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Abstract: Fog computing has become the revolutionary paradigm and one of the intelligent services
of the 5th Generation (5G) emerging network, while Internet of Things (IoT) lies under its main
umbrella. Enhancing and optimizing the quality of service (QoS) in Fog computing networks is one
of the critical challenges of the present. In the meantime, strong links between the Fog, IoT devices
and the supporting back-end servers is done through large scale cloud data centers and with the
linear exponential trend of IoT devices and voluminous generated data. Fog computing is one of the
vital and potential solutions for IoT in close connection with things and end users with less latency
but due to high computational complexity, less storage capacity and more power drain in the cloud
it is inappropriate choice. So, to remedy this issue, we propose transmission power control (TPC)
based QoS optimization algorithm named (QoS-TPC) in the Fog computing. Besides, we propose
the Fog-IoT-TPC-QoS architecture and establish the connection between TPC and Fog computing
by considering static and dynamic conditions of wireless channel. Experimental results examine
that proposed QoS-TPC optimizes the QoS in terms of maximum throughput, less delay, less jitter
and minimum energy drain as compared to the conventional that is, ATPC, SKims and constant
TPC methods.

Keywords: Fog computing; Internet of Things; QoS optimization; transmission power control;
constant TPC; ATPC; SKim

1. Introduction

5G technology has become the center of attention in every corner of the world due to its highly
resource allocation and flexible nature. In the meantime, Fog computing, edge/cloud computing and
Internet of Things (IoT) and so forth, have revolutionizing many sectors such as, health, education,
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enterprises and industries by enhancing their resources that is, functional costs, power usage and
quality management and so forth. Fog computing and IoT as a whole is portraying the clear image
of the entire map and further will be explored, enriched and totally transformed from their previous
conditions. It is analyzed that nearly 57% of the world’s population will be facilitated by IoT system
with high resources. But one of the challenging issues of the IoT devices and networks is the high-power
drain and limited battery lifetime with regular recharging from the external sources. The wireless link
or channel status varies with different conditions such as, interference from same network devices,
internal noise and environmental factors and so forth, also natural hindrances for example, roofs and
walls are degrading the signal strength at the larger level. Poor reliability is also adversely affecting
the by increasing more delay and overhead of packets during transmission of packets. To enhance the
channel quality in terms of high signal delivery and less placket loss ratio (PLR) in IoT enabled sensor
networks, minimizing the power drain and extending the battery lifetime of the sensor based devices is
the first and foremost priority. As sensor nodes from several manufacturers such as, TelosB, MicaZ and
so forth, dissipates the more power than the other parts for example, CPU, hard-drive and ROM and so
forth. In addition, it increases the contention in the network. For prolonging the network lifetime and
increasing transmission reliability (i.e., reducing PLR), transmission power control (TPC) mechanism
is most appropriate one because it increases/decreases power according to the need of the end user
and predefined threshold levels by adopting the channel conditions. Key purpose of TPC strategy is to
achieve optimal transmission power, a power level that does not break the already established link
between a pair of nodes and avoid the contention in the network. The decision to change transmission
power level based on link quality indicator (LQI) is not appropriate, because of less convincing to
get rid of environmental disturbances and deviation from the predefined threshold levels. That is
another entity received signal strength indicator (RSSI) is adopted accurately analyze the quality of
the receiver’s signal then adapt the transmission power in an on-demand fashion accordingly. This
fluctuation in the power level in a dense network increases the interference resulting in a collision and
ultimately high packet loss ratio (i.e., less reliability). This paper, therefore, investigates the impact
of TPC on the quality of the entire network. It is also observed that when the fluctuation in wireless
channel and difference in transmission power levels is longer than interference and re-transmission
rate of packets increase. Hence, less quality of service and more power drain.

Furthermore, 5G based Fog computing and IoT have become the part and parcels of our everyday
routine by examining and analyzing the entire environment to take the strong initiative for the present
and future trends [1]. In order to realize the full benefits of the IoT, it will be necessary to provide
sufficient networking and computing infrastructure to support low latency and fast response times in
various applications. Cloud Computing in the key enabler for IoT applications due to its ample storage
and processing capacity. Nonetheless, being far from end-users, cloud-supported IoT systems face
several challenges including high response time, heavy load on servers and lack of global mobility.

We rigorously describe the TPC based mechanisms for QoS optimization in distinct networks with
main focus at the 5G-enabled adaptive transmission power control algorithm for the QoS optimization
and monitoring in the Fog computing by considering the static and dynamic channel characteristics.
Many authors have already contributed significantly in revolutionizing the entire wireless and sensor
worlds for efficient and closed communication between heterogeneous networks, especially, IoT, Fog
and cloud computing and so forth. Whereas, very few have explored the QoS domain and still there
is no proper and effective method to fix the QoS optimization and monitoring in the IoT and Fog
computing with the transmission power control. Also, the static and dynamic behavior of the channel
during QoS optimization in Fog and IoT networks needs to be considered. At the same time the rapid
proliferation in the emerging market of the miniaturized IoT devices have facilitated the consumers on
the one hand, while on the other hand, their power-hungry nature and limited battery lifetime have
created several challenges in the Fog and IoT networks. So, keeping this demand into mind we have
taken into account the notion of TPC-based QoS optimization in Fog computing by considering the
static and dynamic wireless channel states.
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As the number of connected devices increases exponentially, achieving higher network capacity
and reliability with lower latency and energy consumption is challenging. It is estimated that the IoT
will cause the Internet Protocol (IP) traffic to increase up to 300% by 2018 [1]. Although not all the
network embedded devices (e.g., sensor nodes) will communicate simultaneously among each other
and outside the network due to highly dense and multi-hop nature. Thus, it is crucial to investigate that
how the QoS of IoT networks is affected with conventional methods and what changes are effectively
made by the proposes algorithm.

Furthermore, remote deployment of an IoT network makes it difficult for the field technician to
replace the battery sources, hence, prolonging the battery lifetime of the sensor nodes is very vital.
This research aims to resolve the challenging problems, for instance, how to optimize the QoS in the
Fog and IoT system by adopting the transmission power control strategy? To establish the strong and
appropriate connection between the QoS metrics for example, throughput, delay, jitter and energy
drain and TPC in the presence of the static and dynamic channel conditions? How to develop the
state-of-the art Fog framework in-line with the IoT and TPC?

This paper contributes in two ways.

• We propose a novel 5G enabled Transmission Power Control (TPC) algorithm for QoS optimization
titled (QoS-TPC). In addition, tradeoff between Transmission Power Control and QoS metrics such
as, throughput, delay, jitter and energy consumption is established by considering the static and
dynamic channel features. Besides, the proposed algorithm is compared with the conventional
adaptive transmission power control (ATPC), SKims and constant TPC methods.

• Framework of the 5G-based TPC for QoS optimization in the Fog and IoT system is proposed,
as shown in the Figure 1.

Figure 1. Proposed 5G-enabled Fog Computing and Internet of Things (IoT) based Architecture.
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The rest of the paper is structured as follows. Section 2, reviews the rigorous literature about Fog
computing, IoT system, QoS, 5G-based TPC and wireless channel and so forth. Section 3, proposes
the 5G-based Transmission Power Control (TPC) algorithm for QoS optimization in Fog networks.
Experimental results extracted in Section 4, paper is concluded in the Section 5.

2. Related Work

5G-based transmission power control (TPC) for Quality of service (QoS) provisioning is the
key ingredient, while its optimization over the Fog and IoT system is the biggest hurdle to fulfil
the needs of the network [1–5]. In the literature, various power management algorithms have been
proposed such as, power control for the fair time slot allotment, adaptive and dynamic nature power
control, duty-cycle enabled power control and so forth. Authors in [6–10] discuss that the dynamic
power management (DPM) chooses the power levels in a random fashion to save the energy in the
sensor networks but it has limitation to get the entire information of the past and future data which is
very complex task. Similarly, the power control algorithm (PCA) in [11] adjusts the power levels by
considering the needs of channel but the correlation between nodes is very weak that is why large
portion of the power is dissipated in the control message transmission. While time slot control based
principle offers the longer idle span, hence, more energy will be saved as compared to schemes in [12].
Authors in [13,14] design the sleep wake-up mechanism to save the more energy by increasing the
sleep time of nodes, besides there is an automatic switching between these two states. Authors in [15],
establish the trade-off between energy drain and he delay between transmitter and receiver nodes to
manage the duty-cycle of the entire network. Authors in [16–19], design the closed-loop power control
mechanism by adopting the various channel states but they do not focus at the QoS optimization
in the Fog computing. Researchers in [20], present the signal to noise ratio based channel allotment
scheme and they followed the work in the [21,22] for investigating the role of bandwidth and channel
in effective resource allocation. Generally, in the sensor networks IoT and Fog computing reliability
and TPC are inter-related and hence, the better QoS classifiers. Hence, it is very vital to build the track
between QoS, channel, TPC, energy efficiency and the battery lifetime, for further details see Table 1.

Most of the traditional schemes are helpful to save the power and somehow QoS but still there is
large room vacant to deal with the TPC based QoS optimization in the Fog and IoT in the presence of
various wireless channel forms. Thus, a very few related works are discussed one by one. As APTC [3],
develop the adaptive TPC algorithm to save the energy in the WBANs by considering the various
body postures and scenarios, besides their work optimizes the channel parameters and compared with
the traditional methods. But they do not focus at the joint TPC and QoS optimization approach for the
Fog and IoT. Similarly, SKims [2], re-enforcement learning based TPC based method is very efficient
to optimize the QoS in IoT networks but their power adaptation mechanism is very complex from
computational point of view and not very effective. On the contrary our proposed TPC based QoS
algorithm is very simple, effective and requires very few control packets while exchanging/transferring
information between the transmitter and receiver. Moreover, their research do not broadly present the
interconnection between TPC and various network metrics in the presence of the static and dynamic
channel conditions. Last traditional algorithm is the constant TPC, which either saves more energy or
shows more reliability and do not possess both qualities at a time, so it is not the potential candidate
for the IoT and Fog computing environment.

All the aforementioned research works have worked in the diverse domains with the distinct
goal and target to be achieved. Few of the emerging areas are described as, energy efficiency, resource
allocations, TPC, QoS control, power monitoring and management in different direction that is, sensor
networks, IoT, cognitive radios, cellular networks, wireless networks, wireless body area/sensor
networks and so forth. But this paper presents very remarkable contribution by proposing 5G-based
TPC algorithm for QoS optimization and adopting wireless channel’s entire features, network metrics,
Fog computing, IoT and so forth. Besides, 5G-based Fog computing and IoT framework is proposed.
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Table 1. Summary of Existing Works.

Ref. No Applications Proposed Techniques Component Being
Optimized Results

[1–5] QoS optimization, TPC Review QoS metrics QoS aware Fog
computing and IoT

[6–10] IoT-enabled Fog computing,
QoS

TPC driven and MAC
based

Data rate and
throughput

TPC-aware QoS
control

[11–15] IoT, 5G, smart mobile
security

TPC and data rate
based

Security key, resource
allocation

Low power
consumption

[16–18] IoT, Security and ECG Algorithms,
Architecture

Authentication key,
Duty cycle

Minimize cost and
energy consumption

[19–21] IoMT, Telemedicine Battery-friendly,
rate control

Battery charge and
modulation level

IoT longer media
transmission

[22–25] Wireless capsule, IoMT Predictive techniques Battery charge,
data rates

Improve mobility,
battery lifetime

[26–29] IoT, DLM, wireless ad-hoc
networks

Window-based
algorithms, Battery

models
Transmission rates Battery-friendly and

energy-efficient

[30–32] Medical media, 5G Energy optimization
algorithms Novel Frameworks Smart medical

healthcare system

[33–35] IoT, PLM, Smart Cities,
Industries

Ontology-based
methods and
architectures

Battery lifecycle Smart PLM, Smart CPS

[36–38] IoT, QoS, WSN, Security,
Dynamic game-based

and energy
management

TPC and data rate To extend the lifecycle
of medical devices

[39–45] IoT, Energy Harvesting,
PLM and WPT

Battery-friendly and
Energy Harvesting Battery charge Lifetime of smart IoMT

and BSN devices

[46–52] IoT, EEG, Security in BAN Routing-based power
control techniques

To optimize QoS in
PLM

To monitor IoT based
healthcare

[53–61]
IoT, Artificial Intelligence,
security QoS and Energy

management Frameworks

Fuzzy-logic, HRV and
energy-efficient

techniques

To optimize,
transmission power
and battery charge

To obtain
energy-efficient

IoT based

[62–69] IoT, BSN, ECG, PLM
data sources

TPC, energy
harvesting

To optimize, manage
the TPC and
duty-cycle

Smart healthcare

3. Proposed Transmission Power Control Mechanism

In this section we first propose the block diagram of the 5G-based TPC mechanism, then explain
the TPC in detail with key focus at the QoS optimization in the Fog and IoT system.

3.1. Block Diagram

For the efficient and intelligent examination of the wireless channel, received signal strength
indicator (RSSI) is considered as an emerging entity for the Fog computing and IoT-enabled nodes
while fairly allocating the transmission power and hence the QoS optimization. It is estimated within
the transceiver radio by attaining the normal value of the signal power over multiple symbol periods,
that is, eight of the received information packet analogous to distinct body movements and gestures
of individuals [1,2]. RSSI explains the strength of received power at the destination node and is
evaluated by the time, transmission power (TP) and distance among other nodes. The reliability of
channel is proportional to RSSI which is further used to characterize it. The sensor node at sender
side transmits a packet after every 200 ms with TP levels in between 0 dBm and −25 dBm. Receiver
sets RSSI threshold level of −100 dBm, which shows packet loss/worst channel condition. Moreover,
the path loss calculation for both static and dynamic channel states are considered at the 2.4 GHz
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frequency. It is observed that there is relatively high path loss in dynamic channel condition and
higher frequency, however, packet loss is very low in static case and lower frequency [2]. We used
accelerometer sensors to detect static and dynamic channel states accordingly. Hence, this study
proposes TPC based framework for considering dynamic and static cases to efficiently adapt the
channel deviations for optimizing the QoS as shown in Figure 2. In the proposed framework, receiver
obtains one data packet from transmitter then calculates RSSI; if its value exceeds RSSI target value,
then acknowledgment (ACK) of short inter-frame space period (pSIFS) will be sent to transmitter
side. Also signaling overhead is not taken into account, less power is consumed in a static case unlike
the dynamic.

Figure 2. Block diagram of the 5G-based Transmission Power Control (TPC) in Fog and IoT system.

3.2. Transmission Power Control Based QoS Optimization

As Fog computing is one of the 5G’s intelligent services and this sub-section proposes and presents
in detail the 5G-enabled TPC algorithm for QoS optimization (QoS-TPC). Our proposed QoS-TPC can
be run by the receiver as well as by the transmitter sensor nodes as following the QoS requirement of
sensor nodes in Figure 3. For the sake of ease, we suppose that only receiver performs TPC. The entire
working principle of the proposed QoS-TPC is discussed below.

First, the receiver computes the average RSSI (R), (steps 2 and 4) for each latest and lowest
(i.e., obtained after latest sample) received samples before determining transmission power (TP) level.
Assume the TP and the corresponding RSSI at the receiver for the latest (i.e., current) sample is Pt

and Rlatest both in dBm respectively, similarly the lowest sample (i.e., received after latest sample)
have transmission power and RSSI as Pt − ∆Pi and Rlatest − 1 respectively, where i = 1, 2, . . . . . . . . . , N
shows number of TP levels for CC2420 radio. After receiving the RSSI sample, the BS updates the
average RSSI, R, according to the Equations (1) and (2).

R = Rlatest + (1− α1)× Rlowest (1)

R = Rlatest + (1− α2)× Rlowest (2)

whereas, α1 and α2 are the average weights of RSSI sample exhibiting good and bad state
channels, accordingly.

The BS compares the value of R with the known target RSSI (Rtarget) and then decides the TP level
by using Equation (3).
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∆P = arg
{

min
∆P1, ∆P2, . . . ., ∆PN (

√(
Rtarget − R− ∆Pi

)2
)

}
s.t.∆Pi > Rtarget − R

(3)

whereby, N is the number of TP levels and at least dlog 2(N)e bits are required to exploit respective
value for TPC.

Figure 3. Flowchart of the Quality of Service (QoS) requirement in Fog and IoT systems.

The principle ingredients of the proposed QoS-TPC algorithms are the average RSSI (R), target
RSSI (Rtarget), α1; coefficient of the good channel and coefficient of the bad channel α2 with higher and
lower threshold levels TRH, TRL, respectively.

Proposed 5G-based QoS-TPC algorithm adjusts the transmission power in an on-demand fashion
by considering the entire features of the wireless channel in Fog and IoT system. If TRH greater
than Rtarget (step 6), the transmission power is decreased (step 7) to save energy. On the other hand,
if TRL falls below the Rtarget (step 6), the transmission power is increased (step 7) to improve channel
reliability. Similarly, transmission power adaptation guarantees effective and reliable communication
in Fog and IoT. Finally, we should also make sure that the power for each transmission shall neither
exceed Pmax nor drop below Pmin, (steps 11 and 14). Proposed QoS-TPC algorithm is simple and easy
to implement because small computational complexity is introduced to the receiver and the transmitter
sensor nodes. Furthermore, the proposed QoS-TPC does not require large signaling overhead because
only few bits are needed for the acknowledgment data packets as shown in the Figure 4.

The key aim to adopt the lowest RSSI samples is to keep consistency in the data transmission by
getting feedback information about the power levels. This is the first step to introduce the TPC, Fog
and QoS optimization mechanism in the IoT. We verified through experimental results in MATLAB
that proposed algorithm outperforms the conventional IoT TPC such as ATPC [3], SKims [2] and
constant TPC methods in terms of energy saving, RSSI stability, packet loss ratio (PLR), throughput,
delay and jitter as shown in Figures 4–6. Wireless channel with two experimental cases such as, static
and dynamic is used and observed that proposed algorithm outperforms the traditional methods in
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terms of RSSI stability, acceptable reliability, average throughput, more energy saving, less delay and
jitter values.

Figure 4. Proposed 5G-based TPC Algorithm for QoS optimization in the Fog Networks.

3.3. Performance Metrics for IoT SYSTEM

In this section, we present the trade-off between 5G-enabled transmission power and the different
network metrics, such as throughput, delay, jitter and energy consumption level, for our proposed
TPC-QoS algorithm and conventional TPCs, such as ATPC, SKims and Constant TPC methods, in the
Fog and IoT system. We follow the IEEE 802.15.4 IoT’s standard MAC with physical layer [3,23],
each network entity will be discussed briefly. Main notations and symbols of this section are
described as:

TPHR = Transmission time of PHY header
TP = Transmission time of preamble
RData = Data transmission rate
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Ts = CSMA slot length
TρSIFS = Short inter-frame spacing time
TCCA = Clear channel assessment time
MHR = MAC header
FTR = MAC footer
TAck = Acknowledgement
τ = Propagation delay

PLR =
l
s

(4)

MaximumThroughput =
8× pl

delay(pl)
(5)

delay(pl) = WINavg + TData + TAck + 2TρSIFS + 2τ (6)

WINavg = WINmin.Ts
2

= WINmin.(TCCA+20µ sec)
2

(7)

3.3.1. Maximum Throughput

It is defined as the ratio of the payload size (pl), the total transmission delay that is, delay(pl) as
given in Equation (6).

3.3.2. Delay

It is defined as the time span when an event occurs while transmitting/receiving the first packet.

3.3.3. Jitter

Jitter is the deviation in delay, caused by random inter-arrival time spikes of the several
transmitted and dropped/re-transmitted packets. In many cases it is defined as a measure of the
variation in the packet’s delay over time in the entire network.

3.3.4. Energy Consumption

Due to energy-constrained nature of sensor nodes in Fog and IoT system the life-time of these
devices will be shortened, so to remedy this problem TPC is one of the efficient and effective solutions
to optimize the QoS in Fog and IoT networks.

3.3.5. Packet Loss Ratio (PLR)

It is defined as the ratio of total number of lost packets (l) to the transmitted packets (s), it always
measures in (%).

Furthermore, pl, WINavg and TData, are the payload size, average back-off time, and, transmission
delay of the Physical Layer Protocol Data Unit (PPDU), accordingly. Besides, it is calculated based on
the Rtarget (−85 dBm) and threshold levels (TRL = −88 dBm, TRH = −83 dBm) of the RSSI values.

TData = TP + TPHR +
8× (MHR + x + FTR)

RData
(8)

The ∆ in Equation (9), represents the deviation in RSSI value for proposed algorithm and
conventional TPC methods, Ri is the RSSI latest samples, where i = 1, 2, . . . . . . . . . , n and Rtarget

is the RSSI target.

∆ =

√
1
n

n

∑
i=1

(Ri− Rtarget
)2,n shows RSSI samples (9)
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4. Experimental Environment

In this section, the performance of the typical conventional TPC methods, such as constant
transmission power control, ATPC [3], the SKims method [2] and our proposed 5G-based QoS-TPC
algorithm in IoT is compared and evaluated through simulations in MATLAB with respect to average
values of RSSI and transmission power. We use the real-time data sets of two channel cases such
as, dynamic and static provided by NICTA [22]. Table 2, presents detailed simulation parameters.
In addition, we adopt average transmission power to analyze QoS optimization level of our proposed
5G-based QoS-TPC algorithm in comparison with conventional TPC methods and showed that the
proposed algorithms significantly optimize the QoS in the IoT systems in terms of throughput, delay,
jitter and energy saving (40.9%), hence it is the potential candidate, as shown in Figures 5 and 6.

Figure 5. Transmission power level and Received Signal Strength Indicator (RSSI) in Dynamic and
Static Channel states (a) and (c) Transmission power level, (b) and (d) RSSI of each data packet.

Figure 5 and Table 2, present the comparison of transmission power (dBm) and corresponding RSSI
(dBm) values in the first 60 s between conventional TPC methods and our proposed TPC-QoS algorithm
by considering two channel states that is, dynamic and static, respectively in frequency band 2.4 GHz.
The analysis showed that the constant TPC adjusts the deviations in the channel by sacrificing more
energy, so it provides more reliability and high energy consumption. Through experimental results
it is clear that the proposed algorithm (transmission power= 5.67 (mW), RSSI value = −81.25 dBm,
Avg. energy consumption (mJ) = 0.37, PLR = 3.63%, std.dev = 5.53 dBm), while the constant TPC
(transmission power = 7.23 (mW), RSSI value = −69 dBm, Avg. energy consumption (mJ) = 3.28,
PLR = 3.47%, std.dev = 8.80 dBm), ATPC (transmission power = 5.95 (mW), RSSI value = −80.29 dBm,
Avg. energy consumption (mJ) = 1.27, PLR = 3.53%, std.dev = 5.60 dBm) and SKims (transmission
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power = 6.99 (mW), RSSI value = −78.67 dBm, Avg. energy consumption (mJ) = 1.55, PLR = 3.57%,
std.dev = 5.79 dBm), at the dynamic channel state as shown in Figure 5a,b and Table 3.

Similarly, Figure 5c,d and Table 3, represents the transmission power and RSSI for the proposed
algorithm (transmission power = 5.61 (mW), RSSI value = −80.96 dBm, Avg. energy consumption (mJ)
= 0.34, PLR = 3.60%, std.dev = 5.43 dBm), while the constant TPC (transmission power = 7.01 (mW),
RSSI value = −75.3 dBm, Avg. energy consumption (mJ) = 3.26, PLR = 3.40%, std.dev = 7.53 dBm),
ATPC (transmission power = 5.83 (mW), RSSI value = −80.50 dBm, Avg. energy consumption
(mJ) = 1.25, PLR = 3.50%, std.dev = 5.570 dBm) and SKims (transmission power = 6.96 (mW), RSSI
value = −79.23 dBm, Avg. energy consumption (mJ) = 1.53, PLR = 3.48%, std.dev = 5.75 dBm), at static
channel state. For further details see the Table 2.

Generally, there is more variation in dynamic case than the static one with proposed QoS-TPC
algorithm and conventional TPC methods. Our proposed algorithm exhibits less TP, more RSSI stability,
less packet loss ratio, less energy consumption than ATPC, SKims and constant TPC methods, in other
words proposed QoS-TPC surpasses the typical conventional IoT TPC methods as shown in Table 3.

The Figure 6 and Table 2, show the performance of our proposed QoS-TPC algorithm and typical
conventional IoT TPC methods in terms of network metrics such as, throughput, delay, jitter and
energy consumption level. Figure 6a presents trade-off between transmission power (TP) and average
throughput for our proposed algorithm and conventional TPC methods for IoT, in which it is verified
that throughput increases with the increase of transmission power of 500 kbps, 450 kbps, 400 kbps,
250 kbps for proposed algorithm, ATPC, SKims and constant TPC methods respectively.

Experimental results show that proposed 5G-based QoS-TPC enhances performance by
maximizing throughput about 500 kbps, while constant TPC has lowest throughput than other
conventional TPC methods. Figure 6b, presents the relationship between TP and average delay
for proposed algorithm and ATPC, SKims, constant TPC methods. The analysis shows that average
delay decreases with the increase of TP and there is an average delay value of 7.5 ms for our proposed
algorithm—the constant TPC method has a longer average delay of about 8.5 ms, while the ATPC and
SKims methods exhibit 7.7 ms and 7.8 ms, respectively. Figure 6c illustrates the effect of TP on jitter
for proposed algorithm and conventional TPC methods. Through simulation results in MATLAB it is
observed that jitter decreases as the TP increases.

Apparently, proposed 5G-based QoS-TPC and ATPC method has almost same jitter of 7.4 ms
and SKims method exploits 7.8 ms jitter value, while constant TPC method reveals jitter of 8.5 ms
which is higher than proposed algorithm and other conventional TPC methods. Figure 6d, explores
the relation between TP and average energy consumption for proposed algorithm and conventional
IoT TPC methods. We analyzed that average energy consumption minimizes with the increase of TP.

It is evident from Figure 6 that the transmission power and average energy consumption of
proposed QoS-TPC algorithm is less than the conventional TPC methods or in other words we can say
that our proposed algorithm saves energy of 40.9% which is higher than ATPC, SKims and constant
TPC methods. Nevertheless, proposed algorithm surpasses the conventional TPC methods.

Deviation in RSSI values for conventional TPC methods and our proposed algorithm with target
RSSI (Rtarget) is determined by using Equation (9). We analyzed that ATPC and SKims TPC methods
can maintain the RSSI at a relatively stable level and constant TPC method maintains RSSI at very low
level while our proposed algorithm maintains RSSI at more stable level than all conventional TPC
methods as shown in Table 3. Hence, we can say that our proposed 5G-based QoS-TPC algorithm
outperforms in terms of RSSI stability, throughput, delay, jitter and energy saving (see Table 3 for detail)
than conventional TPC methods. In Table 3, it is shown that there is slightly more RSSI deviation and
packet loss ratio in dynamic case than the static one, which affects the transmit power level and RSSI
stability of conventional TPC methods more than our proposed 5G-based QoS-TPC algorithm.
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Figure 6. Transmission power vs. network metrics (a) Average throughput, (b) average delay, (c) jitter,
(d) average energy consumption.

Table 2. Experimental Parameters.

Parameter Value

TRH −83 dBm
TRL −88 dBm

Rtarget −85 dBm
Carrier frequency 2.4 GHz

Channel Bandwidth 1 MHz
∆Pi {−3,−2,−1,0,1,2,3,4}

Maximum Transmit power level 0 dBm
Minimum Transmit power level −25 dBm

avgweight1 0.8
avgweight2 0.2

Channel Model Real-time [28]
Data packet size 100 Bytes

Data packet interval 100 ms
Data Rate 250 Kbps

Noise figure 5 dB
Noise PSD −174 dBm/Hz

Node speed 1.5 km/h
PAR 1
Pc 12.5 mW

Ttotal 100 ms
Number of packets 4000
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Table 3. Summary of Experimental Results.

Algorithm QoS Parameters Wireless Channel

TPC Constant

Experimental Analysis
Dynamic Static

Transmission power (mW) 7.23 7.01
Average RSSI (dBm) −69.0 −75.3

Avg. energy_consump (mJ) 3.28 3.26
PLR (%) 3.47 3.4

Std.dev in RSSI (dBm) 8.8 7.53

ATPC Method

Transmission power (mW) 6.13 6.09
Average RSSI (dBm) −80.29 −80.50

Avg.energy_consump (mJ) 6.27 0.25
PLR (%) 3.53 3.5

Std.dev in RSSI (dBm) 5.6 5.57

SKims Method

Transmission power (mW) 5.95 5.83
Average RSSI (dBm) −78.67 −79.23

Avg. energy_consump (mJ) 1.55 1.53
PLR (%) 3.57 3.48

Std.dev in RSSI (dBm) 5.79 5.76

Proposed Algorithm
(QoS-TPC)

Transmission power (mW) 5.67 5.61
Average RSSI (dBm) −81.85 −80.96

Avg. energy_consump (mJ) 0.37 0.34
PLR (%) 3.63 3.6

Std.dev in RSSI (dBm) 5.53 5.43

5. Conclusions and Future Research Work

Due to the emerging and revolutionized role of 5G in every aspect of the human life, this paper
proposes a 5G-based TPC algorithm for QoS optimization in the Fog computing and IoT system with
static and dynamic wireless channel features at a frequency of 2.4 GHz. Transmission power is adapted
according to the dynamic and static channel states. We examine and compare the performance of
proposed 5G based QoS-TPC algorithm with traditional constant TPC, APTC and SKims methods in
terms of transmission power, RSSI values and network metrics that is, throughput, delay, jitter and
energy consumption and showed that constant TPC drains more energy with poor RSSI performance
in both static and dynamic channel conditions. Besides, it is observed through experimental results
that there is more variation in the dynamic case than in the static in the Fog computing and IoT
systems. In addition, proposed 5G based QoS-TPC presents more stable RSSI value than traditional
TPC methods, in the mean-time limitations of the orthodox methods are addressed with the supportive
reasons while optimizing the QoS (i.e., minimum transmission power, more RSSI stability (i.e., less
variation), less packet loss ratio, high throughput, less delay, less jitter and maximum energy saving
of 40.9%. Finally, it can be said that the remarkable contribution of the proposed 5G-based QoS-TPC
algorithm in optimizing the QoS is made unlike the conventional methods.

Following are the few limitations of the proposed QoS-TPC.

• PLR increase due to more energy saving, which is not suitable for the critical event analysis.
• High RSSI value is needed to perform well, which is no appropriate to QoS-sensitive applications
• Delay and jitter values are slightly increasing

We will use our proposed algorithm with Adaptive modulation and cooperative communication
to save energy in IoT and Fog computing systems.
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