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Abstract: This paper presents a mobility-resource ownership model. The model captures inter-related
personal mobility decisions: which transport mode (out of those available to a decision-maker) to
use for a particular trip and which mobility resources (e.g., car, bicycle, transit season ticket or a
combination) should the decision-maker own to enable the most “appropriate” set of transport modes.
Importantly, the mobility decisions are not evaluated only for a single trip or a single day. In fact, for
each decision-maker, an entire set of trips, observed over multiple days, is evaluated. We call this
personal accessibility to travel. We present a two-step discrete choice model that includes both mode
choice and ownership decisions. The model is estimated based on household travel survey data
from Germany. This paper also investigates the simulation of travel times for non-chosen modes that
are required as an input. The estimation results show significant effects of the personal accessibility
and travel frequency on mobility-resource ownership decisions. To further validate the estimation,
the forecasting and sensitivity analysis of the model for different scenarios is evaluated. The proposed
model offers an efficient solution to situations when the impact of transport sustainability measures
on mobility behaviour needs to be plausibly predicted.

Keywords: mobility; ownership decisions; non-chosen alternatives

1. Introduction

Transport supply shapes urban areas and influences the quality of life of its inhabitants.
Together with other factors, such as socio-economic background or built environment characteristics,
the provision of transport supply determines which transport modes people will use.
Hence, policymakers have been leveraging the transport supply to achieve more sustainable urban
forms. It is not always obvious exactly how the transport supply impacts modal split. For example,
to what extent might a city that suffers from car-traffic congestion mitigate the problem by installing
a new parking scheme? This could make it more expensive for drivers to park their cars in the city.
Or should the city enhance its public transportation supply? Answering these questions requires
serious research effort. One of the challenges is that the mode choice model needs to account not only
for the impact of the new parking scheme or improved public transit quality, but also for the mobility
resource constraints. Such constraints are associated with everyday choices of transport modes, which
are subject to the mobility resources available. For example, people who own a car might still use it
irrespective of increased car-related costs. They might consider, for example, a public transit season
ticket as a disadvantageous investment because of the expenses they already have (car amortization,
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insurance, service etc.). This example illustrates how mobility decisions are interrelated: which mobility
resource I will acquire (taking into account the travel activities I typically do), and which mode I will
use (from those available to me given my resources). This can change for different travel activities.

This study elaborates on a model that predicts mobility-resource ownership. The model
accommodates interactions between long- and short-term mobility decisions, which represent
mobility-resource and transport mode decisions, respectively. In contrast to many existing
mobility-resource ownership models, which are based on socio-demographic and built-environment
characteristics only, this model is sensitive to supply provision and personal mobility needs. The model
is useful to predict interrelated long- and short-term demand changes induced by modifications to
existing supply. It has the potential to also be adapted to predicting first estimates of potential market
shares of newly introduced mobility options. An example of this is a new shared taxi service that
will be installed, for which no socio-demographic preferences can be known yet. In this example,
the monetary and time cost utility components can be compared amongst already existing alternatives
and then rationally extrapolated to modal share estimates using the model.

In order to test the model on real-world data, the study explores methods for simulating the
(dis-)utility (in this case: travel times) of alternatives that were not chosen and hence were not directly
observed in our survey data.

1.1. Research Questions

The study develops a model that predicts mobility-resource ownership, depending on personal
accessibility to travel. Personal accessibility to travel (or simply, personal accessibility) is defined
and quantified in this paper as: “the total utility an individual incurs for trip making that is required to
participate in a personal set of activities (called PAS—see the definition in Section 2.1).” As in this definition,
accessibility thus depends on the characteristics of a specific person (as it is defined on his/her personal
set of activities), we distinguish it from more traditional definitions of accessibility by adding the
adjective ‘personal.’ Moreover, personal accessibility depends on a person’s environment: it especially
depends on the locations of activities in the personal set, and on the supply characteristics (e.g., speed,
price, convenience) offered by different transport modes and services. An ownership model built on
personal accessibility would hence predict market shares that are a function of both the population
characteristics and the supply design. This is of particular interest to many authorities and mobility
service suppliers. For sustainability or economic reasons, these entities wish to know the impact of
potential supply changes (e.g., policy measures, investments, effective operations) on mobility-resource
ownership in a specific region and population. The first research question is thus:

• How to formulate a model that predicts mobility-resource ownership while taking into account
personal accessibility?

It is assumed that mobility-resource (e.g., private vehicle, bicycle, public transport ticket,
car-sharing program) ownership decisions and daily transport mode choices are inter-related.
Long-term decisions, such as choosing the most appropriate mobility resources, determine the
access to related transport mode(s). Short-term decisions such as choosing the most convenient
transport mode might reinforce the position of particular mobility resource(s) in personal holdings.
For example, buying a car enables an individual to cover her entire travel activity space by car and,
in turn, using the car frequently stimulates her to keep the car. It also makes her likely to buy a
new car when facing a decision to update her mobility resources. Le Vine [1] has formalized such a
functional relationship using the maximum random utility of the discrete choice model. His model
assumes rational decision-makers develop their mobility-resources ownership decisions by balancing
the utilities projected over the short- and long-term. This study elaborates on this model, and its
development is presented in Section 2.

Once a theoretical structure for the model has been defined, the following question regarding
ownership factors arises:
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• What are the mobility-related variables influencing mobility-resources ownership decisions?

Section 2 reports on the explanatory variables used in this study and frames them in the context
of the related literature about mobility-resource ownership. The model proposed in the first part of
this study considers two determining factors that need to be further specified. First, there are the fixed
costs of acquiring mobility resources and transport modes. Second, the personal accessibility requires
specification of the personal travel patterns and of the utility components considered for each trip in
the pattern.

1.2. Contributions

This study continues the development and application of a mobility-resource ownership model
structure originally proposed by Le Vine [1]. Unlike in the original model, here the travel utility
component is decomposed into two terms. One of the travel utility terms is connected to personal
accessibility, and the other term is associated with frequency of travel activities. Such a refined
model structure offers new insights into the ownership decisions on mobility resources. Applying the
updated model to real-world household travel survey data from Germany, it appears that models
for the correlation in unobserved factors among mobility alternatives must be chosen with caution.
This study extensively reports on the estimation process that guides different discrete choice models.
As a result, a set of models producing coherent predictions with satisfactory accuracy is found.
Another important contribution of this study lies in simulating input data required by the model.
Such simulation is required, as for model estimation the modeller needs to dispose of values for the
utilities of the non-chosen alternative modes for trips with missing geospatial references, as well as
utilities of non-chosen sets of mobility resources.

The main contributions of this study can be summarized as follows:

• The empirical analysis confirms the significant influence of personal accessibility to travel patterns
on ownership decisions on mobility resources.

• The travel patterns that influence mobility-resource ownership can be approximated by a subset
of trips observed during multiple days. In the model-estimation process, the importance of trips
is determined by how these trip subsets are perceived by the individuals (while deciding on
mobility-resource ownership).

• The study provides evidence that a household travel survey that lacks geospatial referencing and
non-chosen alternatives is sufficient for modelling ownership decisions on mobility resources.
Using data simulation techniques, the missing records are created and added to the travel survey.
In addition, it appears that the quality of simulated travel data is critical for the model’s calibration
and use.

The rest of this article is organized as follows: Section 2 presents the methodological foundation
of the model and includes factors influencing ownership decisions and a detailed description of the
original model; Section 3 introduces a household travel survey used for empirical analysis and also
presents the simulation of data required by the model; Section 4 reports on the actual empirical analysis
and involves the model estimation and subsequently the prediction and sensitivity analysis obtained
by the fitted models.

2. Mobility-Resource Ownership Model

This section introduces the Perceived Activity Set (PAS), which represents the travel patterns
of individuals. Additionally, Le Vine’s original model is presented in detail. Finally, the model
refinements proposed in this study are introduced.

2.1. Factors Influencing Transport-Ownership Decisions

The existing body of research on transport ownership has recognized the critical influence of
personal or household socio-economic background on mobility-resource ownership. It is likely that
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wealthy people tend to own more cars when compared to socially or economically deprived people.
In particular, the influence of income on vehicle ownership has been used successfully in vehicle
ownership modelling for decades [2]. Although such a description is valid [3], it is not exhaustive.
This is evident from the example shown in Figure 1 that displays the distribution of household cars
among different income groups observed in the German Mobility Panel (MOP). The high-income
group tends to own more cars. Yet, the distribution suggests that also more than half of the low-income
households (58%) own at least one car. The example indicates the existence of other motives, beyond
socio-economic factors, that influence ownership. Therefore, it is useful to account for alternative
factors in mobility-resource ownership models.
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Figure 1. Distribution of income groups by car ownership.

It is reasonable to assume that car ownership is higher in areas with limited provisions of
car-alternative services. Therefore, recent attention has been focused on the effect of introducing
new or modified mobility services. According to Fagnant, Kockelman, and Bansal [4], shared
automated vehicle programs might provide a viable alternative to private-car ownership and lead to
a reduction in car ownership. Yang et al. [5] showed that car ownership increases car use, however
the study did not detect any significant impact on ownership based on commuting distance or time.
The authors accounted for the results by referring to the specific conditions of the urban areas under
study. According to the study of Mulalic, Pilegaard, and Rouwendal [6] the extension of the metro
system in Copenhagen led to a slight decrease in car ownership. At the same time, the city centre
experienced a substantial increase in residents. Their study also hints at another important aspect
of ownership decisions. They are typically developed during a longer period, similar to household
relocation decisions, and therefore they can be referred to as strategic decisions. The significance of
the aforementioned studies is in the way they accommodate the factors that influence ownership.
In contrast to the vast body of research, which projects the socio-economic background exogenously on
transport ownership, the studies about supply provision factors also take into account the actual usage
of transport modes. The latter was proved in the study of Simma and Axhausen [7], which explored the
influence of public transport (PT) season tickets and car acquisitions on mode choice. It concluded that
the commitment to a certain transport mode promotes usage of this mode. Commins and Nolan [8] also
support the claim that transport supply characteristics (costs, travel times) affect vehicle ownership.
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Le Vine [1] advanced the latter approach and explored the link between using and owning
mobility resources given a certain degree of supply provision. This led to the development of the
concept: Perceived Activity Set (PAS). The PAS is defined as, “the array of activities which persons
view (at a particular point in their life) as encompassing their potential travel needs when developing
decisions that structurally affect their accessibility.” The decisions refer to, for example, buying a car or
relocating a household. Under the PAS concept, people are assumed to be aware of their most common
travel activities (i.e., commuting to work, weekly shopping and regular leisure activities) as well as
characteristics like travel time and out-of-pocket costs in the different mobility-resource ownership
scenarios. Additionally, Le Vine noted the importance of PAS travel activities perceived by people
while making ownership decisions. For example, mandatory travel activities, such as commuting,
might be perceived by people as more determinable than random, optional activities. If a bicycle is
considered as the most convenient transport mode for commuting, then people likely include the
bicycle in the set of owned mobility resources. Hypothetically, this may even reinforce the bicycle as
the mode of transport for other travel activities. Le Vine et al. [1] has estimated the importance of
different travel activity purpose types (e.g., to work, leisure, shopping). Astegiano et al. [9] also used
the PAS concept, but the importance of a particular travel type was set a priori, being proportional to
their frequency. The current study also employs the PAS concept and the importance is estimated for
the different travel activity types.

It is worth noting that the concept has some limitations. For example, the data needed for
PAS would ideally encapsulate all relevant activities considered by individuals while considering
mobility-ownership decisions. However, this approach would be extremely expensive and surely
beyond the capacities of any household travel survey (as a common source of travel activity data).
A reasonable compromise is to use time-constrained, multiple-day travel observations. The assumption
is that the multiple-day observations sufficiently represent the personal travel activity space, as seen
by people while considering ownership decisions on mobility resources. In the future, similar concerns
might be eliminated with big data and new methods of managing data (e.g., integrating data from
several resources).

2.2. Mobility-Resource Ownership Model Utility Functions

The model predicts people’s subset selection from a finite set of mobility resources, which is
referred to as Restricted Choice Set (RCS). Each RCS choice alternative d involves a combination of
mobility resources Rd and transport modes Md enabled by these resources. An example of RCS is
portrayed in Table 1. People face a decision between two RCS alternatives labelled as RCSC and
RCSCP. The first RCS includes a car as mobility resource that enables a car ride (transport mode by car).
Additionally, people may also use PT, but they must pay per trip for a ticket. The other alternative,
RCSCP, registers the car and the PT season ticket as mobility resources. These resources enable the car
mode, and unlike the preceding RCS, they grant free access to PT. Both RCS include the mode by foot.
Note that Le Vine used a similar choice set structure. He referred to it as mobility resource “portfolios.”
To avoid confusion with finance and investment terminology, the RCS term is used in this research.
The term RCS refers to the fact that the modal choice for daily trip making is restricted by the subset of
modes enabled by the chosen RCS.

Table 1. An example of choice set structure with two restricted choice set (RCS) alternatives.

Choice Alternative d Enabled Mobility Resources Rd Enabled Transport Modes Md

RCSC Car By car (driver), by PT (paid), by foot
RCSCP Car, PT season ticket By car (driver), by PT (free), by foot

Used acronyms: PT . . . public transport.
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The model structure introduced by Le Vine et al. [1] quantifies the utility of a certain RCS
alternative perceived by people as the sum of two components. The first component encapsulates
non-travel utility associated with owning mobility resources belonging to the given RCS. The second
term encapsulates the total travel utility. The model structure is defined as:

Ui
d = Vi,non-travel

d + Vi,travel
d + εi

d (1)

which can be further specified as:

Ui
d =

R

∑
r=0,r∈Rd

Vi,non-travel
r +

Ji

∑
ji=1

γji ·
1

λtravel · ln
M

∑
m=1,m∈Md

e
(Vi,travel

m
ji
·λtravel)

+ εi
d (2)

The term ∑R
r=0,r∈d Vi,non-travel

r accounts for the total utility that arises from particular travel
resources belonging to the RCS. Among others, it may involve fixed costs like acquisition or registration

costs, maintenance expenses or insurance. The term ln ∑M
m=1,m∈Md

e
(Vi,travel

m
ji
·λtravel)

quantifies the
“optimal” transport mode utility perceived by people. For this, it is assumed that the effect of the
cost on the travel utility obtained by mode m is heterogeneous and follows a Gumbel distribution
with variance λtravel. The expected maximum perceived utility (EMPU) among the available modes
enabled by the RCS can then be written analytically in closed form as the given log-sum of systematic

utilities per mode. The term ∑Ji

ji=1
γji ·(. . . ) enumerates all PAS activities of an individual and accounts

for the importance of the j-th activity by the term γji . The notation r ∈ Rd and m ∈ Md refers to the
mobility resources and transport modes, respectively, that were enabled by the RCS choice alternative
d. Finally, εi

d is an error term that captures the influence of all unobserved factors affecting RCS choice.
The key assumption here is that people choose RCS by taking into account the trade-off between

paying for mobility resources and getting access to a certain quality for the considered PAS activities.
For example, people who pay for more mobility resources may utilize broader (more diverse) and
possibly higher-utility travel options for the activities in their PAS.

2.3. Choice Model Structure

The RCS choice model will also call the “second step” model. (The “first step” is the travel
mode choice for every trip in the PAS, which is embedded in the utility function of the second step.)
The second step involves the estimation of the non-travel costs, travel frequency and the personal
accessibility to PAS parameters (explained in Section 2.4). The latter parameter associates with the
variable Ai

p,d (see the description in Section 2.4.2) that is given as the average travel cost over a set
of PAS activities. For each activity, the most “useful” mode (the optimal travel alternative) should
be chosen out of the ones enabled by the RCS. Hence, a mode choice is embedded in Ai

p,d and the
parameters of which (coefficients of variables affecting the mode choice of each PAS trip) must be
estimated first. Thus, [10] used an estimation process split into two steps: the parameters of travel
utility component are estimated in the first step; and subsequently, in the second step, the RCS choice
model parameters are estimated.

2.4. Mobility-Resource Ownership Model Development

So far, the study has mostly reported on the original model introduced by Le Vine et al. (2013).
The following Sections 2.4.1 and 2.4.2 present the contributions of this paper related to the model.
(The order of subsections follows the steps of the model-estimation process.)

2.4.1. The First Step: Specification of the Mode Choice Model for the PAS (the Short-Term Decisions)

As explained in Section 2.3., the RCS model (second step) requires quantification of the EMPU
of modal choice for PAS trips. Thus, we first need a definition of utility and an estimation of the
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parameters therein. Following Le Vine, we do this in the first step, which considers mode choice only.
At this point, we assume RCS per individual to be exogenously given and observe their modal choice
for all trips contained in the PAS data of our population.

We propose a utility definition in the following form, driven by only travel-time cost (tt) and
out-of-pocket cost (OPC):

Vi,travel
m = βtt∗·tti

mji
+ βOPC·OPCi

mji
+ ASCm (3)

Upon estimation of the coefficients βtt∗, βOPC, and ASCm, Le Vine et al. [1] assumed that the transport
mode choices for the PAS are independent. Astegiano et al. [9] relaxed the assumption, considering
the fact the PAS data involve repeated transport mode choices of the same individual (panel data)
and hence perception errors are correlated. Therefore, a mixed logit (MXL) model was introduced,
accounting for correlations in error term and relaxing the independence of assumed irrelevant
alternatives considered by the Multinomial Logit (MNL). Also, in this paper, the MXL structure
is used for the transport mode choice model.

Adopting MXL means that the travel-time parameter βtt∗ ∼ N(µtt,σtt) is assumed to vary
across the population where the mean µtt and the standard deviation σtt are two estimated parameters.
Thus, the travel-time parameter accounts for a random taste variation and for correlation in unobserved
factors over time for a given individual. The out-of-pocket cost parameter is constant across
the population.

2.4.2. The Second Step: Specification of the RCS Choice Model (the Long-Term Decisions)

We know from the previous step the mode choice model parameter estimates (the results of
the first step), which can be used for computation of the EMPU in modes for trips in one’s PAS.
Therefore, we can now proceed with specifying the utility Ui

d that drives the second step of the
combined choice model: the RCS choice.

We choose to split the travel utility term Vi,travel
m of Equation (1) for the utility Ui

d in two terms:
the average personal accessibility to PAS provided by transport modes Ai

p,d, and the frequency of

travel PAS activities Ni
d. Both terms are weighted by the respective parameters γp and βN

d . To measure
the effects of the two parameters independently of each other, the personal accessibility to PAS is
averaged dividing by the number of trips Np:

Ai
p,d =

∑Ji

ji=1,ji∈p
ln ∑M

m=1,m∈Md
e
(Vi,travel

m
ji

)

Np
(4)

We further define that Ai
p,d is specified for five pre-defined travel activity purposes: p: work,

shop, leisure, escort, and other; the details are presented in Section 3. For each individual i, the personal
accessibility is evaluated for his or her unique PAS, which is composed of ji = 1 . . . Ji travel activities.
This reflects the utility incurred by the travel modes belonging to RCS d. The final specification of the
RCS utility function used in this research is shown in Equation (5). The frequency of travel activities
does not vary among RCS, but only among individuals. Hence, including both an alternative specific
constant and the frequency of travel activities would result in model misspecification (two degrees of
freedom for defining one constant value). Therefore, only the latter is used.

Ui
d = βFC

R

∑
r=1,r∈Rd

FCi
r + βN

d ·N
i
d +

P

∑
p=1

(
γp·Ai

p,d

)
+ εi

d (5)

Explicitly recognizing the number of PAS travel activities and the personal accessibility to PAS
in Equation (5), compared to the original utility definition in [1,9] shown as Equation (2), allows
for making a more refined distinction between choice situations. Let us consider two individuals,
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one typically accomplishes many short-distance trips, and the other does only a few long-distance
trips. For example, individual i1 with a PAS consisting of 10 activities given by tti1

11,...,10
= {5, 10, 10, 10, 5,

5, 15, 5, 5, 10} where the values denote travel times in minutes provided by the optimal travel mode m1.
Individual i2 has a PAS given by tti2

21,2
= {40, 40} using the optimal mode m2. For both, the out-of-pocket

cost is zero and all activities are of the same type. According to the new utility definition, the effect
of the personal accessibility to PAS will be different for both individuals—it will be more significant
for i2. Although it is not possible to exactly interpret the effects of the number of trips (recall that the
parameter also captures the effect of alternative specific constant), it is likely that its effect will also be
different for the two individuals. It appears that the new utility definition delivers some additional
meaningful insights into the ownership decisions on mobility resources.

In the model specification of Equation (5), not only the systematic utility terms differ from the
original definition by Le Vine. We also make different assumptions on the perturbation εi

d. The original
study used the MNL for the RCS choice (the second step) assuming that the εi

d of the RCS alternatives
are mutually independent [1]. [9] estimated a cross-nested logit (CNL) and a nested generalized extreme
values (NGEV) model for the second step. The CNL captures the correlations of both, the travel and
the non-travel utility perception among RCS alternatives having the same mobility resources. NGEV
generalizes the CNL model, using a multilevel, cross-nested correlation structure. A more detailed
description of NGEV is provided in [11]. The need for a complex correlation structure arises from
the characteristics of the RCS. Each RCS combines the properties of mobility resources and transport
modes common to the different alternatives. The proposed modifications were also tested in this
study. However, with the dataset used in this paper, it was not possible to find a coherent CNL or
NGEV model for this study. (The model parameters were found insignificant.) On the other hand, it
turned out that a relatively simple nested logit (NL) can be estimated with all significant model and
utility parameters and with expected signs. Therefore, only the results of the NL will be presented.
The estimation process is described in Sections 4.1.1–4.1.3 in detail.

3. Data

The data used in this research comes from the MOP [12] that consists of panel observations
collected continuously from 1994 and stratified over the German states. The following MOP data files
from the year 2008–2009 were used:

• The Personal file containing the socio-economic information on 1783 individuals.
• The Household file containing the background information on 1062 households of individuals

from the Personal file.
• The Trip file containing 43,029 travel activities recorded over a course of 7 days by the personal

file individuals.
• The Vehicle file containing car information such as type, fuelling, or age.

In order to guarantee comparability to future work in which we intend to estimate similar
mobility-resource ownership models on a household level, we retained only the households with
all eligible household members participating in the travel survey. This reduced the sample to 902
households. For the sake of significance of the parameter estimation, we avoided segments in the data
with insufficient observations by aggregating the transport modes and trip purposes according to the
schemes shown in Figures 2 and 3, respectively. The trips done by the modes of transport “other” and
“plane” were removed. The trips reported as by “bus,” “tram,” “train,” and “metro” were aggregated to
the transport mode PT. Merging urban, regional, and inter-regional types of PT into one transport mode
may oversimplify the level of service provided by the particular PT types. Therefore, the interpretation
of results for the PT transport mode must be taken with caution. However, this simplification maintains
the size of the choice set moderate. Next, the travel activities “to home,” “to second home,” “back to
hotel,” and “same origin and destination” were discarded because they represent journeys correlated
with the first leg of trip chains. Therefore, their contribution to the explanation of ownership decisions
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on mobility resources is already accounted for in the first leg and we remove them to avoid redundancy.
It is worth noting that such assumption might be considered in the current data set without any shared
mobility options. In applications where some forms of shared mobility are available, it is desirable
to evaluate the entire trip chain, allowing for more complex personal mode choice tactics. The travel
activities “pick-up/drop-off someone” and “other” were aggregated to the single category “other.”
Finally, the RCS alternatives were formed using the three mobility resources: bicycle, PT season ticket,
and car. For the latter, car and motorcycle were considered to be one mobility resource. The RCS used
in this research is explained in Section 3.1.
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3.1. Data Limitations

One of the main reasons for using the MOP data is that the travel survey involves multiple day
observations that are required by the PAS. However, there exist a few concerns limiting the use of the
data in this research.

First, unlike the PT season ticket or bicycle ownership which were reported at the personal
level, the car ownership was reported at the household level. It is reasonable to assume that cars are
considered as a household rather than individual property. However, this is inconsistent with the
model that was defined at the individual level. It was decided to consider the vehicle ownership as if it
had been reported by individual survey participants. Therefore, the total number of vehicles reported
in the survey is higher than in reality. A possible solution may involve the modelling of ownership
decisions on mobility resources at the household level, taking into consideration the household
consumption patterns and related interpersonal (but intra-household) strategies. The resolution of this
concern is beyond the scope of this study.

Second, inspecting the full factorial RCS scheme displayed in Figure 4 (left panel), which consists
of eight unique alternatives, it turned out that the car-free RCS were significantly underrepresented.
This considerably hinders the estimation process. Therefore, it was decided to keep only the RCS
alternatives with a car. The final design of choice set formed by the four RCS alternatives is shown in
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Table 2. Note that three transport modes are common to all RCS alternatives: by car (driver), by car
(passenger), and on foot. An individual without a PT season ticket (RCSC, RCSCB) may still opt for a
PT ride. In such a case, an out-of-pocket cost of 2.5 EUR is charged for PT trips less than or equal to
60 min and 5 EUR for PT trip(s) exceeding 60 min. The concatenation of PT journeys was also taken
into consideration while computing the PT journey costs. Note that the PT pricing parameters were
chosen arbitrarily, representing the average PT fares in Germany).Sustainability 2018, 10, x FOR PEER REVIEW  10 of 25 
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Figure 4. RCS market shares (left panel) and RCS modal split (right panel).

Table 2. Overview of mobility resources and transport modes forming the RCS used in this research.

Choice Altr. d Enabled Mobility Resources Rd Enabled Transport Modes Md

RCSC Car By car (driver), by car (passenger), by foot, by PT (paid)
RCSCB Car, Bicycle By car (driver), by car (passenger), by foot, by PT (paid), by bicycle
RCSCP Car, PT season ticket By car (driver), by car (passenger), by foot, by PT (free)
RCSCPB Car, Bicycle, PT season ticket By car (driver), by car (passenger), by foot, by bicycle, by PT (free)

Used acronyms: PT . . . public transport.

Finally, the MOP contains only the observed travel records. However, the model also requires the
non-chosen alternatives information. Section 3.2 explains how this problem was resolved in this study.

3.2. Simulating the Non-Chosen Alternatives

Although the lack of non-chosen alternatives data is a common problem for the
revealed-preferences-based discrete choice experiments, little is known about reliable methods of inferring
the unobserved data. [1] used a web-scraping technique that extracts the requested data in batch from
websites, for example, travel times from a PT operator website. [9] augmented the observed travel
records by the non-observed travel times downloaded through Google API. In both cases, the original
surveys contained the geographical references. Due to privacy reasons, the MOP stores the travel records
without any geographical information. Other researchers in similar situations rely on simulation of the
non-observed values using statistical models. [13] forecasted the non-observed travel behaviour data
(mode choice rates) by a multinomial logit with parameters obtained by Bayesian inference. An auxiliary
calibration sample was used to extract the Bayesian priors. The non-observed travel times were estimated
from the posterior distribution that exploits the priors and the observed survey data.

In this study, the non-observed travel time values t̂ti,b
nki

are simulated using a linear regression
model (LRM). Simulated travel times are used for the non-chosen alternatives while reported values
are employed for the chosen alternatives. This asymmetry may have affected the parameter estimation.
Further validation could be performed by using simulated data for all alternatives, which would
indeed achieve symmetry, though at a loss in precision for the chosen alternatives.
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The basic idea is to predict the travel time given the distance, the mode, and the region. For each
region b, the LRM regresses the non-observed mode travel times on the observed travel distance di,b

mji

for the given record:
t̂ti,b

nki
= di,b

mji
·ab

1,n + ab
0,n (6)

where index mj denotes transport mode m chosen for journey j while nk is related to the unobserved
journey k performed with alternative mode n. In a given region, LRM parameter ab

1,n and constant
ab

0,n are estimated for each transport mode separately assuming the constant speed. Note that the
regional characteristics refer to one of sixteen states (regions) in Germany originally recorded in the
MOP. For each of 16 states, five different LRM (one for each transport mode) was estimated. The main
advantage of this approach is the simplicity of the simulation process that also ensures straightforward
interpretation of results. While a linear function appeared to sufficiently approximate the relationship
between travel time and distance for bicycle and walk, the same relationship for the PT and car
transport mode may be non-linear. In such cases, the simulation results must be used with caution,
and other modelling techniques may be required. The observed and simulated values of travel time
for the considered transport modes are visualized in Figure 5.
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Figure 5 also shows the distribution of trips over the travel distance. It can be concluded that the
short distance trips are more frequent than the long-distance trips. However, the LRM still attempts to
capture the less frequent observations placed further away from zero. As a result, the long-distance
observations might significantly leverage the slope of the function. Such influence could be especially
harmful in the presence of outlying records, which lie outside the pattern suggested by the majority of
data points. Table 3 presents mean and standard deviation (SD), and their robust counterpart, median
and median absolute deviation (MAD) of the observed travel times for the considered transport modes.
The substantial differences between the values of mean and median, and similarly the differences
between the values of SD and MAD suggest that there indeed exist influential outliers. For example,
the lower median values compared to the mean values suggests that the travel times for all modes
are right-skewed.

Table 3. Statistics of the observed travel times for the considered transport modes.

Measure
Observed Travel Time

Car-Driver Bicycle Walk PT Car-Passenger

Mean 18.16 40.81 149.73 38.97 19.98
Median 13.43 18.18 51.58 33.92 16.15

SD 25.03 119.94 459.48 26.56 25.34
MAD 2.13 8.83 36.77 2.70 3.07

Used acronyms: SD . . . standard deviation, MAD . . . median absolute deviation, PT . . . public transport.

In order to overcome the problem of outliers, a robust linear regression model (RLRM) [14,15]
was used. In contrast to the LRM, the effect of outliers is downsized by the RLRM. Both models were
assessed by computing the relative mean absolute error (RMAE) and root mean squared error (RMSE)
for the pairs of simulated and observed travel times. The results are presented in Table 4. While the
RLRM has more accurate results according to the RMAE, the LRM delivers better results when
inspecting the RMSE. Such opposing conclusions can be explained by investigating the contribution of
particular errors. It is likely that the RLRM improves the errors of observations closer to zero ignoring
the influence of the longer distance observations. Finally, the RLRM outperforms the LRM according
to the RMAE, which is more sensitive to the short distance residuals. Because most of the values lie
close to zero, the results suggest that the RLRM delivers more suitable results. This claim is further
examined in the empirical analysis presented in Section 4 where all models are developed for the data
simulated by LRM and RLRM.

Table 4. Evaluation of linear regression model (LRM) and robust linear regression model (RLRM) for
different transport modes.

Statistics Model Car-Driver Bicycle Walk PT Car-Passenger

RMAE LRM 0.66 0.52 0.63 0.57 0.73
RLRM 0.41 0.38 0.45 0.44 0.43

RMSE LRM 11.37 9.47 20.37 27.91 16.38
RLRM 14.64 11.06 23.06 42.59 32.41

Used acronyms: RMAE . . . relative mean absolute error, RMSE . . . root mean squared error, PT . . . public transport.

4. Use Case: Predicting Mobility Resource Market Shares

4.1. Estimation

In this step, the transport mode choice model defined by Equation (3) is estimated using the
MOP. Tables 5 and 6 report the results for the MXL model including the non-robust and robust
simulated travel times, respectively. Hereafter, we abbreviate travel times predictions by the robust
(or non-robust) estimation method by the term “robust travel times (or non-robust travel times).”



Sustainability 2018, 10, 912 13 of 25

Table 5. Mixed logit (MXL) model using the non-robust travel times and observed data.

Value Std Error p-Value

Utility Parameters ASC transport mode car −0.842 0.034 0.000
ASC transport mode bicycle −1.890 0.037 0.000
ASC transport mode walk 0f

ASC transport mode PT −0.784 0.057 0.000
Travel time [min] −0.120 0.005 0.000

Variance of travel time [min] 0.128 0.005 0.000
Out-of-pocket cost [EUR/journey] −0.164 0.031 0.000

Model Staitistics
Adjusted ρ2 0.320

Final log-likelihood −11,316.893
Number of observations 19,201.000

f . . . fixed value.

Table 6. MXL using the robust travel times and observed data.

Value Std Error p-Value

Utility Parameters ASC transport mode car −0.368 0.032 0.000
ASC transport mode bicycle −1.570 0.035 0.000
ASC transport mode walk 0f

ASC transport mode PT −0.744 0.051 0.000
Travel time [min] −0.080 0.004 0.000

Variance of travel time [min] 0.101 0.004 0.000
Out-of-pocket cost [EUR/journey] −0.139 0.139 0.000

Model Staitistics
Adjusted ρ2 0.250

Final log-likelihood −12,775.901
Number of observations 19,201.000

f . . . fixed value.

The results obtained by the two models are consistent: the parameters have the expected negative
signs, all of them are statistically significant, and convergence was reached. The model estimated
on the non-robust travel times achieved higher Adjusted ρ2 compared to the model using the robust
travel times. One possible explanation might be due to the impact of (less-frequent) long distance
observations, which tend to be less accurately modelled by the RLRM. Having everything else equal,
the ASC suggests that walk is always the most preferred transport mode, and contrarily bicycle is the
least preferred transport mode.

4.1.1. Nested logit NL Estimation Results

In the second step, the RCS choice model defined by Equation (5) is estimated. As explained in
Section 2.4.2, the second step model uses the individual parameters of the preceding step to calculate
the Ai

p,d. Two candidate nest structures (Figure 6), which could reflect the correlations among the
alternatives sharing the same mobility resources, were tested. The first model groups together the
RCS alternatives with (PTf nest) and without (PTp nest) the PT season ticket ownership. The second
model groups together the RCS alternatives with (Bicycle nest) and without (No Bicycle nest) the
bicycle ownership.

Using the non-robust simulated input, the estimation of the model failed to reach convergence
with either of the proposed nest structures. The results are shown in Appendix A, Tables A1 and A2.
Using the robust simulated data, the two models did converge. However, the PT nest model has its
nest parameter equal to one suggesting that the nest structure is meaningless. The results can be found
in Appendix A, Table A3. The estimation of PT nest model failed even when starting from the results
of the successfully estimated Bicycle nest model. The most likely explanation of why the model with
PT nest structure failed (even if estimated on the robust travel times) is that the utility of including
a public transport season ticket in the RCS is not considered by decision-makers. This is reasonable
because the survey participants registered a relatively small number of travel activities by PT. It turns
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out that only the bicycle nest model estimated on the robust input delivers reliable results which are
presented in Table 7. Therefore, only this model qualified for subsequent analysis.

As expected, the fixed costs parameter is negative, indicating that people prefer less expensive
mobility resources. An increasing number of travel activities mostly disfavour the alternative with
the broadest set of mobility resources. In line with expectation, the important parameters associated
with the quality of access are all positive (the computed personal accessibility values according to
Equation (4) are negative). Among the importance parameters, the leisure activities are perceived the
most decisive. The personal accessibility to leisure activities is valued much higher than the other
considered types of PAS activities.
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Figure 6. Nested logit (NL) model nest structure recognizing the public transport (PT) season ticket
ownership (left panel); and the bicycle ownership (right panel).

Table 7. NL with the bicycle nest and the robust dataset.

Value Std Error p-Value

Utility
Parameters

Fixed cost [EUR/week] −0.017 0.003 0.000
Travel activity frequency RCS (car) 0f

Travel activity frequency RCS (car, bicycle) −0.065 0.008 0.000
Travel activity frequency RCS (car, PT) −0.009 0.012 0.000

Travel activity frequency RCS (car, bicyle, PT) −0.115 0.011 0.000
Importance of ‘escort’ PAS activities 0f

Importance of ‘leisure’ PAS activities 63.600 6.830 0.000
Importance of ‘other’ PAS activities 41.400 7.250 0.000

Importance of ‘shopping’ PAS activities 55.000 6.250 0.000
Importance of ‘work’ PAS activities 34.600 7.160 0.000

Model Paramters
Nest ‘bicycle’ 1f

Nest ‘no bicycle’ 3.880 0.394 0.000

Model Staitistics
Adjusted ρ2 0.690

Final log-likelihood −564.428
Number of observations 1352.000

f . . . fixed value.

4.1.2. Nested Generalized Extreme Values NGEV Estimation Results

The nested correlation structure used here is shown in Figure 7. The design essentially accounts
for the correlations in the unobserved term for the alternatives with the bicycle and PT season ticket
ownership. The latter is further divided into the alternatives correlating with the PT access.
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Figure 7. Nested generalized extreme values NGEV structure used in this study with two intermediate
nest levels. The upper nest level recognizes the correlations in unobserved term among the alternatives
sharing either bicycle or PT mobility resources. The lower nest level recognizes the correlations in
unobserved term among the alternatives granting either free (PTf) or paid (PTp) access.

The NGEV models were estimated for the non-robust and robust simulated datasets.
The estimation results are shown in Appendix A, Tables A4 and A5. In both cases, the nest parameters
associated with the PT nest were insignificant. Hence, the nesting structure could not be estimated.
In conclusion, only the model with the simpler nested structure presented in Table 7 should be used.

4.1.3. Estimation Summary

For the subsequent prediction and sensitivity analysis, the results in Table 7 will be used.
The estimation results showed that walk is the most preferred transport mode (ceteris paribus).
One possible explanation might lie in the trip distance distribution (discussed in Section 3.2).
There, it appeared that a substantial amount of travel activity records was trips shorter than or
equal to 10 min; other modes may have little added values over walking for such short trips indeed.
Additionally, the transport mode choice model accommodates only the influence of travel time and
out-of-pocket cost. The alternative specific constant covers factors influencing the transport mode
choice (e.g., parking space availability, travel comfort, travel time reliability) not covered by other
attributes in the model.

The NL results based on the complete dataset suggest that leisure and shop activities have a
stronger influence on the RCS choice than the other type of activities. Importantly, the model has
all importance parameters significant. It can thus be concluded that the estimation results confirm
the role of personal accessibility to PAS in the ownership decisions on mobility resources of people.
The importance of simulating robust travel times is clear from the estimation results as only these
simulated data led to valid model parameters.

4.2. Prediction

The successfully estimated model was used to predict the RCS market shares (the second
modelling step). The prediction is based on the same datasets as the estimation. The objective
of such exercise is primarily to validate the estimated models and assess their predictive power.

In order to inspect the quality of predictions, the predicted probabilities of choosing the observed
RCS alternatives were calculated for each individual. Figure 8 shows the distribution of the predicted
choice probabilities of the chosen alternative. As suggested in the study of [16], a distribution with its
centre located on the right-hand side (negatively skewed) suggests that the truly observed RCS choices
were mostly predicted with high probabilities.
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Next, the RCS market shares were predicted. Knowing the probabilities of choosing the RCS
alternatives for each individual, an RCS market share is equal to the mean of these probabilities for
the given RCS over the population. Alternatively, it is possible to simulate the market shares for
each individual separately using the probabilities of choosing the RCS alternatives. The advantage of
the latter approach is that the miss-matches (the differences between predicted and observed market
shares) can be calculated for each alternative. Hence, the capacity of the model to predict specific
choice set alternatives can be assessed. The simulation randomly samples the RCS choices using a very
large number of draws (exactly 100,000) per each individual. The draws are hereafter reported in a
contingency table where rows represent the observed choices and columns represent the predicted
choices. Each diagonal cell displays a correct prediction, that is, a model predicts the same RCS as it
was observed. On the contrary, off-diagonal cells show the mismatches.

Table 8 presents such contingency table. The distributions were scaled down to the original
sample size (the market shares were divided by the number of draws). Overall the model shows
good concentration on the diagonal of correct predictions (confirming the results shown in Figure 8).
Inspecting the distribution, it appears that the model had difficulties in predicting RCSCP. This is likely
due to the low number of RCSCP observations. Moreover, one recognizes certain false-associations
among the alternatives. For example, the model is prone to predict RCSCB instead of truly observed
RCSC. Similarly, the models predicted RCSCBP instead of RCSCB. This is likely caused by the fact that
the commitment to the RCS alternatives with a bicycle is marginal comparing to the provided quality
of access. That is: given the low fixed cost and low travel times that a bicycle provides for some trips,
one would rationally expect more users to own it in their RCS than what is actually observed. In reality,
however, the quality of access by bicycle might be (negatively) influenced by the factors other than
travel time alone and which were not considered in the study, for example, weather conditions.

Table 8. Contingency tables of predicted market shares of the robust NL (right panel).

Predicted SUM
(observ.)RCSC RCSCB RCSCP RCSCBP

Observed

RCSC 111.4 57.1 3.0 12.5 184.0
RCSCB 50.9 695.7 1.3 136.1 884.0
RCSCP 2.4 4.1 25.1 9.4 41.0
RCSCBP 3.2 91.7 16.7 131.4 243.0

SUM (predict.) 167.9 848.7 46.1 289.4 1352.0

Used acronyms: RCSC . . . restricted choice set (car), RCSCB . . . restricted choice set (car, bicycle), RCSCP . . .
restricted choice set (car, public transport), RCSCPB . . . restricted choice set (car, public transport, bicycle).
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In order to improve the accuracy of prediction and receive additional insights into ownership
decisions on mobility resources, the current analysis could in future be extended by distinguishing
population market segments [16] or by including socio-demographic variables as a complement to the
cost-related attributes considered in this paper.

4.3. Sensitivity Analysis

The aims of the sensitivity analysis here are two-fold. First, it provides an additional validation
level. A valid and coherent model should reasonably respond to input changes, for example, the market
shares should move in the expected direction and with an appropriate magnitude. Second, it manifests
the fundamental objective of the modelling exercise: the ability to forecast the mobility resource market
shares corresponding to supply modifications.

The sensitivity analysis scenarios were chosen to investigate the model’s response to changes in
travel and non-travel related factors. Four different scenarios were considered:

• “tt50”: the PT travel times were reduced by half.
• “tt200”: the PT travel times were doubled.
• “FC50”: the bicycle fixed costs were reduced by half.
• “FC200”: the bicycle fixed costs were doubled.

For the first two scenarios, the PT travel times were modified according to a given scenario,
and the terms Ai

p,d were re-calculated using the corresponding first model parameters. Using the

corresponding second step model parameters and newly calculated terms Ai
p,d, the predicted choice

probabilities and RCS market shares were produced. For the latter two scenarios, the datasets with the
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modified bicycle fixed costs were used together with the corresponding second step model parameters
to produce the predicted choice probabilities and RCS market shares.

Table 9 presents the differences in market shares predicted by the NL model, first for the reference
case and then for the four scenarios. The first row of the table shows the reference case, displaying
the difference between the predicted (without any modifications) and the observed market shares.
The values indicate the overall quality of modelled predictions on the reference data. In particular,
the smaller the differences are, the more accurately the models replicate the reality. Note that the
shown differences correspond to the values presented in Table 8. The explanation of market share
modifications for the four scenarios captured in the remaining rows of the table is straightforward.
Changing a property of RCS in a certain direction affects the market shares of other RCS without such
property (or having that property only as a secondary) inversely. For example, it is reasonable to
assume that for alternatives RCSCP and RCSCBP the PT transport mode stands—along with car—for
an important (primary) transport mode, recall Figure 4. Hence, it was expected to observe a gain
in market shares for these two alternatives and a drop for RCSC and RCSCB if the PT mode became
twice faster. Inversely, the market shares for RCSC and RCSCB expanded with slower PT travel times.
Such reactions are recorded in the second and third row of Table 9. Next, a bicycle is available only to
the RCSCB and RCSCBP. Therefore, it was expected that the discount in the bicycle fixed cost stimulates
the growth of RCSCB and RCSCBP. Contrarily, the rise in the bicycle fixed cost reduced the demand for
RCSC and RCSCP. These effects are shown in the fourth and fifth row of Table 9. The model sensitivity
to the changes of bicycle fixed cost is rather marginal. A likely explanation is that fixed cost of a
bicycle is low anyhow (in particular, it corresponds approximately to the price of a single PT season
ticket), hence the provided incentives were too small to yield sufficient leverage. As such, the models
predicted adequately what would happen due to the changes.

Table 9. Differences in market shares after supply modifications predicted by the NL model. The
values in brackets show the relative changes in market shares.

Scenario
Robust Data

RCSC RCSCB RCSCP RCSCBP

Simulation - Observed −16.2 (−1.2%) −35.3 (−2.6%) 5 (0.4%) 46.4 (3.4%)
tt50 - Simulation −2.4 (−0.2%) −82.8 (−6.1%) 27.7 (2%) 57.5 (4.3%)

tt200 - Simulation 22.6 (1.7%) 77.9 (5.8%) −34.1 (−2.5%) −66.4 (−4.9%)
FC50 - Simulation −1.7 (−0.1%) 1.5 (0.1%) −0.5 (0%) 0.6 (0%)
FC200 - Simulation 3.3 (0.2%) −3.1 (−0.2%) 0.9 (0.1%) −1.2 (−0.1%)

Used acronyms: RCSC . . . restricted choice set (car), RCSCB . . . restricted choice set (car, bicycle), RCSCP . . .
restricted choice set (car, public transport), RCSCPB . . . restricted choice set (car, public transport, bicycle).

5. Conclusions

The presented study examined the ownership decisions on mobility resources using a two-step
discrete choice model applied to the household travel survey conducted in Germany.

Prior to operationalizing the model, it was necessary to obtain non-observed (non-chosen) travel
times, which serve as an input to estimation of the model parameters. Unfortunately, the observed
travel behaviour data completely lacks the geospatial referencing. The proposed method simulates
the non-observed data via a linear regression model (LRM) relating trip distance to travel time for
each mode, adjusted to the local conditions (different LRMs were estimated for different regions).
LRM offers a simple, intuitive, easily applicable technique for generating travel times without the
need for accurate geospatial information. A detailed look at the travel time distributions for different
transport modes revealed the presence of outlying values. To suppress the impact of outliers, a robust
linear regression estimation method (RLRM) was employed. The positive effect of RLRM on the
simulated dataset was manifested throughout the process of model estimation and use. Although the
results obtained by the RLRM were positive, it can be argued that the assumption of constant speed is
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not entirely plausible. It might be especially problematic if the model would be implemented on an
urban level. (The relationship between travel time and distance is likely to be nonlinear there.) In the
future, it is worth investigating other nonlinear models for simulating the non-observed travel times.
Alternatively, future work could focus on how much better prediction performance of the model can
be if precise activity locations are available, and hence how much effort is justified for acquiring such
(privacy-sensitive) data. One step further would be to endogenise even the location of the activities,
as people might decide to do the same activity elsewhere depending on the mobility resources that are
available (e.g., shopping closer to home if no car is available anymore).

The mixed logit model (MXL) applied to the transport mode choices (the first modelling step)
was successfully estimated. This supports the refinement to the original Le Vine’s model proposed
in the study of Astegiano et al. (2016) that was motivated by the presence of correlations in the error
term over repeated choices by the same individual. Surprisingly, using the robust estimation method
for travel times for estimating the first step model showed a worse explanation of the variations in
people’s transport mode choices compared to the models built on the non-robust datasets. The most
likely cause of lower values ρ2 is due to the impact of (less-frequent) long-distance observations, which
tend to be less accurately modelled by the RLRM. The model found that walking is the most preferred
mode of transport (ceteris paribus). This is a reasonable finding, considering the substantial number of
short-distance trips reported in the survey and the limited set of factors in this study influencing the
transport mode choice.

The estimation process continued with searching for a valid second-step model. Exploring various
nested and cross-nested model structures, the only valid model found was the nested logit model
(NL) with the nests grouping the alternatives with and without a bicycle. The model was estimated to
have all parameters with the expected signs and ρ2 of 0.69. Inspecting the utility parameters, it turned
out that leisure and shop activities are the most decisive travel activities in PAS. Having significant
parameters for all the importance and frequency of PAS activities corroborates the proposed utility
function. The estimation manifested the positive effect of using the RLRM since all attempts to estimate
the model on the non-robust datasets failed to obtain consistent and valid results.

The next step was to investigate how well the valid model could predict market shares of
mobility-resource portfolios or “restricted choice sets” (RCS). A detailed analysis was provided using
prediction distributions and contingency tables. The model was found to satisfactorily predict the
aggregated market shares with only small deviations from the truly observed choices. The NL
produced an average relative error in RCS market shares of 1.2%. The combination of ownership of a
car and a public transport seasonal ticket was predicted somewhat less accurately. This is probably due
to the low number of observations of this combination and because all forms of public transport were
aggregated into one generic class. The model’s predictive power changes with the used input data.
Using the RLRM instead of the non-robust LRM yields a better prediction of truly observed choices.

The model was subsequently tested for sensitivity under various scenarios, investigating whether
it is possible to plausibly predict RCS shares when the supply characteristics are modified. Two different
changes were tested. The first was a change that affects the daily attractiveness of an option, hence
acting directly on the short-time horizon (i.e., travel time of public transport) and through this,
indirectly on the long-term horizon. The second was a change of fixed acquisition cost (i.e., the purchase
and maintenance costs for bicycles), hence acting directly on the strategic long-term horizon. Both types
of changes yielded plausible predictions by the NL model. Less attractive RCS models indeed lost
market shares in favour of RCS models that improved because of the change. Moreover, the magnitude
of the market shift was reasonably in proportion to that of the input change.

The contribution of this study has been to confirm the modelling concept proposed initially by [1].
Furthermore, this study has contributed to an elaborated utility function that delivers additional
insights into ownership decisions on mobility resources. The empirical results show that personal
accessibility and frequency of travel activities have significant effects on ownership decisions on
mobility resources. The proposed choice model structure overcomes systematic biases (unobserved
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factors over the repeated choice and among the nested structures) influencing the modelled transport
mode choice decisions. In addition, this research proposed and validated data simulation methods for
studies where the travel times of non-chosen alternatives are lacking in the data. The findings of this
study are relevant for practice because they allow for a way to relate the development of transport
services and policies to the true mobility needs of individuals.

The central topic of this research was to recognize the role of personal accessibility
(here represented by the PAS) on ownership by isolating its impact. However, for a realistic analysis,
other influencing factors, namely individual socio-economic background or spatial characteristics
of households, should be taken into consideration as well. It is worth noting that the modelling
framework can be extended to account for such effects. It is recommended to explicitly investigate the
associations of personal accessibility and exogenous factors in future studies.

Next, the definition of personal accessibility to PAS travel activity types (e.g., to work, leisure,
shopping) that we used in this study can be considered far from exhaustive. In fact, one might find
many possible dimensions of PAS relevant for describing the personal accessibility. For example,
some early attempts (not presented in this paper) with the model involved the accessibility to
short- and long-distance PAS travel activities. The idea was that the short- and long-distance PAS
travel activities encompass different characteristics (e.g., short-distance travel activities occurred
mostly during working days and on regular basis). Accordingly, the requirements on the mobility
resources associated with the respective PAS travel activities are different. So far, our experiment with
accessibility to the short- and long-distance PAS travel activities failed because it was not possible
to estimate the model with significant utility parameters. However, one might think about other
meaningful dimensions such as journey constraints, scheduling and the like.

Another improvement of the PAS definition could be directed in revising the value of the travel
time. In its current capacity, the model does implicitly consider congestion effects, albeit to a marginal
extent, by considering travel times in the network as part of the utility of travel. Naturally, the utility
of selecting a specific mode (and its relevance in the ownership portfolio) will be influenced by the
mode’s travel times on the network. Choosing a different utility function, which explicitly considers
congestion by means of a dedicated parameter, is always possible and will not affect the validity
or functionality of the overall approach. Naturally, choosing a behaviourally richer utility function
formulation also implies the need for more precise, richer data, which was not available through the
course of this study.

Besides the definition of variables included in PAS, the other important issue is the elasticity of PAS.
In this study, PAS was assumed to remain constant. However, it is plausible that people update their
travel patterns while changing their RCS. For example, a PT service on an influential connection (the one
that is perceived to be important) is improved. This may lead some of the users to add a PT seasonal ticket
to their RCS. These people may then also utilize PT for other activities in their PAS. Until now, the example
depicts the cases treated in this research. However, what if these users start doing more (or less) journeys,
or change locations of activities because they adapt to PT accessibility? To the best knowledge of the
authors, the understanding of how travel patterns vary with mobility-resource ownership is very limited.
It is interesting to consult the empirical findings from the UbiGo project, a pilot Mobility as-a-service
(MaaS) project targeting at Gothenburg residents in the city centre. Sochor, Strömberg, and Karlsson [17]
found a tendency of people to overestimate their prospective usage of transport modes. The UbiGo
users were asked to register their expected utilization of transport for an upcoming month. For example,
the users subscribed for 2220 days/month of PT service but utilized 1920 days/month. The difference
was even more pronounced for a car-sharing service that was utilized 620 h/month out of subscribed
for 904 h/month. It is intriguing to see the difference between the expectations and the actual usage.
A better understanding of PAS elasticity helps to improve the predictive power of the mobility-ownership
model. More importantly as presented in [17], the operators running innovative mobility services such as
MaaS will capitalize on better knowledge about prospective travel patterns because they can tailor their
operations to the current and prospective mobility needs of users.
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More research is needed to better understand the decision level of the household on using and
owning mobility resources. This research simplified the way resources are utilized within households
by modelling the related choices on a personal basis. Future extensions of the model should take into
account household dynamics and how individual mobility needs are conditional to inner-household
interactions. For example, the model should account for efficient utilization of resources within the
household, for example, sharing of a vehicle by multiple household members, or the use of one
member’s resource to escort another. Analysing the role of household members leads to a related
research question: what is a decision-maker level appropriate for this type of study? Does it make
sense to examine mobility resource markets at person level instead of household level?

Finally, the model estimation and prediction exhibited a dependency on data quality. Therefore, it
is suggested to explore more systematically other data simulation techniques applicable when
geospatial references are missing and non-chosen alternatives are not observed.
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List of Notations

Ui
d Utility of RCS alternative d perceived by individual i

Vi, non-travel
d Non-travel utility component associated with RCS alternative d perceived by individual i

Vi,travel
d Travel utility component associated with RCS alternative d perceived by individual i
εi

d Utility error term for individual i
λtravel Gumbel-distributed variance of the utility error term
Vi, non-travel

r Non-travel utility associated with mobility resource r perceived by individual i
Vi,travel

mji
Travel utility by mode m on travel activity j perceived by individual i

r = (0, 1, . . . , R) Mobility resources
Rd Set of mobility resources enabled by RCS alternative d
γji Importance of travel activity j belonging to the PAS of individual i
ji=(1, . . . , Ji) Travel activities included in the PAS of individual i
m = (1, . . . , M) Transport modes
Md Set of transport modes enabled by RCS alternative d
βtt∗ ∼ N

(
µtt,σtt) The travel-time parameter with mean µtt and the standard deviation σtt

βOPC Out-of-pocket cost parameter
tti

mji
Travel time in [minutes] for mode m on PAS travel activity j by individual i

OPCi
mji

Out-of-pocket cost in [EUR/journey] for mode m on PAS travel activity j by individual i

ASCm Alternative specific constant for transport mode m
βFC Fixed cost parameter
γp Importance parameter associated with p-type PAS activities
p PAS travel activity types defined by the trip purpose (to work, leisure, shopping, escort, other)
βN

d Travel activity frequency parameter associated with RCS alternative d
FCi

r Fixed costs of RCS alternative d in [EUR/week] perceived by individual i

Ai
p,d

The personal accessibility to p-type PAS activities provided by transport modes enabled by RCS
alternative d perceived by individual i

Ni
d Frequency of travel PAS activities done by individual i having RCS alternative d

t̂ti,b
nki

Simulated travel time in [min] for unobserved journey k by transport mode n of individual i in
region b

di,b
mji

Travel distance in [km] reported by individual i for transport m on journey j in region b
ab

1,n Linear regression parameter for simulated transport mode n and region b
ab

0,n Constant term of the linear regression model for simulated transport mode n and region b
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List of Acronyms

CNL Cross-nested Logit
EMPU Expected Maximum Perceived Utility
LRM Linear Regression Model
MAD Median Absolute Value Deviation
MNL Multinomial Logit
MOP German Mobility Panel (household travel survey)
MXL Mixed Logit
NGEV Nested Generalized Extreme Value Logit
NL Nested Logit
PAS Perceived Activity Set
PT Public Transport
PTf Public Transport Season Ticket nest (free access)
PTp Public Transport Season Single ticket (paid access)
RCS Restricted Choice Set
RLRM Robust Linear Regression Model
RMAE Relative Mean Absolute Error
RMSE Root Mean Squared Error
SD Standard Deviation

Appendix A

Table A1. NL with the PT nest and the non-robust simulated dataset.

Value Std Error p-Value

Utility
Parameters

Fixed cost [EUR/week] −0.042 0.005 0.000
Travel activity frequency RCS (car) 0f

Travel activity frequency RCS (car, bicycle) −0.113 0.011 0.000
Travel activity frequency RCS (car, PT) −0.046 0.023 0.050

Travel activity frequency RCS (car, bicyle, PT) −0.146 0.019 0.000
Importance of ‘escort’ PAS activities 0f

Importance of ‘leisure’ PAS activities 158.000 15.000 0.000
Importance of ‘other’ PAS activities 154.000 21.600 0.000

Importance of ‘shopping’ PAS activities 114.000 10.800 0.000
Importance of ‘work’ PAS activities 109.000 20.100 0.000

Model Paramters
Nest ‘PT free’ 1f

Nest ‘PT paid’ 1.000 1.80e + 308 1 *

Model Staitistics
Adjusted ρ2 0.696

Final log-likelihood −560.350
Number of observations 1352.000

* Non Significant at 95%; f . . . fixed value.

Table A2. NL with the bicycle nest and the non-robust simulated dataset.

Value Std Error p-Value

Utility
Parameters

Fixed cost [EUR/week] −0.009 0.003 0.000
Travel activity frequency RCS (car) 0f

Travel activity frequency RCS (car, bicycle) −0.021 0.007 0.000
Travel activity frequency RCS (car, PT) −0.033 0.013 0.010

Travel activity frequency RCS (car, bicyle, PT) −0.095 0.012 0.000
Importance of ‘escort’ PAS activities 0f

Importance of ‘leisure’ PAS activities 51.100 5.760 0.000
Importance of ‘other’ PAS activities 33.600 6.490 0.000
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Table A2. Cont.

Value Std Error p-Value

Importance of ‘shopping’ PAS activities 41.500 5.130 0.000
Importance of ‘work’ PAS activities 25.700 6.480 0.000

Model Paramters
Nest ‘bicycle’ 1.000

Nest ‘no bicycle’ 2.820 0.328 0.000

Model Staitistics
Adjusted ρ2 0.609

Final log-likelihood −564.428
Number of observations 1352.000

f . . . fixed value.

Table A3. NL with the PT nest and the robust simulated dataset.

Value Std Error p-Value

Utility
Parameters

Fixed cost [EUR/week] −0.052 0.007 0.000
Travel activity frequency RCS (car) 0f

Travel activity frequency RCS (car, bicycle) −0.156 0.015 0.000
Travel activity frequency RCS (car, PT) −0.045 0.028 0.11 *

Travel activity frequency RCS (car, bicyle, PT) −0.208 0.027 0.000
Importance of ‘escort’ PAS activities 0f

Importance of ‘leisure’ PAS activities 120.000 15.300 0.000
Importance of ‘other’ PAS activities 448.000 65.600 0.000

Importance of ‘shopping’ PAS activities 116.000 14.500 0.000
Importance of 'work' PAS activities 223.000 34.500 0.000

Model Paramters
Nest ‘PT free’ 1f

Nest ‘PT paid’ 1.000 1.80e + 308 1 *

Model Staitistics
Adjusted ρ2 0.794

Final log-likelihood −376.523
Number of observations 1352.000

* Non Significant at 95%; f . . . fixed value.

Table A4. NGEV using the non-robust simulated dataset.

Value Std Error p-Value

Utility
Parameters

Fixed cost [EUR/week] −0.006 0.001 0.000
Travel activity frequency RCS (car) 0f

Travel activity frequency RCS (car, bicycle) −0.071 0.010 0.000
Travel activity frequency RCS (car, PT) −0.014 −0.087 0.13 *

Travel activity frequency RCS (car, bicyle, PT) −0.087 0.011 0.000
Importance of ‘escort’ PAS activities 0f

Importance of ‘leisure’ PAS activities 73.000 10.500 0.000
Importance of ‘other’ PAS activities 220.000 46.800 0.000

Importance of ‘shopping’ PAS activities 70.800 9.790 0.000
Importance of ‘work’ PAS activities 87.400 16.600 0.000

Model Paramters
Nest ‘bicycle’ 1f

Nest ‘PT’ 10 ** 0.000 0.000
Nest ‘PT free’ 1f

Nest ‘PT paid’ 1.000 1.80e + 308 1.00 *
Node RCS (car, bicycle) membership to nest

‘PT paid’ 1.000 1.80e + 308 1.00 *

Node RCS (car, bicycle) membership to nest
‘Bicycle’ 0.000 1.80e + 308 1.00 *
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Table A4. Cont.

Value Std Error p-Value

Node RCS (car, bicycle, PT) membership to
nest ‘PT free’ 1.000 1.80e + 308 1.00 *

Node RCS (car, bicycle, PT) membership to
nest ‘Bicycle’ 0.000 1.80e + 308 1.00 *

Model Staitistics
Adjusted ρ2 0.820

Final log-likelihood −322.148
Number of observations 1352.000

* Non Significant at 95%; ** Outside or close to the boundaries.

Table A5. NGEV using the robust simulated dataset.

Value Std Error p-Value

Utility
Parameters

Fixed cost [EUR/week] −0.012 0.003 0.000
Travel activity frequency RCS (car) 0f

Travel activity frequency RCS (car, bicycle) −0.099 0.012 0.000
Travel activity frequency RCS (car, PT) −0.010 0.018 0.59 *

Travel activity frequency RCS (car, bicyle, PT) −0.106 0.015 0.000
Importance of ‘escort’ PAS activities 0f

Importance of ‘leisure’ PAS activities 69.400 10.800 0.000
Importance of ‘other’ PAS activities 159.000 39.500 0.000

Importance of ‘shopping’ PAS activities 81.900 11.100 0.000
Importance of ‘work’ PAS activities 91.400 17.200 0.000

Model Paramters
Nest ‘bicycle’ 1f

Nest ‘PT’ 10 ** 0.000 0.000
Nest ‘PT free’ 1f

Nest ‘PT paid’ 1.000 0.000 1 *
Node RCS (car, bicycle) membership to nest

‘PT paid’ 1.000 0.000 0.000

Node RCS (car, bicycle) membership to nest
‘Bicycle’ 0.0001 ** 0.000 0.000

Node RCS (car, bicycle, PT) membership to
nest ‘PT free’ 1.000 1.80e + 308 1 *

Node RCS (car, bicycle, PT) membership to
nest ‘Bicycle’ 0.000 1.80e + 308 1 *

Model Staitistics
Adjusted ρ2 0.870

Final log-likelihood −230.729
Number of observations 1352.000

* Non Significant at 95%; ** Outside or close to the boundaries; f . . . fixed value.
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