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Abstract: To reduce energy demand (both fossil fuel and renewable energy) for cooling the urban
heat island environment, some solutions have been studied. Among these methods, the water spray
system is considered more flexible due to its dynamic controls. This study investigated the cooling
effect of water spray systems in the street canyon under different aspect ratios and high relative
humidity environments using a computational fluid dynamics model. This model was validated
with water channel and wind tunnel experiments. The results showed that the most effective cooling
area was the area just under the spray nozzles. However, in a narrow street canyon, people in the
middle of the street may feel the cooling effect because of the dispersion and accumulation of the
cooled air. Our simulations demonstrated that air under the nozzles was saturated and this revealed
that under drier conditions the water spray systems will have higher cooling performance. We also
found that using large water droplets created a wider cooling area in the middle of the street canyon,
and this phenomenon was not changed much if the nozzle height was increased from 2.5 m to 3.5 m.

Keywords: urban street canyon; water spray system; thermal comfort simulation

1. Introduction

The urban heat island forms as a result of urbanization and energy consumption (both fossil fuel
and renewable energy). It affects urban micrometeorology [1] and aggravates climate change, which
has increased the frequency and intensity of heat waves [2], and will then rapidly increase energy
demand by 70% for air conditioning during the whole 2000–2100 period [3].

Some adaptations have been confirmed as valid for cooling urban areas or buildings, such as
green walls, green ponds [4], roof ponds [5], vegetation, increase of short wave reflectivity, and water
spray systems. Among these, the water spray system is considered more flexible with its dynamic
controls in warm seasons while passive cooling systems such as vegetation and increase in short
wave reflectivity also reduce temperature in all seasons. The water spray system is also an energy
efficient, economical, and environmentally friendly method for improving thermal comfort in urban
environments [6,7]. Reducing energy consumption for thermal comfort can then lead mitigate climate
change (and urban heat island) and form a positive feedback loop for energy demand, climate change,
and heat waves relations.

Furthermore, experiments conducted by Jain and Rao (1974) [8] showed that roof water spray
systems performed better in reducing ceiling temperature than roof ponds did (15 ◦C and 13 ◦C,
respectively). Huang et al., (2011) [9] conducted several experiments and proved that the water spray
system is very effective since it reduced temperature by 5–7 ◦C under an ambient temperature of 35 ◦C
and a relative humidity of 45%. In spite of these benefits and universal applications, studies on the
cooling effect of water spray systems in urban environments are found to be relatively rare.
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Numerical simulation by a Computational Fluid Dynamics (CFD) model is a tool suitable for
studying momentum, energy, and particle flows since it is more efficient and cheaper than full-scale
measurements and wind-tunnel experiments. However, the interaction between water droplets and
air is rather complicated since it is a two-phase flow, which takes into account the effect of energy
exchange when droplets evaporate, as well as momentum exchange between droplets and air flow.
In order to simulate these effects, the Lagrangian-Eulerian model separates a two-phase flow into the
discrete phase part (Lagrangian model) and continuous phase part (Eulerian model), and these two
models are coupled during the simulation. Several validation studies with small-scale and full-scale
experimental data showed that the Lagrangian-Eulerian model is reliable for simulating the two-phase
flow [6,10].

Although the Lagrangian-Eulerian model is widely used to simulate the two-phase flow, there are
only a few studies applying this model to urban environments. Montazeri et al., (2017) [7] simulated
a water spray system in an urban landscape using the Lagrangian-Eulerian approach. The results
showed that for a water spray system installed at a height of 3 m with a water mass flow rate of
0.15 kg/s and under relative humidity of around 30%, a temperature reduction of approximately 7 ◦C
was found at the height of 1.75 m in the courtyard, and thus heat stress was alleviated efficiently.
However, the study only simulated the cooling effect in a specific courtyard with fixed meteorological
conditions. With different building geometry or meteorological conditions (e.g., relative humidity), the
cooling effect may be quite different.

An urban street canyon is the space between buildings that line up continuously along both
sides of a relatively narrow urban street. The wind velocity field [11] and pollutants dispersion [12]
in urban street canyons have been studied. They concluded that the aspect ratio (building height
divided by street width) is a crucial parameter that affects the velocity field and the dispersion of
pollutants in the street canyon, in which more pollutants would be trapped in a street canyon with a
higher aspect ratio. This phenomenon is likely to influence the outcome of the cooling effect within
street canyons, since the cooling effect is affected by the dispersion of water droplets. The water spray
system is widely used to reduce air temperature in the urban canyons in residential–commercial mixed
areas and night markets in South Asian cities (e.g., Taipei) during summers. Moreover, most of the
residential-commercial mixed areas and night markets in Taipei are built in street canyons with aspect
ratios larger than 1, which means that the wind velocity would be small in this region. With a high
population density, low wind speed, and high temperature in the summer, there is a high demand
for using the water spray system to reduce temperatures in the street canyons. However, this cooling
effect has not yet been studied in a numerical manner. In order to contribute a wider application of the
water spray system, this study applied the Lagrangian-Eulerian model to simulate the cooling effect
of water spray systems in the urban street canyon with manipulation of four variables: (1) the aspect
ratio of the street canyon; (2) the relative humidity; (3) water droplet size; and (4) the height of the
spray nozzle.

2. Methods

2.1. Computational Geometry and Grids

The computational geometry was a 3D long street canyon with building height, H; street width,
W; and street length, L; where L was set to be much larger than H. Three types of street canyon,
with the aspect ratio H/W = 1, 2, and 3, respectively, were considered in this study (Figure 1); these
aspect ratios (H/W) mimic the general street canyons of residential–commercial mixed areas in Taipei
city, Taiwan. As shown in Figure 1, the vertical (z direction) computational domain size was two
times that of the building height; the building width was the same as the building height. Following
Baik and Kim (1999) [11], the horizontal (x direction) domain size was equal to two times that of the
building width plus the street width. The street widths (W) were 15, 10, and 5 m for H/W = 1, 2, and 3,
respectively. The street lengths (L) were all fixed to be 150 m for the three street canyons.
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Figure 1. Computational geometry for the street canyon (a) H/W = 1 (b) H/W = 2 (c) H/W = 3.

In terms of meshing the computational domains, uneven grid sizes were adopted; the grids inside
the street canyon were set to be finer than those on the outside; the grid size of cells adjacent to the
buildings and street were also set to be finer to model the effect of building boundaries. The grid sizes
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and numbers for the three street canyons were determined with the convergence test on the horizontal
velocity. Based on the tests, the number of grids were 295,075, 241,100, and 305,350 for H/W = 1, 2,
and 3, respectively. The results of meshing for these three street canyons were shown in Figure 2.

Figure 2. Computational meshes for the street canyon (a) H/W = 1 (b) H/W = 2 (c) H/W = 3.
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2.2. Numerical Scheme

All of the calculations were performed with ANSYS FLUENT [13]. The Eulerian part of the
Lagrangian-Eulerian model contains continuous phases such as flow velocity field, temperature field,
and vapor concentration field. These were solved with 3D Reynolds-Averaged Navier-Stokes equations
combined with the energy equation (see Appendix A). Closure was obtained by the Re-Normalization
Group (RNG) k-εmodel. The model validation by Chan et al., (2002) [12] suggested the RNG k-εmodel
is an optimum model (compared to the standard k-εmodel) and a realizable model when simulating
the flow field in a street canyon. In this study, pressure–velocity coupling was performed with the
Semi-Implicit Method for Pressure Linked Equations (SIMPLE). Second-order discretization schemes
were used for all convection and viscous terms and second-order implicit time integration was used
for the temporal discretization. Note that second-order implicit time integration could avoid the sharp
temperature reduction caused by the accumulation of droplets when a large velocity gradient occurs.

The Lagrangian part of the Lagrangian-Eulerian model, including discrete phases such as velocity,
temperature, and mass of water droplets (see Appendix B) were solved with the discrete phase model
(DPM) implemented by the ANSYS FLUENT. In this model, particles were accelerated by the drag
(spherical drag law) and gravity forces.

The time step of the continuous phase was 0.05 s, 15 iterations per time step; also, the particle
time step was 0.001 s and 20 iterations were done for each DPM calculation. All of the time step sizes
were determined with convergence tests.

2.3. Boundary Conditions

The leftmost boundary was an air flow inlet boundary and the boundary conditions for inlet flow
velocity, kinetic energy (k), and kinetic energy dissipation rate (ε) were set as the following [11]:

Ui = Ur

(
z′

H

)
0.224 (1)

Wi = 0 (2)

ki = 0.003U2
i (3)

εi =
C0.75
µ ki

1.5

κz′
(4)

where Ui is the inlet horizontal flow velocity in x direction, Wi is the vertical velocity at the inlet
boundary and assumed to be zero, Ur (=4 m/s) is the velocity at the computational boundary top
(=2H), κ is the von Kármán constant (=0.4), Cµ is a constant (=0.0845), and z’ is the vertical distance
from the top of the buildings.

The buildings and street were thermal adiabatic, and standard wall function [14] were applied.
The roughness height (ks) and roughness constant (Cs) of the building boundaries were set to be
non-zero to model the effect of roughness of the boundaries, where ks = 9.793 zo/Cs, and zo is
roughness length. Roughness heights of these boundaries were all set to be 1.5; the roughness
constants were set to be 0.5 by the validation in Section 3.1.

A model considering the interaction between the boundary and the discrete phase was needed.
Since the temperature of the boundaries is below the boiling point of water, the “wall jet” boundary
condition was not needed [13]. This study assumed that the water droplets would be trapped on the
wall, and the effect of the water film on the wall was neglected; thus an “escape” boundary condition
in ANSYS FLUENT discrete particle model was set so that water droplets would disappear when they
touch the wall.
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2.4. Water Spray Nozzle and Droplet Characteristics

In this study, a cone spray nozzle model provided by ANSYS FLUENT 16.2 was adopted.
The half-cone angle (α/2) was 20 degrees, the radius was 2 mm, and the total number of droplet
streams was 15, i.e., there were 15 injection points which were uniformly placed on the perimeter of
the spray nozzle. In the simulation, two sets of nozzles were placed in the street canyon, each set
consisted of 7 nozzles. In each nozzle set, the distance between two adjacent nozzles follows the setting
of Montazeri (2017) [7], which was 0.5 m. The 7 nozzles were installed in the same x and z coordinates,
and the y coordinates were 0, ±0.5, ±1.0, ±1.5 m, respectively. Each nozzle set was placed 1 m away
from the building wall in the street canyon (see Figure 3).

Figure 3. (a) Layout of a set of spray nozzles; (b) Positions of the two nozzle sets in the street canyon.
The two nozzle sets were located at 2.5 m height and 1 m away from each building wall. The y positions
of the 7 nozzles were ±1.5, ±1, ±0.5, and 0, respectively.
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The water droplet size is important since it affects the drag force, gravity force, and the residence
time in the flow field. In this study, we considered small and large mean water droplet diameters
(D), which were 20 and 369 µm, respectively. For the cases with D = 20 µm, the minimum (Dmin) and
maximum (Dmax) diameters of water particles were 10 and 60 µm, respectively; the mass flow rate of
water (

.
m) from each nozzle was 0.01 kg/s; the velocity of water droplet (Vw) was −15 m/s. For the

cases with D = 369 µm, Dmin and Dmax were 74 and 518 µm, respectively;
.

m was 0.2 kg/s and Vw was
−22 m/s.

The water droplet size distribution was determined by the Rosin-Rammler model [15] and the
spread parameter, n, was 3.5 [7]. Ten discrete droplet diameters, Dn, were assumed to be injected
from each droplet stream into the air. The 10 droplet diameters were distributed evenly between Dmin

and Dmax, i.e., the interval was (Dmax − Dmin)/Dn. The mass and number distribution of different
diameters of water droplets in the two cases (D = 20 and 369 µm) were plotted in Figures 4 and 5,
respectively. The temperature of water droplets was 25 ◦C and each injection of water spray lasted
for 0.05 s. All of the common CFD and nozzle characteristic parameters used in this study were also
summarized in Table 1, and heat exchange between air and water droplets, considering the effect of
latent heat loss by water evaporation, is also described in Appendix C.

Table 1. Summary of the CFD model parameters and nozzle characteristics.

Roughness of
No-Slip Boundary Time Step Size (sec) Characteristics of the Spray Nozzle

ks Cs
Continuous

Phase Particle Phase α/2 Points of
Injection Radius Tw

1.5 0.5 0.05 0.001 20◦ 15 2 mm 25 ◦C

ks is the roughness height of the buildings and street; Cs is the roughness constant of the buildings and street; α/2
is the half cone angle of the nozzle; Tw is water temperature.

Figure 4. Cont.
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Figure 4. (a) Mass distribution and (b) Number distribution of water droplets as a function of droplet
diameter with the mean diameter D = 20 µm .

Figure 5. (a) Mass distribution and (b) Number distribution of water droplets as a function of droplet
diameter with the mean diameter D = 369 µm
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2.5. Cooling Effect Simulation Cases

To study the effects of the aspect ratio of the urban street canyon, relative humidity, water droplet
size, and the height of the spray nozzle, three group simulations were conducted and summarized in
Table 2.

Table 2. List of the parameters of the study cases.

Group Case H/W RH (%) hs (m) Vw (m/s)
.

m (kg/s) D (µm) Dmin (µm) Dmax (µm)

# 1
(different H/W and RH)

1.1 1 70 2.5 −15 0.01 20 10 60
2.1 2 70 2.5 −15 0.01 20 10 60
3.1 3 70 2.5 −15 0.01 20 10 60
1.2 1 80 2.5 −15 0.01 20 10 60
2.2 2 80 2.5 −15 0.01 20 10 60
3.2 3 80 2.5 −15 0.01 20 10 60

# 2
(different RH and )

2.1 2 70 2.5 −15 0.01 20 10 60
2.1a 2 70 2.5 −22 0.2 369 74 518
2.2 2 80 2.5 −15 0.01 20 10 60

2.2a 2 80 2.5 −22 0.2 369 74 518

# 3
(different hs)

2.1a 2 70 2.5 −22 0.2 369 74 518
2.1b 2 70 3 −22 0.2 369 74 518
2.1c 2 70 3.5 −22 0.2 369 74 518

Group #1: to analyze the effects of the street canyon aspect ratio (H/W) and relative humidity (RH), we consider
H/W = 1, 2 and 3, and RH = 70 and 80% with small water droplets (mean water droplet diameter D = 20 µm) and
the nozzle height set at 2.5 m above the ground. These cases were Case 1.1, 2.1, 3.1, and 1.2, 2.2, 3.2, respectively;
Group #2: to explore the effects of the water droplet size under different levels of relative humidity, we consider
small and larger water droplets (D = 20 and 369 µm, respectively) under RH = 70 and 80% with H/W = 2 and
hs = 2.5 m above the ground. These cases were Case 2.1, 2.1a and 2.2, 2.2a, respectively; Group #3: for studying
the effect of the spray nozzle height (hs), we considered hs = 2.5, 3.0, and 3.5 m above the ground, under H/W = 2,
RH = 70% and D = 369 µm. These cases were Case 2.1a, 2,1b and 2.1c, respectively.

H/W is the aspect ratio of street canyon, RH is relative humidity, Vw is the velocity of water
droplet,

.
m is the water mass flow rate, D is the mean particle size of water droplets, Dmin and Dmax

are the minimum and maximum particle sizes of water droplets, respectively, and hs is the height of
the nozzle.

3. Model Validation

3.1. Validation of the Flow Field in Urban Street Canyon

Baik et al., (2000) [16] studied the urban street canyon flow using a circulating water channel;
they published the measured vertical velocity profiles in the street canyon with the aspect ratio of 1
and 2; they also compared their measurements with the simulation results using the numerical model
by Baik and Kim (1999) [11]. In this study, we validated our model simulations of the flow field by
the experimental measurements of Baik et al., (2000) [16] and the model predictions by Baik and Kim
(1999) [11]. The measured and predicted vertical profiles of the normalized vertical and horizontal
velocities at the upstream (x/W = 0.125), middle (x/W = 0.5), and downstream (x/W = 0.875) positions
with H/W = 1 and H/W = 2 were presented in Figures 6 and 7, respectively. The linear regression
and root mean square error (RMSE) of vertical and horizontal velocities between the experimental
data and model predictions by Baik and Kim (1999) [11] and present study were also summarized in
Tables 3 and 4, respectively. In the case of H/W = 1, for both vertical and horizontal velocities, our
simulations fitted well with the experiments. In the case of H/W = 2, the comparisons were not as
good as those of H/W = 1 but were still reasonable. Figures 6 and 7 and Tables 3 and 4 demonstrated
that the simulated flow fields by this study for the street canyons of H/W = 1 and 2 were reasonable.
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Figure 6. Normalized vertical velocity as a function of normalized height at upstream (x/W = 0.125),
middle (x/W = 0.5), and downstream positions (x/W = 0.875). w is the vertical velocity and Ut is the x
direction velocity just above the top of the building. (a) H/W = 1; (b) H/W = 2. Open circle denotes the
measurement by Baik et al., (2000) [16]; dash line denotes the prediction by Baik and Kim (1999) [11];
solid line denotes the prediction by this study.
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Figure 7. Normalized horizontal velocity as a function of normalized height at upstream (x/W = 0.125),
middle (x/W = 0.5), and downstream positions (x/W = 0.875). u is the horizontal velocity and Ut is
the x direction velocity just above the top of the building. (a) H/W = 1; (b) H/W = 2. Open circle
denotes the measurement by Baik et al., (2000) [16]; dash line denotes the prediction by Baik and Kim
(1999) [11]; solid line denotes the prediction by this study. Measurements of horizontal velocity were
derived from Figures 3a, 4, 6a and 7 of Baik et al., (2000) [16] by the authors.
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Table 3. The linear regression and root mean square error (RMSE) of vertical velocity between the
experimental data and model predictions by Baik and Kim (1999) [11] and present study.

H/W = 1 Linear Regression R2 RMSE

Baik and Kim (1999) y = 0.794 x − 0.0153 0.9645 1.06

This study y = 1.126 x − 0.0068 0.9524 1.51

H/W = 2 Linear Regression R2 RMSE

Baik and Kim (1999) y = 0.765 x − 0.0024 0.7678 0.55

This study y = 0.860 x + 0.0023 0.6699 0.66

‘x’ in the linear regression represented the experimental data.

Table 4. The linear regression and root mean square error (RMSE) of horizontal velocity between the
experimental data and model predictions by Baik and Kim (1999) [11] and present study.

H/W = 1 Linear Regression R2 RMSE

Baik and Kim (1999) y = 1.3693 x − 0.0574 0.6066 0.1389

This study y = 0.7189 x − 0.0091 0.8866 0.0323

H/W = 2 Linear Regression R2 RMSE

Baik and Kim (1999) y = 1.1545 x − 0.0067 0.3526 0.1801

This study y = 0.4125 x + 0.0002 0.5876 0.0400

‘x’ in the linear regression represented the experimental data.

3.2. Evaporation Cooling Validation

The cooling effect validation of the 3D steady RNG k-ε model, coupled with steady DPM in
ANSYS FLUENT, was based on the wind tunnel experiments by Sureshkumar et al., (2008) [17]. In the
experiment, a hollow-cone nozzle spray was installed in the middle of the inlet of the wind tunnel, and
9 wet bulb temperature (WBT) meters and dry bulb temperature (DBT) meters were installed on the
outlet of the wind tunnel. The x, y, and z dimensions of the test section in the wind tunnel experiment
by Sureshkumar et al., (2008) [17] were 1.9, 0.585, and 0.585 m, respectively. The spray nozzle was set
at (x, y, z) = (0, 0, 0). The nine temperature measuring points were (1.9, ±0.195, ±0.195), (1.9, ±0.195,
0), (1.9, 0, ±0.195), and (1.9, 0, 0). The relative positions of temperature measurement and the spray
nozzle were shown in Figure 8.

Figure 8. The relative positions of temperature measurement and the spray nozzle in the wind tunnel
experiment by Sureshkumar et al., (2008) [17]. The dimension of the test section is 1.9 m × 0.585 m ×
0.585 m.
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For validating the present model, we selected the case where the inlet velocity was 3 m/s and the
DBT and WBT of inlet air were 39.2 and 18.7 ◦C, respectively. The characteristics of the water droplets
were: Tw = 35.2 ◦C, Vw = −22.05 m/s,

.
m = 0.208 kg/s, D = 369 µm, Dmin = 74 µm, Dmax = 518 µm,

spread parameter n = 3.67. The half-cone angle (α/2) was 18◦ and the radius of the spray nozzle was
2 mm.

The DBT and specific humidity predictions by this study were compared with the wind tunnel
experimental data and plotted in Figure 9. Errors of DBT were all within 10% of the measurements
and errors of specific humidity were around 10–30%. These error ranges were reasonable and similar
to the predictions of Sureshkumar et al., (2008) [18].

Figure 9. Comparison of model predictions and measurements. (a) Dry bulb temperature (DBT, ◦C)
(b) Specific humidity (g/g).
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4. Results and Discussion

4.1. Cooling Effect with Different Aspect Ratio and Relative Humidity

Figure 10 shows the velocity fields in the street canyon before and after the spray nozzles operated
for RH = 70% and H/W = 1 (Case 1.1). Figures 11 and 12 are the same as Figure 10 but for H/W = 2
(Case 2.1) and H/W = 3 (Case3.1), respectively. From Figures 10–12, we noticed that in the street
canyons of H/W = 2 and 3, after the operation of spray systems, the wind velocity fields near the
ground were mainly affected by the streams of spray nozzles rather than the wind flowing into the
street canyon from outside. Similar results were also observed by Moureh and Yataghene (2016) [19],
where the air curtain induced surrounded air flows. This implies that the water spray system (i.e.,
spray nozzle and water droplet size) would influence the cooling effect in the street canyon as well
as the air flow. To further examine the flow field in the street canyon, we plotted the vertical profiles
of normalized horizontal velocity (u) and vertical velocity (w) at the middle point (x/W = 0.5, y = 0)
before and after spray systems operated for H/W = 1, 2, and 3 in Figures 13–15, respectively. These
figures showed that, at the middle point of the street canyon, after the operation of spray nozzles, the
horizontal and vertical velocities only changed slightly due to the air flow induced by water spray.

Figure 16 shows the temperature contours on the plane: y = 0 for Case 1.1 (H/W = 1), Case 2.1
(H/W = 2) and Case 3.1 (H/W = 3) at t = 5 s. Figures 17 and 18 also show the temperature contours but
at steady state for Cases 1.1, 2.1 and 3.1 (RH = 70%) and Cases 1.2, 2.2 and 3.2 (RH = 80%), respectively.
After the spray nozzles started, the water droplets moved to the street canyon bottom due to large
(Vw = −15 m/s) negative vertical velocity. Two puffs of colder air cooled by the water droplets merged
with each other in the middle of the street canyon. After the two puffs of cooled air merged with each
other, the temperature only changed a little and steady state was established.

Figure 10. Velocity field in the street canyon before spray systems operated (a) and after spray systems
operated (b) for H/W = 1. The black cross indicates the position of water spray system. The maximum
velocity vector length corresponds to 0.98 m/s in Figure 10a, and 1.36 m/s in Figure 10b.

To check the cooling effect at the average height of a human face (z = 1.5 m, which is also the
height of a standard meteorological station), the temperature profiles along the line of y = 0, z = 1.5
in Case 1.1 (H/W = 1, RH = 70%), Case 2.1 (H/W = 2, RH = 70%), Case 3.1 (H/W = 3, RH = 70%),
Case 1.2 (H/W = 1, RH = 80%), Case 2.2 (H/W = 2, RH = 80%), and Case 3.2 (H/W = 3, RH = 80%)
were plotted in Figure 19. Two distinct regions were noticed in Figure 17, Figure 18, and Figure 19:
the region between the nozzle set and the building wall (first region) and the street canyon region
between the two nozzle sets (second region). For clarity purposes, the first (I) and second (II) regions
were labeled on Figure 18c only. From Figure 19, in region I, just under the nozzles, the air temperature
dropped dramatically for all the cases, and reached around the theoretically lowest temperature,
which was the wet bulb temperature (discussed later). In region II, regardless of whether there was a
condition of RH = 70% or 80%, the cooling effect in cases of H/W = 3 (Case 3.1 and 3.2) were the most
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efficient (largest temperature drops); cases of H/W = 1 (Case 1.1 and 1.2) were the second; and cases of
H/W = 2 (Case 2.1 and 2.2) were the third. The fact that cases of H/W = 1 were better than cases of
H/W = 2 was because the air velocity in H/W = 1 was faster. The reason that cases of H/W = 3 had
the best cooling performance was due to having the narrowest street canyon.

Figure 11. Velocity field in the street canyon before spray systems operated (a) and after spray systems
operated (b) for H/W = 2. The black cross indicates the position of the water spray system. The
maximum velocity vector length corresponds to 0.94 m/s in Figure 11a, and 1.31 m/s in Figure 11b.

Figure 12. Velocity field in the street canyon before spray systems operated (a) and after spray systems
operated (b) for H/W = 3. The black cross indicates the position of water spray system. The maximum
velocity vector length corresponds to 0.84 m/s in Figure 12a, and 1.36 m/s in Figure 12b.
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Figure 13. Vertical profile of normalized horizontal velocity (a) and vertical velocity (b) at x/W = 0.5
and y = 0 before and after spray systems operated for H/W = 1. Ut is the x direction velocity just above
the top of the building.

Figure 14. Vertical profile of normalized horizontal velocity (a) and vertical velocity (b) at x/W = 0.5
and y = 0 before and after spray systems operated for H/W = 2. Ut is the x direction velocity just above
the top of the building.

Figure 15. Vertical profile of normalized horizontal velocity (a) and vertical velocity (b) at x/W = 0.5
and y = 0 before and after spray systems operated for H/W = 3. Ut is the x direction velocity just above
the top of the building.
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Figure 16. Temperature contour in the street canyon on the plane: y = 0 and t = 5 s. The black cross
indicates the position of water spray system. (a) Case 1.1 (H/W = 1); (b) Case 2.1 (H/W = 2); (c) Case 3.1
(H/W = 3).
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Figure 17. Temperature contour in the street canyon on the plane: y = 0 when steady state was reached.
The black cross indicates the position of water spray system. (a) Case 1.1 (H/W = 1, RH = 70%);
(b) Case 2.1 (H/W = 2, RH = 70%); (c) Case 3.1 (H/W = 3, RH = 70%).
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Figure 18. Temperature contour in the street canyon on the plane: y = 0 when steady state was reached.
The black cross indicates the position of water spray system. (a) Case 1.2 (H/W = 1, RH = 80%);
(b) Case 2.2 (H/W = 2, RH = 80%); (c) Case 3.2 (H/W = 3, RH = 80%).
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Figure 19. Temperature profile on the line: y = 0, z = 1.5 m under different aspect ratios and Relative
humidity: Case 1.1 (H/W = 1, RH = 70%), Case 2.1 (H/W = 2, RH = 70%), Case 3.1 (H/W = 3,
RH = 70%), Case 1.2 (H/W = 1, RH = 80%), Case 2.2 (H/W = 2, RH = 80%), Case 3.2 (H/W = 3,
RH = 80%). The background temperature was 35 ◦C

The average temperatures in regions I and II for Figure 19 are summarized in Table 5. For H/W = 1
and 2, it is clear that the cooling effect is not much (temperature drops between 0.39 to 1.25 ◦C only) in
region II due to a wider street canyon and/or lower air velocity. Figure 19 and Table 5 revealed that the
water spray system could only cool the area under the nozzle sets unless the street canyon was narrow.

Table 5. Average air temperature in regions I and II under Case 1.1 (H/W = 1, RH = 70%), Case 2.1
(H/W = 2, RH = 70%), Case 3.1 (H/W = 3, RH = 70%), Case 1.2 (H/W = 1, RH = 80%), Case 2.2 (H/W
= 2, RH = 80%), and Case 3.2 (H/W = 3, RH = 80%). The background temperature is 35 ◦C. dT is the
temperature change due to the relative humidity change from 80% to 70%.

Humidity RH = 70% RH = 80% dT

Region I II I II I II

H/W = 1 31.19 ◦C (Case 1.1) 33.75 ◦C 32.92 ◦C (Case 1.2) 34.16 ◦C 1.73 ◦C 0.41 ◦C
H/W = 2 30.63 ◦C (Case 2.1) 34.30 ◦C 32.06 ◦C (Case 2.2) 34.61 ◦C 1.43 ◦C 0.31 ◦C
H/W = 3 30.41 ◦C (Case 3.1) 30.91 ◦C 31.86 ◦C (Case 3.2) 32.26 ◦C 1.45 ◦C 1.35 ◦C

Also, from Table 5, when the relative humidity changed from 80 to 70%, the average temperature
reductions of region II for H/W = 1, 2, and 3 were 0.41, 0.31, and 1.35 ◦C, respectively. In other words,
for region II, when the air is drier, the water spray system could cool the air more only for the cases
where the street canyon is narrow. For region I, when the air is drier (RH changed from 80 to 70%),
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the water spray system could reduce the air temperature more by 1.73, 1.43, and 1.45 ◦C for H/W = 1,
2, and 3, respectively.

4.2. Effects of Water Droplet Size and Height of Spray Nozzles

Figure 20 shows the temperature and relative humidity contours on the plane: y = 0 for Case 2.1
(small particle, RH = 70%, D = 20 µm, Vw = −15 m/s,

.
m = 0.01 kg/s); and Case 2.1a (large particle,

RH = 70%, D = 369 µm, Vw = −22 m/s,
.

m = 0.2 kg/s). Figure 21 is the same as Figure 20 but for Cases
2.2 (small particle, RH = 80%) and 2.2a (large particle, RH = 80%). In Case 2.1, the lowest temperature
of the cooled air was about 30 ◦C, while in Case 2.1a, the lowest temperature was also around 30 ◦C.
However, most of the cooled air in Case 2.1 accumulated at the very bottom of the street canyon.
In Case 2.1a, because of the larger velocity of wind caused by the large water droplets from the nozzles,
the cooled air in the middle of the street canyon could spread wider (though the cooled air at the very
bottom was not saturated by the water droplets). In Figure 21, comparison between Case 2.2 (small
particle, RH = 80%) and 2.2a (large particle, RH = 80%) showed similar results as those in Figure 20, but
the cooled air in the middle of the street canyon was also saturated by the water droplets in Case 2.2a.
This demonstrated that under high humidity conditions (RH ≥ 80%), even large water droplets could
saturate the air at the very bottom as the small particles did. The benefit of using large particles was
that the cooling area was wider.

Comparison between Figures 20 and 21 suggested that the cooling effect was better when spraying
large water droplets into the air than small ones. This was due to the larger velocity and water mass
flow rate caused by the large water droplets.

Figure 20. (a) Temperature and (b) relative humidity contour on the plane: y = 0 for Case 2.1 (small
particle, D = 20 µm, RH = 70%); (c) Temperature and (d) relative humidity contour on the plane: y = 0
for Case 2.1a (large particle, D = 369 µm, RH = 70%).
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Figure 21. (a) Temperature and (b) relative humidity contour on the plane: y = 0 for Case 2.2 (small
particle, D = 20 µm, RH = 80%); (c) Temperature and (d) relative humidity contour on the plane: y = 0
for Case 2.2a (large particle, D = 369 µm, RH = 80%).

When the air is saturated with water vapor, the air temperature will reach the lowest bound,
which is the wet bulb temperature (see Appendix C). Hence, the wet bulb temperature provides an
analytical solution of the lowest temperature that the evaporating cooling could reach by spraying
water droplets into air. Table 6 lists the wet bulb temperatures solved by Equations (A15) and (A16)
under 60, 70, and 80% relative humidity conditions. From Table 6, it is clear that under drier conditions
and higher background air temperature, the cooling effect by water spray systems is better.

Table 6. The wet bulb temperature under various levels of relative humidity (RH) and background air
temperature (Ta).

Ta (◦C) RH = 80% RH = 70% RH = 60%

28 25.22834 23.72297 22.12597
29 26.17136 24.63169 22.99545
30 27.1149 25.54114 23.86579
31 28.05896 26.45136 24.73706
32 29.00361 27.36237 25.6093
33 29.94881 28.2742 26.48255
34 30.89454 29.18683 27.35681
35 31.84087 30.10032 28.23216
36 32.78777 31.01464 29.10856
37 33.73522 31.92981 29.98605
38 34.6832 32.8458 30.8647
39 35.63174 33.76264 31.7444
40 36.58084 34.68032 32.62526

In this study we also investigated the effect of nozzle height on cooling with large water droplets.
Figure 22 shows the temperature contours on the plane: y = 0 for Case 2.1a (hs = 2.5 m, D = 369 µm),
Case 2.1b (hs = 3.0 m, D = 369 µm), and 2.1c (hs = 3.5 m, D = 369 µm). Comparison in Figure 22 reveals
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that when the nozzle height was increased (from 2.5 to 3.5 m), the cooling area in the middle of the
street canyon was reduced but the reductions in air temperature were about the same. To further
examine the cooling effect by increasing the nozzle height, we plotted the horizontal temperature
profiles in x-direction at y = 0 and z = 1.5 m for Case 2.1a (hs = 2.5 m), Case 2.1b (hs = 3.0 m), and
Case 2.1c (hs = 3.5 m) in Figure 23. For comparison purpose, Case 2.1 (hs = 2.5 m, small water droplets)
was also shown in Figure 23. Notice that for all the three large particle cases, the air just under the
nozzles at height = 1.5 m all became saturated. However, the temperature differences among these
cases at height = 1.5 m were small because the air was almost saturated at this height. This indicated
that increasing the nozzle height would not increase the cooling effect at the height of 1.5 m. Figure 23
also demonstrated that using large water droplets has better cooling performance than using the small
ones (Case 2.1a vs. Case 2.1).

Figure 22. Temperature contour on the plane: y = 0 (a) Case 2.1a (hs = 2.5 m, large particle, D = 369 µm,
RH = 70%); (b) Case 2.1b (hs = 3.0 m, large particle, D = 369 µm, RH = 70%); (c) for Case 2.1c (hs = 3.5 m,
large particle, D = 369 µm, RH = 70%).
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Figure 23. Temperature profile on the line: y = 0, z = 1.5 m under different height of spray nozzles
(large particle, hs = 2.5, 3.0, 3.5 m). The background temperature was 35 ◦C. For comparison purposes,
Case 2.1 (small particle, hs = 2.5 m) was also shown.

5. Conclusions

This study simulated the cooling effect of water spray systems in the urban street canyon using
the Computational Fluid Dynamics (CFD) method. The 3D unsteady k-εmodel coupled with discrete
phase model (DPM) provided by ANSYS FLUENT was adopted. The model validation was carried
out by flow fields of the urban street canyon measured in water channel experiments [16] and by
temperature fields of the wind tunnel experiments [17].

The finding of this study can improve the efficiency of using water spray systems for reducing
temperature under different climate conditions and reduce energy demand (including renewable
energy) for air conditioning in residential and commercial areas under climate change.

By our simulation results, we conclude the following:

(1) Under region I, the cooling effects were about the same (with a difference of around 1 ◦C) for
different aspect ratios. For region II, H/W = 3 had the best cooling performance, H/W = 1 was
the second, and H/W was the third.

(2) Relative humidity has significant influence on the cooling performance. The drier the air, the
better the cooling performance of the water spray system is.

(3) The cooling effect was better when spraying large water droplets into the air than small ones.
This was due to the larger velocity and water mass flow rate caused by the large water droplets.

(4) Increasing the nozzle height (from 2.5 to 3.5 m) would not increase the cooling effect at the height
of 1.5 m.

In summary, if the street width is large (W = 10 or 15 m), the cooled area is just under the spray
nozzle. If the street is narrow (W = 5 m), people in the middle of the street also feel the cooling effect.

To extend the application of water spray systems for improving thermal comfort under hot
weather (especially in heat waves), future work should focus on how water spray systems would
work in wide open areas (e.g., parks, play grounds, outdoor food courts). Understanding the cooling
effect of water spray systems with manipulation of other controlling variables, like nozzle spray angle,
ambient wind velocity, and incoming radiation, is also needed.
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Appendix A. Governing Equations of the Continuous Phase

The continuous phase model is solved based on the mass, momentum, and energy conservation
principles. Reynolds averaging—which considers the transport of mean velocity (Ui), turbulence
kinetic energy (k), and kinetic energy dissipation rate (ε)—is used to solve the turbulence flow. In this
study, the Re-Normalized Group (RNG) k-ε is used. The governing equations are:

The mass conservation equation (for incompressible flow):

∂(ρUi)

∂xi
= Sm (A1)

where Sm is the source term of mass that is added to continuous phase because of the evaporation of
water (kg/m3 s).

The momentum conservation equation:

∂Ui
∂t

+ Uj
∂Ui
∂xj

= −1
ρ

∂P
∂xi

+ ν
∂2Ui

∂x2
j
−

∂u′iuj′
∂xj

+ gi +
Fi
ρ

, (A2)

u′iu
′
j =

2
3

δijk − νt

(
∂Ui
∂xj

+
∂Uj

∂xi

)
, (A3)

νt = Cµ
k2

ε
, (A4)

where u′i is the velocity fluctuation in the i direction (m/s), ν is molecular kinematic viscosity (m2/s),
g is gravity acceleration (m/s2), νt is turbulent kinematic viscocity (m2/s), Cµ is a constant which is
0.0845 in RNG k-εmodel, Fi is the source term of force in the i direction exerted on continuous phase
by discrete phase (water droplets) and is described by Equation (A9).

The conservation of turbulence kinetic energy (k) and kinetic energy dissipation rate (ε):

∂k
∂t

+ Uj
∂k
∂xj

=
∂

∂xj

[
αk

∂k
∂xj

]
+ Gb + Gk − ε, (A5)

∂ε

∂t
+ Uj

∂ε

∂xj
=

∂

∂xj

[
αενe f f

∂ε

∂xj

]
+

1
ρ

C1ε
ε

k
(C3εGb + Gk)− C∗2ε

ε2

k
, (A6)

where C1ε = 1.42, αk and αε are the inverse effective Prantl numbers and are both around 1.393, νeff
is effective turbulent kinematic viscocity (νe f f = ν + νt), and

Gb = ρβg
νt

Prt

∂T
∂xi

,

Gk = νt ×
∂Ui
∂xj

(
∂Ui
∂xj

+
∂Uj

∂xi

)
,

C∗2ε = C2ε +
Cµρη3

(
1− η

η0

)
1 + aη3 ,
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C3ε = tanh
∣∣∣∣ W√

U2 + V2

∣∣∣∣,
β is the thermal expansion coefficient in the form: 1/ρ (∂ρ/∂T). η = Sk/ε, Sk is the scalar measure of
the deformation tensor, η0 and a are 4.38 and 0.012, respectively, and C2ε = 1.68.

Water vapor mass conservation:

∂C
∂t

+ Ui
∂C
∂xi

= Dm
∂2C
∂x2

i
+

∂

∂xi

(
Dt

∂C
∂xi

)
+ Sv (A7)

where Dm is molecular diffusivity (m2/s), Dt is turbulent diffusivity (m2/s), which can be obtained
by Sct = νt

Dt
, where Sct (=0.7) is the turbulent Schmidt number. Sv is the source term due to the

evaporation of the droplet in discrete particle model.
Energy conservation equation:

∂

∂t
(ρE) +

∂

∂xi
[ui(ρE + p)] =

∂

∂xj

(
k +

cpµt

Prt

)
+ Sh (A8)

where Prt (turbulent Prandtl number) is 0.85, Sh is source term which is contributed by latent heat
absorbed during the evaporation of droplets. E is total energy of the fluid (J/kg/m3) defined as:

E =

T∫
Tre f

CpdT +
v2

2

Appendix B. Governing Equations of the Discrete Phase (Water Droplets)

(1) Particle force balance:

d
⇀
up

dt
=

18µ

ρpd2
p

CDRe
24

(
⇀
u − ⇀

up

)
+

⇀
g
(
ρp − ρ

)
ρ

, (A9)

where
⇀
up is the particle velocity (m/s),

⇀
u is the air velocity (m/s), µ is the molecular viscosity of the

air (kg/m/s), ρp is the density of particle (kg/m3), dp is the diameter of particle (m), CD is the drag
coefficient, ρ is the density of air (kg/m3),

⇀
g is gravity acceleration (m/s2), Re is the droplet Reynolds

number, which is defined by Re =
ρdp

∣∣∣⇀up−
⇀
u
∣∣∣

µ .
Here, the water droplets are assumed to be spherical particles, and the drag coefficient of spherical

particles is:

CD = a1 +
a2

Re
+

a3

Re2 , (A10)

where a1, a2, and a3 are constants given with different ranges of Re [20].
(2) Particle mass transfer:
The water droplets evaporate and transfer the mass into the air. The water droplets are modeled

as particles surrounded by saturated air-vapor films; when the concentration of water vapor in the
films is larger than that in the air, the gradient causes the water vapor to diffuse from the film to the air.

The mass transfer rate is as below:

dmp

dt
= Mp Apkc(Cs − Ca) (A11)

where md is the mass of the particle (kg), Mp is the molecular weight of the particle (kg/mol), Ap is the
surface area of the particle (m2), kc is the mass transfer coefficient (m/s), Cs is the vapor concentration
at the surface (saturated air-vapor film) (mol/m3), and is calculated by: Cs = psat/RTp, where psat is
the saturated vapor pressure at the particle temperature (Tp), R is the universal gas constant, Ca is the
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vapor concentration in the air (mol/m3). Kc is calculated from the empirical correlation of Sherwood
number [21]:

Sh =
kcdp

D
= 2 + 0.6·Re0.5·Sc0.33 (A12)

where Sh is the Sherwood number; D is the diffusion coefficient of vapor (m2/s); Sc is the Schmidt
number, which is given as: Sc = µ/ρD.

(3) Particle heat transfer:

mpCpw
dTp

dt
= h Ap

(
Ta − Tp

)
−

dmp

dt
λ

Mp
(A13)

where Cpw is the specific heat of water droplet (J/kg), λ is the latent heat of water (kJ/mol), h is the
convection heat transfer coefficient, which was calculated from the empirical correlation of Nu number
when vapor mass fraction << 1 [22]:

Nu =
hdp

ka
= 2 + 0.6Re0.5

0.33
Pr (A14)

where ka is the thermal conductivity of the continuous phase, Pr is the Prandtl number of the continuous
phase, which is given as: Pr = cpµ/ka.

Appendix C. Wet Bulb Temperature

The wet bulb temperature is the temperature that an air parcel would reach when it was cooled
and saturated by the evaporation of water. Hence, the wet bulb temperature is the lowest temperature
that the air can reach when cooled by evaporative cooling. By energy conservation, the wet bulb
temperature can be determined with [23]:

(Ta − Tw)Cp = [(es(Tw) − ea)/Pa] λ (A15)

where Ta is the air temperature, Tw is wet bulb temperature, Cp is the specific heat of air (29.3 J/mol/K),
es (Tw) is the saturate vapor pressure (kPa) at Tw, ea is the initial vapor pressure at Ta, Pa is air pressure
(kPa), λ is the latent heat of water (J/mol). es(Tw) can be calculated by:

es(Tw) = 0.611 exp
(

17.502 Tw

Tw + 240.97

)
(A16)

The wet bulb temperature can be found by solving (A15) and (A16) together.
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