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Abstract: Algal outbreaks caused by excessive nutrients in lakes result in eutrophication.
Chlorophyll-a, as a primary productivity feature, is used as a representative index of algal presence
in lakes. Physicochemical parameters are known to affect the type and amount of nutrients in lakes,
which are related to eutrophication. In this study, factor analysis was used in conjunction with
principal component analysis to reveal the relationship between chlorophyll-a and its associated
parameters. The combination of these two methods helps to identify the main influencing parameters
by quantifying the respective extent of parameters using FA, after which the meaning is explained by
PCA. We investigate physicochemical parameters, including temperature, dissolved oxygen (DO), pH,
suspended solids, chemical oxygen demand (COD) and five-day biochemical oxygen demand, as well
as nutrients, such as ammonium, nitrite, nitrate, total nitrogen, and total phosphorus (TP). Yuqiao
Reservoir, an important drinking water source in northern China, has been affected by eutrophication
for years. Analysis was performed using daily monitoring data of physicochemical parameters and
chlorophyll-a concentrations collected from Yuqiao Reservoir between 2003 and 2014. Results show
that main parameters affecting chl-a concentrations are TP, temperature, DO, COD, and nitrogen,
with correlation coefficients of 0.977, 1.983, 1.797, and 1.595, respectively.

Keywords: eutrophication; Yuqiao Reservoir; principal component analysis; factor analysis;
environmental management

1. Introduction

Eutrophication caused by algal outbreaks can lead to a series of problems, such as the degradation
of water quality and massive death of organisms [1–4]. The input and accumulation of nitrogen and
phosphorus has been identified as the most important sources of eutrophication [5–7]. There is
a preliminary consensus that phosphorus dominates primary production in freshwater lakes,
while nitrogen controls the productivity of marine systems [6,8,9].

With increasing agricultural and industrial activities, eutrophication has become one of the
most serious environmental problems affecting freshwater lakes and reservoirs [10,11]. Studies
performed in lakes have revealed algal outbreaks are related to many factors, including nutrient
availability; physical and chemical parameters; and meteorological conditions. Biggs [12] analyzed
chlorophyll-a (chl-a) and soluble nutrient concentrations in 30 samples from the runoff-affected
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rivers and streams, and found that an increase in nutrients contributed to an increase in chl-a
and benthic algae biomass. Qiao et al. [13] analyzed the nutrient and chl-a concentrations in the
Bohai Bay, China, during the spring and summer seasons from 1995 to 2013, and identified a
negative correlation between dissolved inorganic nitrogen and chl-a concentrations. Furthermore,
the researchers concluded that phosphorus limited the growth of phytoplankton during the spring and
summer; thus, supporting the indirect relationship between physical parameters and eutrophication.
Genkaikato and Carpenter [14] demonstrated that mean depth and temperature strongly influenced
the susceptibility of lakes to shifts in dissolved phosphorus and phosphorus in sediments and lake
restoration. Jiang et al. [15] and Rixen et al. [16] found that physicochemical parameters, such as
temperature, dissolved oxygen, and light, could affect the deposition and release of phosphorus
in Taihu Lake by altering microenvironmental conditions, thereby influencing the zooplankton
community. Similarly, Xia et al. [17] proposed that climate parameters, including temperature,
precipitation, and solar radiation, exacerbated eutrophication events in Chinese lakes.

Chl-a, a basic indicator of phytoplankton abundance, is widely used to represent the presence of
algae and primary productivity of phytoplankton in eutrophication models [18–20]. The relationship
between chl-a and physical, chemical, and biological properties in lakes, rivers, and reservoirs
helps to simplify complex eutrophication studies. Doering et al. [18] evaluated the use of
phytoplankton-derived chl-a to estimate eutrophication in the Caloosahatchee Estuary and San Carlos
Bay. Zeng et al. [19] used chl-a as an indicator of eutrophication in Chagan Lake, the results of which
agreed with eutrophication remotely sensed monitoring data. By studying chl-a as a preliminary
indicator of eutrophication in Toyama Bay, Terauchi et al. [20] suggested that a combination of remotely
sensed data representing the level and trend of chl-a can be effectively used to assess eutrophication of
coastal waters, after a quality screening process with level 2 flags and validation with in situ chl-a data.

Previous research has indicated that eutrophication parameters generally have a non-linear
relationship with chl-a concentrations [21–25]. Statistical models, such as principal component
analysis (PCA), factor analysis (FA), cluster analysis, and multiple linear regression analysis [26,27],
have been used to identify and determine the cause of eutrophication events in a way that single factor
analysis cannot achieve [24,28,29]. When studying eutrophication parameters, Wang et al. [30] and
Zhao et al. [31] found FA was only able to explain its extraction variables, but could not determine
the quantitative relationship. A combination of PCA and radial basis function (RBF) was used by Liu
Xiaobo [32] to predict chl-a based on the liner relationship between the main parameters. In summary,
FA can identify key variables that explain the original data to the greatest extent. Moreover, PCA
can establish a quantitative model for chl-a, and the identify key variables to confirm their degree
of influence. Thus, in this study, FA is used in conjunction with PCA to investigate the influence of
physicochemical parameters on chl-a, and to determine the quantitative relationship between them.

The Yuqiao Reservoir, which is downstream of the Luan River, is an important industrial,
agricultural and domestic water source for the city of Tianjin, China. Since the late 1990s, eutrophication
has become problematic in the Yuqiao Reservoir, thus affecting the water quality of Tianjin. Analysis
conducted at different locations within the reservoir and during different periods, indicate that the main
parameters influencing eutrophication events include chemical oxygen demand (COD), pH, turbidity,
temperature (T), dissolved oxygen (DO), and nutrient availability. Most of the eutrophication research
conducted at the Yuqiao Reservoir has applied multivariate statistical analyses [31–33]. However,
long-term studies addressing the effects of physiochemical parameters on eutrophication events in the
reservoir are still required.

Compared to other lakes in China, such as Taihu Lake and Dianchi Lake, the Yuqiao Reservoir has
unique characteristics that influence eutrophication. A study investigating eutrophication in Tianchi
Lake in the Tianshan Mountains between June and August in 2014 showed that chl-a concentrations
ranged from 2.11 to 4.06 mg/L [34]. Moreover, chl-a concentrations have presented significant negative
correlations with water depth and conductivity, while significant positive correlations have been
identified with water temperature, pH, and dissolved oxygen concentrations. A study of four Yunnan
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Province plateau lakes, namely Dianchi Lake, Chenghai Lake, Fuxian Lake, and Yi Long Lake, found
that nutrient limitation in the four lakes was influenced by pollution sources, watershed area, lake
morphology, and hydrodynamic conditions [35].

In this study, chl-a, which is affected by physicochemical parameters, acted as an indicator of algae
presence. FA in combination with PCA was applied to identify the key parameters and set up a model
to determine the correlation coefficients of chl-a concentrations in water samples collected from the
Yuqiao Reservoir (China) between 2003 and 2014. With the ultimate goal of providing recommendations
for algal control in the Yuqiao Reservoir, the objectives of this study were to identify variables related
to phytoplankton primary productivity and quantify their influence using correlation coefficients.

2. Research Area

The Yuqiao Reservoir, an important reservoir in China, serves as the main drinking water source
for Tianjin. The reservoir was built in 1959, and became a significant part of the Luanhe-Tianjin
water diversion project. It is located 4 km east of Jixian County (40◦02′ N, 117◦25′ E) north of Tianjin
(Figure 1). The valley-type reservoir basin has an average depth of 4.3 m, and a total capacity of
1.559 billion cubic meters. The basin area is approximately 2060 square kilometers. The Sha River,
Lin River, and Li River, which make up 1627 km2 of river area, are the main tributaries associated with
the reservoir. The watershed is located in a temperate, semi-humid, continental, monsoon climate with
an average annual temperature of 10.4–11.5 ◦C. The average annual precipitation is 748.5 mm, with the
rainfall mainly occurring from June to September.

Figure 1. Yuqiao Reservoir location and water distribution monitoring site.

There are 129 villages situated along the reservoir. These villages influence the aquatic ecosystem
by introducing sewage and chemical fertilizers into the water through surface runoff from orchards
and farmlands. Additionally, pollutants from upstream and surrounding areas cause a continuous
input of nitrogen, phosphorus and other nutrients into the reservoir water, thus leading to increasingly
problematic eutrophication events [36]. Furthermore, the Yuqiao Reservoir is located in northern
China where precipitation is less than in southern parts of the country. Therefore, during periods of
water shortage, the concentration of phosphorus tends to increase, which also contributes to algal
outbreaks [36,37]. Eutrophication in the Yuqiao Reservoir directly influences drinking water safety in
the region, and can be a serious threat to the water quality of Bohai Bay.
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Water samples were collected between 2003 and 2014 from a center monitoring point in the
Yuqiao Reservoir (Figure 1). The chl-a concentrations were measured from these samples (Figure 2).
The chl-a concentrations decreased from 2003 to 2005, with the lowest in 2005 (approximately 5 mg/L).
The overall chl-a concentrations were relatively stable (approximately 5–15 mg/L) from 2006 to 2013;
however, in 2014, the chl-a levels increased to 12–19 mg/L.

Figure 2. Concentration of chl-a in the center of Yuqiao Reservoir.

3. Date and Method

3.1. Data Selection

The daily water quality data and chl-a monitoring data used in this study were collected from the
Yuqiao Reservoir central monitoring site (Figure 1), which is a national monitoring station of Tianjin
Monitoring Center. Parameters used for analysis were temperature (T), pH, suspended solids (SS),
dissolved oxygen (DO), chemical oxygen demand (CODcr), five-day biochemical oxygen demand
(BOD5), ammonium (NH4

+), nitrite (NO2
−), nitrate (NO3

−), total nitrogen (TN), and total phosphorus
(TP). All monitoring data complied with the national surface water quality standards (No. 838-988,
No. 838-002). The samples were collected and analyzed monthly, between March and November,
from 2003 to 2014.

3.2. Research Method

Data analysis was carried out using SPSS statistics software (version 22) (SPSS China, Shanghai,
China). Mapping was completed with Origin (version 9.0). Firstly, the data for the selected
physicochemical parameters were pre-treated to eliminate the influence of different units. Secondly,
due to the large amount of data, the original data was screened to test outliers by using the Rhine
criterion (PanTa) and supplement the data with multiple interpolation methods. Thirdly, PCA was
used in conjunction with FA in order to reduce dimensions. PCA determined the main physicochemical
parameters affecting chl-a concentrations in the Yuqiao Reservoir, while FA screened out secondary
environmental parameters. Finally, the results of the PCA and FA were combined and then used to
model the relationship between environmental physicochemical parameters and chl-a in the Yuqiao
Reservoir (Figure 3).
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Figure 3. Research method and technical route.

3.2.1. The Standardization of Data

Differences in initial variables will seriously affect PCA results. In order to eliminate the different
dimensions of error, it is necessary to normalize the data to the same reference system. Thus, the data
is treated with matrix X. The first step is data standardization using Formula (1).

Xk
j =

Xj − µj
√

σjj
(1)

Formula (1) is the standard deviation of the data, where Xk
j denotes the normalized value of the

jth index; Xj denotes the actual value of the jth index; µj is the average of the jth index; and σjj is the
variance of the jth index. After normalizing the original data using this equation, the normalized data
variance is 1, and the average value is zero.

3.2.2. Screening and Elimination Outliers

In order to eliminate error caused by the data acquisition process and other disturbances,
the standardized data was tested to determine if points should be removed or modified. Due to
the large number of measurements, the original data obtained from the Yuqiao Reservoir could be
screened and removed using the Rhine criterion. The mean X (Formula (2)) and residual error υi
(Formula (3)) were obtained using the following data: X1, X2, X3 . . . Xn. Next, the root-mean-square
deviation σ (Formula (4)) was calculated. When

∣∣Xi − X
∣∣ > 3 σ, the data is considered abnormal

and can be discarded. Thus, the original data of the Yuqiao Reservoir was standardized, where the
normalized data had a normal distribution with a mean of 0 and a variance of 1. The extracted data
was supplemented with multiple interpolation. Extreme differences in information could be smoothed
by exception value processing, thereby helping to arrive at scientific conclusions.

X =
1

n ∑n
i=1 Xi

(2)

υi = Xi − X (3)
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σ =

(
n

∑
i1

υ2
i /n− 1

)1/2

(4)

3.2.3. Principal Component Analysis

PCA, widely used in aquatic environmental and ecological modeling, provides an objective
method for working with a large number of biotic and abiotic data. Moreover, PCA simplifies the
data and describes a given multidimensional system using a small number of variables. According
to Morrison [38], the main component should account for approximately 75% of the total variance.
The relevant component is a parameter with an eigenvalue above 1 [39]. Application of the varimax
rotation of the normalized component loading allows us to obtain a clear system by maximizing
component load differences and eliminating invalid components [40,41]. Over the years, PCA has
been studied separately or in the case of original variables; however, more recently, PCA has been used
alone to simulate biological and ecological processes [42].

The model is as follows, with the sample matrix set as (5):

X =


x11 x12 . . . x1p
x21 x22 . . . x2p

...
...

...
...

xn1 xn2 . . . xnp


n∗p

(5)

Matrix (5) is the n * p matrix, where n is the number of samples and p is the number of variables.
Xij is the value of the jth variable in the ith sample.

The principal component analysis of matrix (5) can be combined into p synthesis variables
y1, y2, y3 · · · yp, as per Formula (6):

y1 = c11x1 + c12x2 + · · ·+ c1pxp

y2 = c21x1 + c22x2 + · · ·+ c2pxp

· · · · · ·
yp = cp1x1 + cp2x2 + · · ·+ cppxp

(6)

The relationship exists in (a):

c2
k1 + c2

k2 + · · ·+ c2
kp = 1 (k = 1, 2, 3, · · · , p) (7)

y1 and y2 (i 6= j, i, j = 1, 2, 3 · · · , p) in the formula are independent of each other, which is to say
that the correlation is zero. The comprehensive index factor y1 satisfies the variance maximum term for
all linear combinations of the Formula (6), which is the term of the maximum amount of information
representing the original data in the linear combination of Equation (6); y2 represents the larger
variance, while · · · yp represents the smallest variance. By using PCA, the comprehensive index factors
y1, y2, y3 · · · yp can be obtained. The information of these comprehensive index factors is gradually
reduced, which is known as variance of the original variable 1, 2, 3, · · · · · · , pth main component.

3.2.4. Factor Analysis

Factor analysis, first proposed by the British psychologist C.E. Spearman, refers to statistical
techniques that extract common factors from variable populations. Furthermore, it can find hidden
representative factors among many variables. The same nature of the variables into a factor can reduce
the number of variables and test the relationship between variables. The main purpose of factor
analysis is to find the correlation coefficient between the factor and the variable. These correlation
coefficients constitute the factor structure, whereas the correlation coefficient between the variables
is used to determine the factor load. Variance maximization rotation, promax oblique rotation and
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other methods can be applied to clarify the meaning of the linear regression, so as to achieve the linear
combination of coefficients and determine the practical significance of each factor.

The model is as follows: normalize the matrix as matrix X. The covariance matrix R expression is
as follows:

R = X′·X (8)

The vector matrix is (9), and UU’ = I.

R = U


λ1 0

λ2
. . .

0 λn

U′ (9)

Let
F = U’X, (10)

where F is the principal factor matrix; and Fα(α = 1, 2, 3 · · · , p) is the observed principal factor value of
the αth sample. According to the standard selection of m (m < n) main factors, the U matrix can be
divided into

U = [U1U2 · · ·UmUm+1 · · ·Un] (11)

Next, multiply U to the Formula (10):

X = U(1)F(1) + U(2)F(2) (12)

The term U(1)F(1) is the residual part, which is negligible. After omitting the residual part,
the factor model is obtained:

X = U(1)F(1) (13)

U(1) is the factor load matrix, and F(1) is the main factor matrix.
x1 = u11F1 + u12F2 + · · ·+ u1mFm

x2 = u21F1 + u22F2 + · · ·+ u2mFm

· · · · · ·
xn = un1F1 + un2F2 + · · ·+ unmFm

(14)

Finally, the factor load matrix and the R-factor model are obtained by normalizing uij in (14).
In the PCA and FA calculation, only second-order characteristics of the probability density

distribution function of input data are involved, they do not satisfy the independent conditions.
However, most of the important features of the input signal are often included in the higher-order
statistics that satisfy the degree of freedom; therefore, this approach only works if multivariate
observations are made from source signals with a Gaussian distribution. The Kaiser–Meyer–Olkin
(KMO) statistical test, with an index ranging from 0 to 1, is used to compare the simple correlation
coefficient and the partial correlation coefficient between variables. When the square sum of the
simple correlation coefficient between all the variables is far greater than the square of the partial
correlation coefficient, the KMO value is close to 1, thereby indicating that the correlation between the
variables is stronger. Bartlett’s spherical test is used to test the correlation between variables in the
matrix to determine if they are independent. Additionally, it determines if the correlation matrix is
an identity matrix, and if the independent factor analysis of each variable is invalid. SPSS test results
showed p < 0.05, indicating that there is a correlation between the variables. If the KMO test and
Bartlett’s spherical test can determine that the data follow a Gaussian distribution, then PCA and FA
are deemed applicable.
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Based on the introduction and description of PCA and FA, the PCA-based model obtained by
the variance accumulation and variables extracted by FA. The combination of PCA and FA is used
to determine the intrinsic relationship between chl-a and other physical and chemical parameters,
in order to explain the meaning of the extracted influencing variables and to illustrate the extent
of them.

4. Results

4.1. Factor Selection

Pearson correlation analysis was performed on the samples after eliminating the outliers by
multiple interpolation. The results are shown in Table 1.

Results show that chlorophyll-a does not have a significant correlation with BOD5, nitrate, and TN
(Table 1), indicating that these physicochemical parameters likely have little influence on algal growth.
Therefore, FA and PCA was performed on the normalized data of T, pH, DO, SS, CODCr, ammonium,
nitrite, TP, and the nitrogen–phosphorus ratio.

4.2. Identification and Quantification of Key Physicochemical Parameters

The results of the KMO and Bartlett sphericity tests and factor extraction are shown in
Tables 2 and 3. According to the result of the KMO test, which was 0.623, the correlation between
the data samples was good. In addition, the results of the factor extraction were greater than 0.5,
meaning that the interpretation of environmental factors was high. Thus, the sample was suitable for
factor analysis.

The correlation coefficient matrix was used to solve the eigenvalues. Four physicochemical
parameters were extracted according to the principle that the eigenvalues are more than 1, and the
cumulative explanatory degree is 71.097% (Table 4). Therefore, the variables used for analysis were
reduced from 12 to 4.

According to the rotation element matrix and the factor loading plot (Figure 4),
the physicochemical parameters (temperature, DO, TP, CODCr, NO2

−, NH4
+) circled in Figure 4

can be categorized into four explanatory variables. The first factor represents total phosphorus and the
nitrogen–phosphorus ratio; therefore, the first factor is referred to as the phosphorus control variable.
The second factor represents T and DO, which is referred to as the physical environmental variable.
The third factor is primarily explained by CODCr, while the fourth factor is mainly explained by
ammonium and nitrite; therefore, the fourth factor is referred to as the nitrogen control variable.

Figure 4. Factor loading plot.



Sustainability 2018, 10, 936 9 of 15

Table 1. Correlation coefficients between target physicochemical parameters and chlorophyll-a concentrations.

Coefficient T pH SS DO CODcr BOD5 NH4
+ NO2

− NO3
− TN TP N/P Chl-a

T 1 0.272 ** 0.351 ** −0.631 ** 0.326 ** 0.162 −0.038 −0.016 −0.184 −0.144 0.284 ** −0.241 * 0.501 **
pH 0.272 ** 1 0.202 −0.118 0.056 −0.145 −0.061 0.069 0.079 0.060 0.296 ** −0.247 * 0.248 *
SS 0.351 ** 0.202 1 −0.231 * 0.467 ** 0.041 0.082 −0.041 −0.298 ** −0.208 * 0.239 * −0.213 * 0.412 **

DO −0.631 ** −0.118 −0.231 * 1 −0.310 ** −0.122 −0.165 −0.166 0.189 0.118 −0.345 ** 0.206 * −0.485 **
CODcr 0.326 ** 0.056 0.467 ** −0.310 ** 1 0.181 0.214 * −0.108 −0.305 ** −0.241 * 0.354 ** −0.185 0.431 **
BOD5 0.162 −0.145 0.041 −0.122 0.181 1 0.077 −0.058 0.026 0.080 −0.049 0.103 0.095
NH4

+ −0.038 −0.061 0.082 −0.165 0.214 * 0.077 1 0.281 ** 0.144 0.133 0.043 0.032 0.291 **
NO2

− −0.016 0.069 −0.041 −0.166 −0.108 −0.058 0.281 ** 1 0.507 ** 0.506 ** −0.037 0.258 * 0.208 *
NO3

− −0.184 0.079 −0.298 ** 0.189 −0.305 ** 0.026 0.144 0.507 ** 1 0.902 ** −0.188 0.517 ** −0.157
TN −0.144 0.060 −0.208 * 0.118 −0.241 * 0.080 0.133 0.506 ** 0.902 ** 1 −0.068 0.519 ** −0.032
TP 0.284 ** 0.296 ** 0.239 * −0.345 ** 0.354 ** −0.049 0.043 −0.037 −0.188 −0.068 1 −0.568 ** 0.478 **

N/P −0.241 * −0.247 * −0.213 * 0.206 * −0.185 0.103 0.032 0.258 * 0.517 ** 0.519 ** −0.568 ** 1 −0.220 *
chl-a 0.501 ** 0.248 * 0.412 ** −0.485 ** 0.431 ** 0.095 0.291 ** 0.208 * −0.157 −0.032 0.478 ** −0.220 * 1

** Indicates that the correlation is significant at p < 0.01 level; * indicates that the correlation is significant at p < 0.05 level.
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Table 2. KMO and Bartlett sphericity tests.

Kaiser–Meyer–Olkin
Measuring Sampling Adequacy 0.623

Sphere calibration of Bartlett 192.999
Df 36

Significance 0.000

Table 3. Accumulated extraction of target parameters.

Communalities

Origin Extract

T 1.000 0.825
pH 1.000 0.576
SS 1.000 0.503

DO 1.000 0.704
CODcr 1.000 0.732
NH4

+ 1.000 0.796
NO2

− 1.000 0.787
TP 1.000 0.732

N/P 1.000 0.744

Table 4. Eigenvalues and cumulative variance.

Factor
Characteristic Value

Total Variation % Accumulation %

1 2.810 31.219 31.219
2 1.473 16.361 47.580
3 1.112 12.359 59.939
4 1.004 11.158 71.097
5 0.876 9.734 80.832
6 0.583 6.478 87.310
7 0.523 5.817 93.127
8 0.332 3.687 96.813
9 0.287 3.187 100.000

The eigenvector corresponding to the eigenvalue is rotated according to the maximum variation
method of Kaiser normalization. The relationship between the extracted variables and the
environmental parameters is as follows:

Z1 = −0.122X(T) + 0.398X(pH) − 0.068X(SS) + 0.081X(DO) − 0.075X(CODCr) + 0.057X(NH4
+

) +

0.008X(NO2
−

) + 0.491X(TP) − 0.513X(N/P);
(15)

Z2 = 0.563X(T) + 0.182X(pH) + 0.108X(SS) − 0.461X(DO) − 0.035X(CODCr) − 0.259X(NH4
+

) +

0.187X(NO2
−

) − 0.113X(TP) + 0.194X(N/P);
(16)

Z3 = −0.003X(T) − 0.372X(pH) + 0.368X(SS) − 0.018X(DO) + 0.550X(CODCr) + 0.280X(NH4
+

) −
0.293X(NO2

−
) + 0.040X(TP) − 0.042X(N/P);

(17)

Z4 = − 0.162X(T) + 0.061X(pH) − 0.066X(SS) − 0.098X(DO) + 0.019X(CODCr) + 0.610X(NH4
+

) +

0.572X(NO2
−

) + 0.113X(TP) + 0.071X(N/P);
(18)
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The extracted Z1, Z2, Z3, Z4, and chl-a were analyzed by regression analysis to determine
the correlation coefficient of the extracted factor on chl-a. The simulation results are as follows:
Chl-a = 0.977X1 + 1.983X2 + 1.797X3 + 1.595X4 + 7.963, R2 = 0.504.

The results show that there were four physicochemical parameters affecting chlorophyll levels in
the Yuqiao Reservoir between 2003 and 2014, namely, the phosphorus control variable, the physical
environmental variable, CODCr, and the nitrogen control variable. The correlation coefficients
were 0.977, 1.983, 1.797, and 1.595. Comparing the above four factors with the eigenvectors of the
environmental physicochemical parameters, the influence coefficients of T, pH, SS, DO, CODCr, TP,
and nitrogen–phosphorus ratio on chlorophyll-a were 0.733, 0.179, 0.704, −1.024, 0.876, 1.018, 0.764,
0.508, and −0.079, respectively. The relationship between nitrogen and nitrogen–phosphorus ratio
was negatively correlated with chl-a, while the other environmental physicochemical parameters were
positively correlated with chl-a.

5. Discussion

The main environmental parameters that affected chl-a concentrations in the Yuqiao Reservoir
between 2003 and 2014 were phosphorus, physical parameters (mainly T and DO), CODCr,
and nitrogen. The R2 of the PCA was greater than 0.5, so the result is valid. These results can
be compared to previously published literature that assessed physicochemical parameters influencing
chl-a concentrations in the Yuqiao Reservoir. For example, Liu et al. [32] studied the relationship
between environmental physicochemical parameters and chl-a concentrations in the Yuqiao Reservoir
from 2003 to 2005, and found that T, COD, and NH4

+ had the most influence on chl-a concentrations.
Furthermore, phosphorus was found to significantly affect chl-a concentrations in the Yuqiao Reservoir,
which is consistent with the conclusion that the Yuqiao Reservoir has been gradually transformed
into a phosphorus-controlled environment [43]. Therefore, it is necessary to study the sources of
phosphorus and control measures for pollution sources. Zhao and Cui [31] found that turbidity, chl-a,
alkalinity, and hardness were the main parameters influencing seasonal variability of water ecosystems
in northern China. Liu et al. [43] suggested that air pressure and pH were the main parameters
affecting chl-a levels in a study conducted between 1999 and 2012. Thus, the choice of environmental
parameters will have an impact on the results, depending on the period and seasons of study. Different
nitrogen and phosphorus concentrations influence the characteristics of algal populations [8]. The use
of nitrogen–phosphorus ratios is increasingly utilized in water quality research. Although the Yuqiao
Reservoir is a phosphorus-controlled reservoir, the results show that the effects of nitrogen cannot be
ignored [30,33,37]. According to the results, there is another difference about the phosphorus impact
parameter and the nitrogen influencing variable among the previous research on the eutrophication of
the Yuqiao Reservoir. It has been shown that the roles of nitrogen and phosphorus in eutrophication
events are complex. Utilization of different phosphorus and nitrogen compounds by phytoplankton is
a complex process that involves more than a single nutrient; thus, these parameters play an important
role in chl-a levels.

Nutrients are the most important physicochemical parameter affecting chlorophyll-a
concentrations in the Yuqiao Reservoir. The phosphorus control variable acts as the first influencing
factor, which agrees with the research of Li et al. [43] and other research indicating that the Yuqiao
Reservoir is phosphorus controlled. The nitrogen–phosphorus ratio is negatively correlated with
chl-a concentrations, and it is helpful to show that the effect of phosphorus is higher than that
of nitrogen. Research on Yuqiao Reservoir pollution sources have mostly focused on non-point
source pollution of nutrients in the periphery of the reservoir. Studies have shown that agricultural
runoff and livestock farming is mainly responsible for the non-point source nitrogen and phosphorus
pollution load from the area surrounding reservoir [44–47]. First, the residents are mainly engaged in
agricultural cultivation and fishing. As such, the resulting domestic sewage, livestock manure, solid
waste, pesticides, and fertilizers are discharged directly into the reservoir or enter through the surface
runoff [48]. Hence, regulating agricultural activities is the most significant method for controlling
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nitrogen and phosphorus input into the reservoir. Additionally, the influence of sediments in the
Yuqiao Reservoir, which are also an important source of nutrients and organic matter, has received little
attention. Wu et al. [49] studied the surface sediments of the Yuqiao Reservoir, and showed that the ratio
of available phosphorus to total phosphorus took accounted for the largest proportion, indicating that
endogenous phosphorus release is prominent. Hao-ping et al. [50] showed that sediment-associated
nutrients and their release was related to the type of land use surrounding the Yuqiao Reservoir.
Moreover, by analyzing the water quality of the reservoir from 2000 to 2010, Xie et al. [45] concluded
that ammonium and total phosphorus in sediments were characterized by poor biodegradability and
seasonal fluctuation, and ultimately had the largest contribution to eutrophication events. In order to
control the contribution of nutrients into the Yuqiao Reservoir, further endogenous studies need to
be conducted.

The physical environmental parameters affecting chl-a levels in the reservoir are T, DO, and CODcr.
Temperature positively correlates with chl-a, which is consistent with the growth of algae in the
summer, when the temperature is higher [17,45,51]. It is speculated that at different temperatures,
the environmental physicochemical parameters that affect chl-a concentrations in the reservoir are
different. Because DO has a negative correlation with chl-a, mechanical and chemical reagents could
be used to increase the dissolved oxygen content of the Yuqiao Reservoir, thereby reducing chl-a
levels. Physical parameters also have an impact on endogenous nutrients, which indirectly affect chl-a
concentrations [37,43,51]. A study from Cong et al. [52] showed that low DO and high pH have a
synergistic effect on the release of phosphorus in sediments, and that the release of nitrogen is mainly
affected by DO. Furthermore, CODcr represents the content of organic matter in water. High degrees
of eutrophication can provide ideal growth conditions for some aquatic plants, such as Potamogeton
crispus; however, this will increase necrotic organic matter, which subsequently consumes a large
portion of the DO [33,37,51]. Therefore, an effective eutrophication control measure is the timely
cleanup of floating plants and animals in the Yuqiao Reservoir.

In this study, we used a combination of FA and PCA to explore the relationship between chl-a
and its influencing physicochemical parameters in the Yuqiao Reservoir. This approach reduced
the potential environmental variables from 12 to 4, which greatly reduced the repetition of the
physicochemical parameters. Furthermore, a linear model between chl-a concentrations and the
physicochemical parameters was established, which provided a reliable basis for eutrophication
management in the center of the Yuqiao Reservoir. As demonstrated by previous studies, independent
application of the FA method can extract key physicochemical parameters while properly explaining
eutrophication; however, quantitative analysis is not possible. Conversely, PCA can identify the
influencing parameters but cannot explain their meaning [30,32,42]. Duan et al. [53] applied PCA/FA
to study Poyang Lake; however, this study only extracted the main influencing physicochemical
parameters, and did not built a quantitative model. In this study, the combination of FA and PCA
overcame the above shortfalls. The respective advantages of the two methods was exploited, and the
statistical dimension was reduced to simplify the analysis.

6. Conclusions

In this study, FA in conjunction with PCA was utilized to study the relationship between
chl-a, a representative index of algae in aquatic ecosystems, and its associated physicochemical
parameters and nutrients. Yuqiao Reservoir, acting as a significant drinking water source for Tianjin
in northern China, has been seriously affected by eutrophication. Daily monitoring data of the
physicochemical parameters and chl-a concentrations from 2003 to 2014 was studied. Quantitative
analysis of chl-a concentrations and the environmental physicochemical parameters indicates that
the main environmental parameters influencing chl-a levels are the phosphorus control variable,
the physical environmental variable, CODcr, and the nitrogen control variable. Furthermore, chl-a was
negatively correlated with DO, nitrogen, and phosphorus, while other physicochemical parameters
were positively correlated with chl-a.
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Control of nutrients, DO, and organic matter content can prevent algal outbreaks, which result in
elevated chl-a concentrations. Agricultural activities are important pollution sources in the Yuqiao
Reservoir. Compared to studies in other lakes, the Yuqiao Reservoir is unique, making it necessary
to carry out separate analysis of this ecosystem. Furthermore, to ensure safety of the drinking water
source, water quality management should be stringent and suitable to the specific needs of the reservoir.

In addition to identifying and quantifying the parameters affecting chl-a concentrations,
the combined FA/PCA method solves important problems, namely, that the actual meaning of the PCA
extraction variable is unknown, and that the extracted variable of FA cannot be quantified. However,
because the environmental physicochemical parameters are not completely extracted, this model can be
improved. Moreover, follow-up studies should investigate seasonal variation to clarify the relationship
between chl-a concentrations and environmental physicochemical parameters in the Yuqiao reservoir
at different temperatures.
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