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Abstract: Heavy metal elements in water and surface sediments were characterized in Hengyang river
segment in Xiangjiang River basin, one of China’s most important heavy metal control and treatment
region. Data of heavy metal monitoring results in water and sediment for 10 years were acquired
from an environmental monitoring program in the main channel of the studied area. Descriptive
and exploratory statistical procedures were performed to reveal the characteristics of the sample
distributions of heavy metal elements. The sample distributions of heavy metal elements were largely
skewed right. Data censoring and too severe rounding in the water monitoring data were identified
to have caused discretization in the sample distributions. Temporal and spatial characteristics of the
data sets were addressed. The chromium (Cr) in the sediment possessed unique behavior, and this
could be caused by a rapid deposition and releasing process.
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1. Introduction

A river forms an environmental system that is both a sink and a source for heavy metal elements,
as well as a carrier for the transportation of these elements. Heavy metal elements in fluvial systems
are known for their potential toxicity and ecotoxicity. These elements, including chromium (Cr),
manganese (Mn), copper (Cu), zinc (Zn), arsenic (As), cadmium (Cd), mercury (Hg), and lead (Pb), are
introduced into rivers by natural processes such as weathering and atmospheric deposition, and more
importantly, via anthropogenic discharges from mining and smelting activities [1–4]. The control and
treatment of heavy metal pollution in river and sediment has long been a serious campaign in most
nations with intensive smelting activities.

In China, heavy metal contamination in rivers is of great concern to ministration authorities, as
well as the public. The Xiangjiang River basin, which is one of the most distinguishable heavy metal
influenced areas in China, has drawn nationwide attention and was designated as the first and so far
the largest region under the national heavy metal control and treatment plan in China [5]. Much more
efforts are still required in this region to achieve a desirable outcome in the control and treatment of
heavy metal contamination.

The fundamental step to the control and treatment of heavy metal contamination is to understand
the status quo of contamination, which normally requires drawing information from environmental
monitoring data. The statistical analysis serves as a conventional and the most prevalent empirical
approach to the characterization and exploration of the data. A variety of statistical procedures were
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used by environmental and geochemical researchers to reveal characteristics and structures within the
data, such as outlier identification, correlation analysis, principal component analysis (PCA), factor
analysis (FA), and regression modeling [1,6–11]. Generally, the first step in statistical data analysis is to
perform descriptive and exploratory statistical procedures that focus on single-variable data analysis,
which helps one to gain a global understanding of the data and subsequently avails unbiased design
and interpretation of further data analyzing procedures. However, with the popularity of statistical
data analysis in environmental studies, descriptive and exploratory statistical procedures have been
implemented with little consideration in a growing amount of research. Some researchers tend to
be result-driven and simply enter popular statistical analysis procedures with collected data, thus
neglecting the importance of a careful characterization of the data, as well as a proper selection of
methods to approach them. The improper implementation of these basic procedures induces the risks
of misleading the interpretation of data and violating important statistical assumptions [12].

In this study, data on heavy metals of both river water and surface sediment in a 10-year
monitoring program in Hengyang segment, a typical area in the Xiangjiang River basin under severe
heavy metal influence, is being statistically characterized. The aim of this study is to (i) properly present
the samples of heavy metals in both the water and the sediment; and (ii) discover the underlying
features in the sample distributions.

2. Materials and Methods

2.1. Description of the Research Area

Xiangjiang River runs northward through Hunan province—the world-famous “land of
nonferrous metals”—as the second largest tributary to Yangtze River in China. Hengyang is the
second prefecture-level city connected by Xiangjiang River in this national heavy metal control region
with a prosperous and long-dated nonferrous metal mining and smelting industry, and abundantly
bears more than 50 types of minerals such as gold, silver, lead, etc. [13]. The long-term mining and
smelting activities over the past hundred years in this region, some of which employed outdated
techniques, have generated a considerable amount of heavy metal pollutants into the Xiangjiang River.

2.2. Data Source

Data of heavy metal elements in the water and the surface sediment of Xiangjiang River in
Hengyang segment were acquired from annual environmental monitoring reports of ten consecutive
years (2006–2015). The monitoring activities were carried out by the environmental monitoring station
of Hengyang.

Ten water sampling sites and eight surface sediment sampling sites were placed along the main
channel of Xiangjiang River in Hengyang district in the monitoring program (Figure 1). Monitoring
activities were conducted monthly for water samples and once a year for surface sediment samples
during low-water seasons. Per each site, two to three cross-sectional samples were collected.
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Figure 1. Sampling sites of water and sediment monitoring data. Years of data available for each site
are given in the parentheses. The Xiangjiang River flows from south to north.

Respectively, eight and ten heavy metal substances in the water and sediment samples were
quantitatively determined in the monitoring program. The methods and standards for the chemical
analyzing process were given in Appendix A. Changes were made to the monitoring program during
the ten-year period, which affected sampling sites, analyzed substances, and analyzing methods
(that may alter detection limits). The reported chemical analyzing results were transferred into two data
sets, respectively, the water monitoring data set (WAT) and the sediment monitoring data set (SED).

2.3. Data Preparation

The water monitoring data set (WAT) contained censored data, which were values below the
detection limits (DLs). Variables in WAT and SED with more than 30% of their data that were either
missing or censored were removed from the data sets. Remaining censored data were all replaced by
half of the corresponding DLs [12].

2.4. Measuring Sample Distribution

The combined plots of histogram, boxplot, and density trace, sided with empirical cumulative
distribution function (ECDF) plots, were employed to visualize the sample distribution of each
variable [12]. Common statistics were calculated, which include: (i) conventional distribution measures,
such as the arithmetic mean (MEAN), the standard deviation (SD), and the coefficient of variation
(CV%); and (ii) robust (or resistant) distribution measures, such as the median (MEDIAN), interquartile
range (IQR), median absolute deviation (MAD), and the robust coefficient of variation (CVR%).
The CV% and the CVR% were, respectively, defined as [12]:

CV% = 100· SD
MEAN

(1)

CVR% = 100· MAD
MEDIAN

(2)



Sustainability 2018, 10, 1057 4 of 28

In addition, the sample skewness was calculated as [14]:

G1 =

√
n(n− 1)
n− 2

g1 (3)

in which the moment coefficient of skewness was defined as:

g1 =
m3

m3/2
2

(4)

that m3 was the third moment of the data, and m2 was the second moment of the data (i.e., the variance).

2.5. Box-Cox Transformation

Box-Cox transformation was performed to prepare the samples to approach normality and to
reveal detailed patterns for visual analyses. The Box-Cox transformation applies power transformation
with an algorithm to estimate the optimized power value λ to improve normality, which was generally
defined as [15,16]:

y(λ) =

{
yλ−1

λ , i f λ 6= 0
loge(y), i f λ = 0

(5)

2.6. Inspecting Normality

Both the normal quantile-quantile plot (normal Q-Q plot) and the Shapiro-Wilk test (S-W test)
were employed to inspect the normality of the raw and Box-Cox transformed samples. The S-W test
compares a sample distribution (independent and identically distributed) with a reference distribution
(in this case a normal distribution). The hypotheses for the normal S-W test were [17]:

H0: the hypothetical distribution of the sample distribution is the same as a normal distribution.
Ha: the hypothetical distribution is different from a normal distribution.

2.7. Platform, Package, and Mapping

Data analyses, statistical tests, and plotting were performed using the R language [18]. Built-in
functions of R were used to perform S-W tests and to draw normal Q-Q plots. The “StatDA” and
“ggplot2” packages for graphical display of data and the “MASS” package for Box-Cox transformation
were employed [19–21]. The site map was created using ArcGIS 11 (Esri, Redlands, CA, USA).

3. Results

3.1. Sample Visualization and Measures

In the data preparation process, variables that were removed once failed to meet the designated
criterion of at least 70% in data validity ratio (after which, the variables that remained in the WAT were
As, Cd, and Pb; the variables that remained in the SED were Cr, Mn, Cu, Zn, As, Cd, Hg, and Pb).

All variables in WAT and SED, of which each consists of data from all sampling sites in years
2006–2015, were characterized using graphs and statistics. Combined plots of histogram, boxplot, and
density trace (left) and ECDF-plots (right) for variables in WAT and SED were shown in Figures 2 and 3,
respectively, with the ranges of [MEDIAN ± 2×MAD] marked in each ECDF-plot as a visual indicator
for the range in which the main part of data was concentrated. A summary of the statistics was shown in
Table 1. There were 2553 samples in the WAT and 118 in the SED.
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Figure 2. Combined histogram, density trace, and boxplot (left), and empirical cumulative distribution
function (ECDF-plot) (right) of As, Cd, and Pb in water monitoring data set (WAT). The ranges of
[MEDIAN ± 2 ×MAD] are marked in ECDF-plots.

Figure 3. Combined histogram, density trace and boxplot (left), and ECDF-plot (right) of Cr, Mn, Cu,
Zn, As, Cd, Hg, and Pb in sediment monitoring data set (SED). The ranges of [MEDIAN ± 2 ×MAD]
are marked in ECDF-plots.
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Table 1. Summary table of studied heavy metal variables.

Variable MIN MEDIAN MEAN MAX MAD SD IQR CV% CVR% G1 G1*

As (WAT) 0.000035 0.00876 0.01358 0.52 0.007798 0.01881 0.009859 138.53 89.02 11.12 5.76
Cd (WAT) 0.00005 0.0013 0.001674 0.0191 0.001038 0.001532 0.001186 91.51 79.83 2.96 2.59
Pb (WAT) 0.00005 0.0020 0.003617 0.0854 0.00252 0.004957 0.002817 137.06 126.02 4.52 3.30
Cr (SED) 11.7 54.80 54.59 131 14.35 20.54 15.02 37.63 26.19 0.31 −0.06
Mn (SED) 101 1620 1884 9950 873.3 1275 954.4 67.68 53.90 2.83 1.39
Cu (SED) 15.4 62.85 112.1 1650 39.88 201.4 45.39 179.69 63.46 5.67 5.38
Zn (SED) 63.0 418.5 659.7 11,900 229.8 1343 235.6 203.58 54.91 6.60 6.34
As (SED) 16.3 62.95 135.2 1561 49.15 246.2 69.97 182.06 78.07 4.34 4.58
Cd (SED) 0.086 8.595 21.66 829 8.903 78.90 8.766 364.29 103.58 9.45 5.17
Hg (SED) 0.011 0.2505 1.192 52.63 0.1683 5.726 0.2174 480.27 67.18 7.48 7.41
Pb (SED) 16.1 128.5 359.4 11,200 94.44 1203 107.7 334.61 73.50 7.41 6.76

MIN = minimum value; MAX = maximum value; SD = standard deviation; MAD = median absolute deviation standardized to conform to the normal distribution; IQR = interquartile range
standardized to conform to the normal distribution; CV = coefficient of variation (per cent); CVR = robust coefficient of variation (per cent); G1 = sample skewness; G1* = sample skewness
with the maximum value removed. n = 2553 for WAT and n = 118 for SED, no missing values. All values in WAT are in mg/L, and all values in SED are in mg/kg.
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Various extents of positive skewness were observed from all studied variables in WAT and SED.
The As (WAT) displayed the most prominent positive skewness in all studied variables, with the
maximum value being more than 50 times of IQR above the median and the sample skewness being
the highest 11.12. The Cr (SED) had the lowest sample skewness value of 0.31, of which the sample
distribution shape was approximately symmetrical. Cd (WAT), Mn (SED), and As (SED) possessed
comparatively moderate skewness levels, and the rest of the variables had relatively strong skewness
levels. The extent of skewness was also observed by the inflation of MEAN, SD, and CV against
MEDIAN, MAD, and CVR, respectively.

From the graphs, it was observed that a single value was significantly departed from other values
in As (WAT), Pb (WAT), and Cd (SED). Some of the statistics were severely inflated by this single value.
To reveal the potential influence on skewness from the maximum value, the coefficient of skewness
was again calculated but removing the maximum value from each variable, and the results were shown
in Table 1 as G1*. The sample skewness of As (WAT) greatly dropped from 11.12 to 5.76 when the
maximum value was removed. Cr (SED) had a negative G1* and was very close to zero. The skewness
of other variables was decreased to a certain extent.

3.2. Transformation and Normality Test

Histogram, boxplot, density trace, and ECDF-plot of variables in WAT and SED after Box-Cox
transformation were in Figures 4 and 5. The lambda (λ) values of the transformations were marked
on each ECDF-plot. The values corresponding to both the lower detection limits (DL transformed)
and half of the lower detection limits (DL/2 transformed) were marked in the ECDF-plots in Figure 4.
The normal Q-Q plots of raw and Box-Cox transformed variables in WAT and SED were given in
Appendix B.

Figure 4. Combined histogram, density trace, and boxplot (left), and ECDF-plot (right) of Box-Cox
transformed As, Cd, and Pb in WAT. The powers of the transformations are given in the left-side plots,
and the transformed values of DL and DL/2 are marked in right-side ECDF-plots.
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Figure 5. Combined histogram, density trace, and boxplot (left), and ECDF-plot (right) of Box-Cox
transformed Cr, Mn, Cu, Zn, As, Cd, Hg, and Pb in SED. The powers of the transformations are given
in the left-side plots.
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The λ value for Cr (SED) was close to 1, indicating a roughly linear transformation. The λ values
for Cd (SED) and Hg (SED) were approximately zero, for which a log-transformation could also suffice.

p-values (α = 0.01) of S-W normality test on the raw and Box-Cox transformed variables in WAT
and SED were in Table 2. The p-values of raw variables were all below the significance level of 0.01,
which indicate a significant deviation from the normal distribution in the samples. Box-Cox-transformed
Cu, Zn, As, and Pb in SED had p-values above the significance level of 0.01, which gave little evidence
of departure from normality, and led to the acceptance of normality in these Box-Cox-transformed
variables. Limited improvement in normality was found for Cr (SED), whereas good improvements in
normality were observed for all other variables.

Table 2. Shapiro-Wilk test p-values for raw and Box-Cox transformed variables.

Variable Raw Box-Cox

As(WAT) 4.11 × 10−65 *** 4.34 × 10−24 ***
Cd(WAT) 6.04 × 10−50 *** 2.38 × 10−13 ***
Pb(WAT) 1.13 × 10−58 *** 1.12 × 10−25 ***
Cr(SED) 7.66 × 10−4 *** 9.42 × 10−4 ***
Mn(SED) 9.80 × 10−12 *** 4.23 × 10−2 *
Cu(SED) 2.91 × 10−20 *** 9.21 × 10−1

Zn(SED) 3.48 × 10−21 *** 5.33 × 10−3 **
As(SED) 1.68 × 10−19 *** 3.74 × 10−1

Cd(SED) 1.56 × 10−22 *** 2.30 × 10−4 ***
Hg(SED) 7.81 × 10−23 *** 1.71 × 10−6 ***
Pb(SED) 3.15 × 10−22 *** 1.05 × 10−1

* p < 0.05; ** p < 0.01; *** p < 0.001.

3.3. Characterizing Temporal and Spatial Dependency

The studied variables were based on data with various time and space origins, which were
presumably inhomogeneous. The factors of time and space were used as indexes for subdividing
subsets in this study. Scatterplots of all variables were drawn with samples grouped by either year or
sampling site and were horizontally scaled by Box-Cox transformation (Appendix C).

4. Discussion

4.1. The Sample Distributions of Heavy Metal Variables

It has been widely observed in environmental and geochemical studies that the sample
distribution of an environmental substance is positively skewed (and may have a roughly log-normal
shape), which is resulted from combined processes, including mixed geochemical processes, industrial
pollution, and human interference [7,22,23]. The data used in the present study covers large longitude
in both time and distance that the influences from multiple processes, i.e., positive skewness should
be expected. The time-and-space aggregated samples of As, Cd, Pb in WAT, and Mn, Cu, Zn, As,
Cd, Hg, Pb in SED, showed prominent positive skewness in the distribution shapes. However, Cr
(SED) stood out with a roughly bell-shaped sample distribution, with two major gaps at ~10 and
~90 percentile. Mn (SED) presented slightly heavier positive skewness than Cr (SED) but still possessed
a much weaker skewness than other variables. The main body of Mn (SED) was symmetrical, and the
skewness was mainly induced by six positively deviated values.

After the Box-Cox transformation, the influence of data censoring on the sample distribution
became visible in the WAT data set, while the SED data set has no censored values. These censored
values were presented on ECDF curves as stacked bars, which were marked in Figure 4. In normal
Q-Q plots of Box-Cox transformed WAT variables (Appendix B), the censored values (long horizontal
bars) were the most prominent factor that deviated the curves from linear trends, which could explain
that all Box-Cox transformed WAT variables failed the S-W normality test.
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The values that correspond to DL/2 were introduced in the data preparation process, in which all
censored values were set to half of the DLs. The values that were equal to or less than the DLs were
most likely from the data in the year 2006, in which the original report failed to distinguish censored
data. These data in 2006 were treated as valid values due to the absence of specification in the original
reports. As a special case, the DL of As (WAT) had changed from 0.007 mg/L to 0.00007 mg/L since
April 2010. In Figure 4, three discrete vertical bars that were stacked on the ECDF curve of the As
(WAT) correspond to the transformed values of the improved DL/2 (0.000035 mg/L), the former DL/2
(0.0035 mg/L), and the former DL (0.007 mg/L), respectively.

In addition, the WAT data set had discretization in the sample distribution, which was due to
limitations in analytical precision and rounding of relatively small values.

4.2. The Temporal and Spatial Characteristics

The relevance of the WAT variables with factors of time and space was addressed (Figures A4–A6).
The levels of As (WAT) and Cd (WAT) presented a decreasing trend over the studied period.

Some positively deviated values were observed in 2006–2009 in As (WAT) and in 2006–2010 in Cd
(WAT), but no deviated values in the corresponding ranges could be seen in the following studied time
period. Besides, a lowering trend on the concentration of values was visually recognized in these two
variables. The Pb (WAT) had a distinctive temporal behavior that the proportion of censored values
per each year dramatically increased from 5.8% (2011), 6.1% (2012), to 14.4% (2013), and finally to
47.2% (2014) and 52.1% (2015). This can be considered as a sign of a decreasing trend in its values,
although the main body of the samples slightly spread out to higher contamination levels in 2011–2013.
Statistical evidence to support the decreasing trends in As, Cd, and Pb in WAT was given by performing
one-sided hypothesis tests for a difference between two means for every two consecutive years per
each element. The hypotheses of this series of tests can be generalized as:

H0: there is no difference between the means of two consecutive years.
Ha: the mean of the year is significantly larger than the mean of the next year.

Conditions were checked, and the t-procedure does apply. The resulting p-values of t-tests were
present in Table 3. It should be noted that the significant (p < 0.01) decrease in sample means of As
(WAT) from 2009 to 2010 could be dominated by the lowering of its DL, as discussed in Section 4.1.

Judging from Figures A4–A6 and Table 3, a conclusion was drawn that significant (p < 0.001)
decreasing trends in the contamination level of As, Cd, and Pb in WAT did occur, starting from 2012,
2013, and 2013, respectively. This characteristic coincided in time with a series of environmental
protection actions conducted by the government to control pollutions in the fluvial environment of
Xiangjiang River, which was provoked in 2011 and initiated soon afterward [24]. In detail, a collection
of policies was approved by the State Council of China, namely the “12th Five-Year Plan on Prevention
and Control of Heavy Metal Pollution” and “Xiangjiang River Basin Control Plan for Heavy Metal
Pollution” [5,25,26]. As one of the goals in implementing the control and treatment plan on heavy
metals in Xiangjiang Basin, discharges from industries with heavy metal pollution were designated to
cut off by 50% in the whole watershed by the end of its 5-year period, compared to 2008. The water
monitoring data presented clear evidence of benefits from these environmental policies.

For the space factor, Songbai (SB) was noticeably the most heavily contaminated site for all
three elements in WAT, indicating major discharges of pollutants at this location. Less positively
deviated values were seen at monitoring stations downstream of SB, such as at Xintangpu (XTP) and
Huangchaling (HCL). At Zaoziping (ZZP), the contamination levels of As, Cd, and Pb in WAT again
increased. At further downstream locations, Zhanmenqian (ZMQ) and Aozhou (AZ), there was a
slight decrease in concentration levels.
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Table 3. p-values of one-sided hypothesis tests for the difference between two consecutive years.

Variable 2006–2007 2007–2008 2008–2009 2009–2010 2010–2011 2011–2012 2012–2013 2013–2014 2014–2015

As(WAT) 2.21 × 10−1 9.97 × 10−1 1.16 × 10−5 *** 1.85 × 10−3 ** 8.93 × 10−1 1.98 × 10−7 *** 2.02 × 10−6 *** 4.82 × 10−1 9.71 × 10−1

Cd(WAT) 6.22 × 10−10 *** 5.97 × 10−1 6.42 × 10−1 8.68 × 10−1 9.64 × 10−1 3.54 × 10−2 * 1.21 × 10−7 *** 1.54 × 10−20 *** 3.18 × 10−9 ***
Pb(WAT) 4.75 × 10−8 *** 9.99 × 10−1 5.74 × 10−2 9.11 × 10−1 9.97 × 10−1 1.00 × 100 6.20 × 10−7 *** 1.11 × 10−12 *** 2.89 × 10−1

* p < 0.05; ** p < 0.01; *** p < 0.001.
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As for the SED data set (Figures A7–A14), since (i) it has much less sample size than WAT, and
(ii) the samples were only collected in low-water seasons, the SED data set was therefore assumed to
contain much less information and variety with regard to the true temporal and spatial characteristics
in the studied river segment. The samples of Cr (SED) showed dependence on the time factor, while
there was little difference among sites. No clear dependency on either factor was observed in Mn (SED).
Relatively space-dependency in Cu (SED), Zn (SED), As (SED), Cd (SED), and Pb (SED) were present
that samples from SB distinctively fanned out towards high concentrations, and the upper stream sites
GY and QS had comparatively low concentration values. Hg (SED) had slightly both temporal and
spatial dependency, which displayed similar spatial patterns with other five SED variables but also
had lower concentration levels in 2013 and higher levels in 2006 and 2007.

Besides, slightly decreasing trends were observed in SED commencing in 2012, where the
above-discussed control and treatment plan in Xiangjiang Basin took place. Due to the loss of
variability information in SED, this could only serve as a clue that alleviation of pollutants in the water
column may have a positive relationship with that in the sediment, but the effects are slow and much
less significant.

The major sources of pollutants in water and sediment were identified to be close to sites of SB
and ZZP, where concentration levels abruptly increased. SB has intensive smelting and manufacturing
industries, while ZZP is located downstream of Hengyang City, which could explain the source of the
elevated concentrations. The confluence with river branches directly at downstream of SB, ZZP, and
ZMQ may have the effect of diluting the concentrations of each element. The effects of dilution and
dispersion could explain the lower number of deviated values at sites downstream of SB, as well as
the slight decrease in concentration levels after ZZP and ZMQ.

4.3. The Unique Behavior of Cr

From Figure A7, it was observed that the ranges of Cr (SED) could have substantial variation
between years, which was greater in its extent when compared with other studied SED variables.
Generally, the values of Cr (SED) fell in 30–100 mg/kg. While in 2010, the sample values were in
10–30 mg/kg, which was exceptionally low. Besides, in 2007–2009, the sample values were narrowly
clustered, while in many other years, the sample distributions were relatively spread out. In addition,
the above discussed environmental policies initiated in 2011 coincided with a visible decreasing trend
in Cr (SED) starting from 2012. Considering the small difference among spatial groups, these above
observations may indicate a relatively fast process of deposition-releasing equilibrium of Cr between
water column and sediment, which gave sedimentary Cr the mobility to present greater potentials of
variability in its time-series than other variables studied. Despite our best efforts, we failed to solidify
this explanation with literature, but we did present it as a hypothetical characteristic.

4.4. Implications for Further Data Analyses

Normality is a most common assumption in many statistical procedures applied in environmental
studies, such as ANOVA and factor analysis (FA). Even in principal component analysis (PCA)
where normality is not a basic assumption, this procedure is still sensitive to non-normality [12].
Entering these processes with highly skewed data could violate the assumption and/or lead to biased
and unstable results.

This study showed that data censoring and too severe rounding were the two prominent factors
in WAT that led to non-normality after Box-Cox transformation. The inhomogeneity in WAT and SED
may drive procedures such as PCA, FA, and regression analysis to discriminate the difference among
subgroups rather than fulfilling their initial task of disclosing internal structures and patterns in the
data. For the potentially inhomogeneous variables in SED, the best way to achieve better exploratory
analyzing results would be subdividing the data into homogeneous groups.
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5. Conclusions

In the present study, the sample distributions of three heavy metal elements in water and eight
in surface sediment in Hengyang segment, Xiangjiang River were analyzed based on the 10-year
environmental monitoring data sets. We discovered that:

• The heavy metal elements of As, Cd, and Pb in water column and Mn, Cu, Zn, As, Cd, Hg, and
Pb in sediment that consisted of all available data covered in this study were generally positively
skewed in distribution shape. However, the Cr in sediment presented roughly symmetrical
sample distribution shape. The unique behavior of Cr in sediment was discussed, and a possible
explanation was given that a relatively fast process of deposition-releasing equilibrium of Cr
between water column and sediment was present.

• Box-Cox transformation has effectively improved the normality of all variables; however, data
censoring and the discretization in samples have a negative effect on its outcome.

• The large sample size in the water monitoring data set avails a better discovery of the temporal and
spatial characteristics in the data, such that the influence of policy interference and river branches
were discovered. The sediment data set contained much less temporal and spatial information, but
the dependence on space was more visible than the dependence on time for most of the studied
elements (except in the case of Cr, which only showed clear relations with the time factor).
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Appendix A

Table A1. Methods and standards for chemical analyzing process of heavy metal elements.

Element Method Reference/Standard Lower Detection Limit
(as in the Reports)

Cu(WAT) Graphite furnace atomic absorption
spectroscopy (GF-AAS)

Analyzing methods for water and
waste water, 4th edition (in Chinese) 0.01 mg/L

Zn(WAT) Inductively coupled plasma atomic
emission spectroscopyy (ICP-AES) Chinese standard GB/T 5750.6-2006 0.01 mg/L

As(WAT)(2006−2010) Silver diethyldlthiocarbamate
spectrophotometric method Chinese standard GB/T 7485-1987 0.007 mg/L

As(WAT)(2010−2015) Atomic fluorescence
spectroscopy (AFS)

Analyzing methods for water and
waste water, 4th edition (in Chinese) 0.00007 mg/L

Hg(WAT) Atomic fluorescence
spectroscopy (AFS)

Analyzing methods for water and
waste water, 4th edition (in Chinese) 0.00005 mg/L

Cd(WAT) Graphite furnace atomic absorption
spectroscopy (GF-AAS)

Analyzing methods for water and
waste water, 4th edition (in Chinese) 0.0001 mg/L

Cr(WAT)
Potassium permanaganate

oxidation—diphenyl carbamide
spectrophotometric method

Chinese standard GB/T 7466-1987 0.004 mg/L

Pb(WAT) Graphite furnace atomic absorption
spectroscopy (GF-AAS)

Analyzing methods for water and
waste water, 4th edition (in Chinese) 0.0001 mg/L

Mn(WAT) Flame atomic absorption
spectroscopy (FAS) Chinese standard GB/T 11911-1989 0.01 mg/L

Cu(SED) Flame atomic absorption
spectroscopy (FAS) Chinese standard GB 5085.3-2007 1 mg/kg

Zn(SED) Flame atomic absorption
spectroscopy (FAS) Chinese standard GB/T 17138-1997 0.5 mg/kg
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Table A1. Cont.

Element Method Reference/Standard Lower Detection Limit
(as in the Reports)

Mn(SED) Atomic adsorption
spectroscopy (ADS)

Contemporary analyzing methods of
elements in soils (in Chinese) 1.0 mg/kg

As(SED) Atomic fluorescence
spectroscopy (AFS) Chinese standard GB/T 22105.2-2008 0.01 mg/kg

Hg(SED) Cold atomic absorption
spectrophotometry Chinese standard GB/T 17136-1997 0.005 mg/kg

Cd(SED) Graphite furnace atomic
abosorption spectroscopy (GF-AAS) Chinese standard GB/T 17141-1997 0.01 mg/kg

Cr(SED) Unspecified Chinese standard NY/T 1121.12-2006 0.4 mg/kg

Pb(SED) Graphite furnace atomic
abosorption spectroscopy (GF-AAS) Chinese standard GB/T 17141-1997 0.1 mg/kg

V(SED) Not given

Sb(SED) Not given

Appendix B

Figure A1. Normal Q-Q plot of raw and Box-Cox transformed As (WAT), Cd (WAT), and Pb (WAT).
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Figure A2. Normal Q-Q plot of raw and Box-Cox transformed Cr (SED), Mn (SED), Cu (SED), and
Zn (SED).
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Figure A3. Normal Q-Q plot of raw and Box-Cox transformed As (SED), Cd (SED), Hg (SED), and
Pb (SED).
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Appendix C

Figure A4. Jittered scatterplot of As (WAT) with samples grouped by year or site. The horizontal axis
is scaled using a Box-Cox transformation. GY = Guiyang, QS = Qishan, SB = Songbai, YJZ = Yunjizhen,
XTP = Xintangpu, HCL = Huangchaling, ZZP = Zaoziping, ZMQ = Zhanmenqian, AZ = Aozhou;
n = 2553.
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Figure A5. Jittered scatterplot of Cd (WAT) with samples grouped by year or site. The horizontal axis
is scaled using a Box-Cox transformation. GY = Guiyang, QS = Qishan, SB = Songbai, YJZ = Yunjizhen,
XTP = Xintangpu, HCL = Huangchaling, ZZP = Zaoziping, ZMQ = Zhanmenqian, AZ = Aozhou;
n = 2553.
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Figure A6. Jittered scatterplot of Pb (WAT) with samples grouped by year or site. The horizontal axis
is scaled using a Box-Cox transformation. GY = Guiyang, QS = Qishan, SB = Songbai, YJZ = Yunjizhen,
XTP = Xintangpu, HCL = Huangchaling, ZZP = Zaoziping, ZMQ = Zhanmenqian, AZ = Aozhou;
n = 2553.
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Figure A7. Jittered scatterplot of Cr (SED) with samples grouped by year or site. The horizontal axis is
scaled using a Box-Cox transformation. GY = Guiyang, QS = Qishan, SB = Songbai, XTP = Xintangpu,
HCL = Huangchaling, ZZP = Zaoziping, ZMQ = Zhanmenqian, AZ = Aozhou; n = 118.
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Figure A8. Jittered scatterplot of Mn (SED) with samples grouped by year or site. The horizontal axis is
scaled using a Box-Cox transformation. GY = Guiyang, QS = Qishan, SB = Songbai, XTP = Xintangpu,
HCL = Huangchaling, ZZP = Zaoziping, ZMQ = Zhanmenqian, AZ = Aozhou; n = 118.
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Figure A9. Jittered scatterplot of Cu (SED) with samples grouped by year or site. The horizontal axis is
scaled using a Box-Cox transformation. GY = Guiyang, QS = Qishan, SB = Songbai, XTP = Xintangpu,
HCL = Huangchaling, ZZP = Zaoziping, ZMQ = Zhanmenqian, AZ = Aozhou; n = 118.
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Figure A10. Jittered scatterplot of Zn (SED) with samples grouped by year or site. The horizontal axis
is scaled using a Box-Cox transformation. GY = Guiyang, QS = Qishan, SB = Songbai, XTP = Xintangpu,
HCL = Huangchaling, ZZP = Zaoziping, ZMQ = Zhanmenqian, AZ = Aozhou; n = 118.
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Figure A11. Jittered scatterplot of As (SED) with samples grouped by year or site. The horizontal axis
is scaled using a Box-Cox transformation. GY = Guiyang, QS = Qishan, SB = Songbai, XTP = Xintangpu,
HCL = Huangchaling, ZZP = Zaoziping, ZMQ = Zhanmenqian, AZ = Aozhou; n = 118.
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Figure A12. Jittered scatterplot of Cd (SED) with samples grouped by year or site. The horizontal axis
is scaled using a Box-Cox transformation. GY = Guiyang, QS = Qishan, SB = Songbai, XTP = Xintangpu,
HCL = Huangchaling, ZZP = Zaoziping, ZMQ = Zhanmenqian, AZ = Aozhou; n = 118.
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Figure A13. Jittered scatterplot of Hg (SED) with samples grouped by year or site. The horizontal axis
is scaled using a Box-Cox transformation. GY = Guiyang, QS = Qishan, SB = Songbai, XTP = Xintangpu,
HCL = Huangchaling, ZZP = Zaoziping, ZMQ = Zhanmenqian, AZ = Aozhou; n = 118.
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Figure A14. Jittered scatterplot of As (SED) with samples grouped by year or site. The horizontal axis
is scaled using a Box-Cox transformation. GY = Guiyang, QS = Qishan, SB = Songbai, XTP = Xintangpu,
HCL = Huangchaling, ZZP = Zaoziping, ZMQ = Zhanmenqian, AZ = Aozhou; n = 118.
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