random component prediction are
determined by Equation (30), and the optimum values of them are illustrated in Table 2.

In the testing phrase, the optimum values of σ2 and c will be applied to calculate the forecasting
values of the deterministic trend, the periodic component, and the stochastic term, respectively.
Through multiplying these three terms, the final wind electric power values are obtained. The values
of three error criteria are applied to discuss the prediction performance, which are the Root Mean
Square Error (RMSE, computed in accordance with Equation (29)), the Normalized-RMSE calculated
based on [69,70], and the Mean Absolute Percentage Error (MAPE) calculated as below:

MAPE =
1
n

n

∑
k=1

∣∣∣∣ x(k)− x̂(k)
x(k)

∣∣∣∣× 100% (32)

where x(k) indicates the objective data at time k and x̂(k) means the prediction data at time k.
The values of RMSE, normalized-RMSE, and MAPE for GOA-LSSVM of each day through

calculating the average hourly RMSE, normalized-RMSE, and MAPE values are shown in Table 3.
The value of MAPE on the first day is the highest, which is 9.54%, the value of MAPE on the third
day is the lowest, which is 1.52%, and the values of MAPE on other days range from 3% to 4.6%.
The average value of MAPE is 4.28%, which is much lower than the prediction error in the current
literature, which ranges from 8% to 22% [18]. For the normalized-RMSE values, all of them are less
than 10%, which implies that the established model has excellent performance in wind electric power
prediction [70]. This proves that the GOA-LSSVM can effectively improve the forecasting accuracy.

Table 2. Best values of σ2 and c of LSSVM for determinacy component prediction, cyclic term prediction,
and random component prediction.

Parameters LSSVM for Deterministic Trend LSSVM for Periodic Term LSSVM for Stochastic Trend

σ2 1.0581 1.2414 8.8182
c 95.053 94.877 95.452

Table 3. The values of RMSE, normalized-RMSE, and mean absolute percentage error (MAPE) of
each day.

Error Criteria Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Average Value

RMSE(KW) 7812.16 4600.74 1591.12 2657.38 3100.32 3828.40 3546.86 3876.71
Normalized-RMSE 9.68% 5.05% 1.87% 4.63% 4.21% 4.32% 3.84% 4.80%

MAPE 9.54% 4.07% 1.52% 3.78% 4.58% 3.05% 3.37% 4.28%

6. Forecasting Performance Assessment

To assess the prediction performance, three compared prediction models have been chosen,
including LSSVM, FOA-LSSVM, and PSO-LSSVM. For these three models, the input variables and
the output variable are the same as GOA-LSSVM, while the difference among them is the parameters’
selection mechanism.

For the LSSVM model, the deterministic trend, periodic component, and stochastic term will
be forecasted taking the term’s value in the last moment and the component’s value at the same
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time yesterday for each trend from 1 to 216 h as input variables. Values of parameters σ2 and c are
identified [71], which are listed in Table 4. Additionally, the hourly wind electric power for the future
168 h can be forecasted.

Table 4. Values of σ2 and c for different compared models.

Compared
Models

LSSVM FOA-LSSVM PSO-LSSVM

σ2 c σ2 c σ2 c

Deterministic
component 0.1882 188.21 0.1638 128.93 0.1627 165.13

Periodic term 0.1694 130.57 0.1778 142.03 0.1831 125.72
Stochastic trend 0.1275 130.79 0.1989 120.50 0.1427 151.29

For the Fruit-fly Optimization Algorithm (FOA)-LSSVM approach, the parameters σ2 and c
of LSSVM for determinacy trend prediction, cyclic component prediction, and random component
prediction are optimally selected by FOA. Before iteration optimization, the initial parameters of
FOA are assumed to be: maxgen = 100, sizepop = 20, (X_axis, Y_axis) ⊂ [−50, 50], FR ⊂ [−10, 10],
X_axis = rands(1, 2), and Y_axis = rands(1, 2). The optimum values of σ2 and c selected by FOA for these
three terms’ forecasting are shown in Table 4.

For the PSO-LSSVM approach, the parameters σ2 and c of LSSVM for determinacy trend
prediction, cyclic component prediction, and random term prediction are iteratively identified by PSO.
Before optimization, the original parameters of PSO are supposed to be: maxgen = 300, swarm size = 30,
particle size = 2, the minimum of the particle = [0.01, 1000], the maximum of the particle= [0.1, 1000], the
minimum of velocity = −500, the maximum of velocity = 500, and learning factors c1 = 1.5 and c2 = 1.7.
The optimum σ2 and c selected by PSO for these three terms’ forecasting are demonstrated in Table 4.

According to the optimum σ2 and c for determinacy component prediction, cyclic term forecasting,
and random component prediction in different models, the future 168 h wind electric power values
are calculated through multiplying the prediction data of the three components. The MAPE values,
normalized RMSE values, and RMSE values of each day through calculating the average hourly
MAPE, normalized RMSE, and RMSE values for various approaches are computed to assess the
prediction performance of the various prediction approaches and are illustrated in Table 5. The LSSVM
model has the poorest performance compared to other models with optimization algorithms, and the
average value of MAPE is 15.61%, which is the only one larger than 10%. The GOA-LSSVM model is
superior to the other models with a 4.28% average MAPE value; except for the MAPE value on the
first day, the MAPE values on other days are all smaller than 4.6%, specifically, the MAPE value on
the third day is only 1.52%. The forecasting performance of the PSO-LSSVM model ranks second
with an 8.00% average MAPE value; however, the MAPE values on the last two days are all more
than 10%, which is much higher than the values of GOA-LSSVM. The forecasting performance of
the FOA-LSSVM approach ranks third with a 9.89% average MAPE value. For the RMSE values, the
average values of the LSSVM model and the FOA-LSSVM model are larger than 10,000 KW, which
indicate that there exists a large gap between the forecasted data and the objective data of wind electric
power. The smallest average RMSE value is 3876.71 KW, which belongs to the GOA-LSSVM model,
followed by 8046.46 KW of the PSO-LSSVM model. For the normalized-RMSE values, the average
values of GOA-LSSVM and PSO-LSSVM are both less than 10%, which demonstrate that both of these
two models have excellent performance in wind electric power prediction, but the values on Day 1,
Day 6, and Day 7 of PSO-LSSVM are all larger than 10%, which are much greater than GOA-LSSVM.
Most of the normalized-RMSE values of LSSVM and FOA-LSSVM are larger than 10%, which verify
that the established approach effectively enhances the prediction accuracy.
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Table 5. Values of MAPE, RMSE, and normalized-RMSE (N-RMSE) of each day for different models.

Compared Models Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Average Value

GOA-LSSVM
MAPE 9.54% 4.07% 1.52% 3.78% 4.58% 3.05% 3.37% 4.28%
RMSE 7812.16 4600.74 1591.12 2657.38 3100.32 3828.4 3546.86 3876.71

N-RMSE 9.68% 5.05% 1.87% 4.63% 4.21% 4.32% 3.84% 4.80%

LSSVM
MAPE 23.11% 9.24% 6.21% 15.24% 29.60% 14.04% 11.84% 15.61%
RMSE 19,684.52 10,271.47 6863.51 9909.27 16,500.29 12,079.6 13,223.24 12,647.41

N-RMSE 24.39% 11.27% 8.05% 17.26% 22.43% 13.62% 14.31% 15.90%

FOA-LSSVM
MAPE 13.80% 8.12% 7.96% 9.30% 5.40% 8.87% 15.81% 9.89%
RMSE 13,873.89 8971.39 7819.88 9659.2 4418.03 9693.03 17,567.19 10,286.09

N-RMSE 17.19% 9.84% 9.18% 16.82% 6.01% 10.93% 19.01% 12.71%

PSO-LSSVM
MAPE 7.79% 3.55% 3.27% 4.88% 7.42% 16.23% 12.88% 8.00%
RMSE 10,484.87 4087.68 3680.11 3988.71 6726.3 13,669.15 13,688.39 8046.46

N-RMSE 12.99% 4.48% 4.32% 6.95% 9.14% 15.41% 14.81% 9.73%

Compared with PSO-LSSVM and FOA-LSSVM, GOA-LSSVM has a better forecasting performance.
This is because in the GOA the next location of a grasshopper is identified on the basis of its current
location, the global best, and the location of all other grasshoppers according to Equation (27),
while PSO, as the most well-regarded swarm intelligent optimization algorithm in the current literature,
updates the positions of particles with regard to present location, personal best, and the global best.
For FOA-LSSVM, the fruit flies renew their positions according to the location of the best fruit fly
with the best smell. This demonstrates that in PSO and FOA the other search agents make no
contribution to the update of a search agent’s position, while all grasshoppers’ status are involved
in the position updating of each search agent [50]. Thus, the GOA performs better than PSO and
the FOA on the optimization issue. Therefore, it can be concluded that the proposed multi-stage
intelligent algorithm with the B-N decomposition method and the LSSVM model optimized by the
newly proposed evolutionary algorithm GOA for hourly wind electric power forecasting is effective
and practical.

7. Conclusions

Wind power is of great significance among low-carbon and low-emissions renewable energy
technologies, which are promising to realize sustainable energy supply. The accurate prediction
of wind power makes a great contribution to the extensive scale penetration of wind power into
a power network considering the stochastic and intermittent characteristics of wind energy. Therefore,
a multi-stage intelligent algorithm for wind electric power prediction is put forward in this research to
increase the prediction precision of wind power. This established multi-stage intelligent algorithm
combines the B-N decomposition approach, the LSSVM model, and a newly proposed intelligent
optimization algorithm GOA together. In the data preprocessing stage, considering the stochastic
tendency of wind electric power, the B-N disintegration approach is utilized to disintegrate the initial
wind electric power data into a determinacy trend, a cyclic component, and a random component.
Then, LSSVM is utilized to predict the future values of these three terms, of which the parameters ‘c’ and
‘σ’ are optimally selected by the GOA. The final future wind electric power data are calculated through
multiplying the predicted values of the deterministic trend, cyclic component, and random component.
For the purpose of evaluating the forecasting performance, the LSSVM approach, the FOA-LSSVM
approach, and the PSO-LSSVM approach are selected as the compared methods. Through conducting
comparative analysis, it can be concluded that the proposed multi-stage intelligent algorithm for wind
electric power forecasting performs the best with a 4.28% forecasting error, which is much lower than
the prediction error in the current literature, which ranges from 8% to 22% [18]. Although the proposed
multi-stage intelligent optimization algorithm consists of complicated computation steps, including
data decomposition, parameter optimization, and future data-point prediction, and this process
may have a high computational cost, the proposed multi-stage intelligent algorithm can improve
forecasting accuracy significantly and can be of great help for electricity power system management
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and power dispatching. Therefore, the proposed multi-stage intelligent algorithm is an effective
and attractive optimization algorithm for wind electric power prediction. In the future research,
this proposed model can also be combined with the Numerical Weather Prediction method in using
physical data to further increase the forecasting precision of wind power, and it can also be utilized
for other prediction studies, such as power load prediction in the short term and photovoltaic power
generation prediction. Additionally, considering the intense demand for quantitative information
of wind power uncertainty, the research of wind power prediction will gradually turn from point
prediction to probabilistic prediction [72–74]. Therefore, in our future research, we will focus on
exploring appropriate probabilistic forecasting approaches to enhance the prediction accuracy of wind
electric power prediction.
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