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Abstract: With the development of e-commerce, competition among enterprises is becoming fiercer.
Furthermore, environmental problems can no longer be ignored. To address these challenges,
we devise a green closed loop supply chain (GCLSC) with uncertain demand. In the problem,
two conflict objectives and recycling the used products are considered. To solve this problem,
a mathematical model is formulated with the chance constraint, and the ε-constraint method
is adapted to obtain the true Pareto front for small sized problems. For larger sized problems,
the non-dominated sorting genetic algorithm (NSGA-II) and the multi-objective simulated annealing
method (MOSA) are developed. Numerous computational experiments can help manufacturers
make better production and sales plans to keep competitive advantage and protect the environment.

Keywords: supply chain design; bi-objective optimization; chance constraint; algorithms

1. Introduction

The development of e-commerce has markedly improved the circulation of commodities,
and consumers have more choices in their preference. Moreover, competition in the commodity
market is becoming fiercer. How to keep competitive has been a core problem for all enterprises.
Many companies will be gradually eliminated if they cannot effectively improve customer satisfaction
(the quality of products, logistics speed, etc.) and cut their cost (production cost, operation cost, etc.).
To address these challenges, many studies about the design of the supply chain were discussed over
several decades.

The problem of the supply chain is crucial for modern business management. Strictly speaking,
the supply chain is not a chain of businesses with one-to-one, business-to-business relationships,
but a network of multiple businesses and relationships [1]. Customer satisfaction is important for the
supply chain. For example, due to the fast logistics, many people prefer purchasing books on Amazon.
Such an advanced logistics service level has brought plenty of advantages to Amazon, including more
page views, higher customer satisfaction, which keep Amazon competitive with their counterparts.
However, environmental issues have been exposed to the public (e.g., electronic waste, white pollution)
with society’s development in recent years. Governments around the world promulgated relevant laws
and policies one after another. Some legislations have forced producers to take care of their end of life
(EOL) products [2]. As many people know, supply chain activities are the main sources of greenhouse
gas emissions [3]. The actual solutions urge companies to integrate used products’ recovery activities
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into their regular supply chain. A few enterprises like Jingdong (a famous on-line shopping platform
in China) have begun to recycle the used products for reproducing or reducing the waste to respond to
the sustainable development strategy. Corresponding to this phenomenon in real life, some research
works about green closed loop supply chain (GCLSC) have been conducted to address the challenges
deriving from the environment and customers.

The closed-loop supply chain (CLSC) is the basis of the GCLSC network design. CLSC has
gained considerable attention recently. According to the definition [4], CLSC includes forward
logistics and reverse logistics. Many manufacturing organizations have recognized the importance of
reverse logistics.

Based on these realities and the sustainable development strategy, a GCLSC is designed in this
paper considering the uncertain demand and the total cost in the whole supply chain. The contributions
of this paper may include the following.

1. To tackle the uncertainty in the demand, this paper propose a bi-objective model with the
chance constraint.

2. The model in this study considers customer satisfaction including the speed of logistics,
the quality of products and recycling used products.

3. An exact ε-constraint method is adapted to obtain the exact Pareto front for small-scale problems
after approximation.

4. An approximation method is introduced to handle the chance constraint.
5. A multi-objective simulated annealing method (MOSA) and non-dominated sorting genetic

algorithm (NSGA-II) are proposed for medium- and large-scale problems.

The remainder of this paper is arranged as follows. In Section 2, we review the related literature.
In Section 3, we describe the problem, and in Section 4, we formulate a bi-objective mathematical
model. Then, a case study solved with three methods is presented in Section 5. In Section 6, we make
the performance measurement. Conclusions are presented in Section 7.

2. Literature Review

This section is going to reconsider the literature that has concentrated on the supply chain, CLSC
and GCLSC in the last decade.

2.1. The Literature of Supply Chain

Zhang [5] studied a nonlinear complementarity formulation of the supply chain network
equilibrium problem. This is a uncertain demand problem, and there are multiple manufacturers who
produced a homogeneous product and retailers facing random demands from customers. A smoothing
Newton method that exploits the network structure was proposed, and convergence results were
presented. Some numerical examples were provided, and the algorithm was applicable.

Cardona et al. [6] addressed a problem of a two-echelon production distribution network with
multiple manufacturing plants, customers and a set of candidate distribution centers. The study
extended the existing literature by incorporating the uncertain demand and transportation mode
allocation decisions, as well as providing a network design within a two-level supply network setting.
A two-stage integer programming was proposed considering uncertain demand with two objectives,
where the inherent risk is modeled by scenarios. The choice of locations was decided firstly, and the
amount of production was ensured in the second stage. The method, which combined the ε-constraint
and the L-shape, was used to solve this problem.

Pereira et al. [7] investigated an integration of line balancing problem within the tactical decision
of the supply chain. An alternative formulation of the joint supply chain network design was proposed.
Then, the problem was decomposed into a sequence of a simple assembly line balancing problem and
a mixed integer linear programming model, which was easier to solve than the previously available
non-linear mixed integer formulation. The results showed that the new method was able to solve
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previously-studied models within a fraction of the reported running times. The paper analyzed the
influence of the influence of the cost structure, the demand and the structure of the assembly process
on the supply chain network.

Eskandarpour et al. [8] proposed a large neighborhood search heuristic to solve a problem
of a multi-product supply chain network consisting of four layers: suppliers, production plants,
distribution centers and customers. A mathematical model was proposed considering the capacities of
facilities and different transportation modes with the objective of minimizing the cost. This paper is
the first to use the large neighborhood search heuristic to solve the supply chain problem.

Habibi et al. [9] explored the problem of collection-disassembly in the reverse supply chain based
on the situation of more and more pollution. Two optimization models with or without coordination
were developed, minimizing the total cost. The experimental study showed that joint optimization of
collection and disassembly with coordination between them improved the global performance of the
reverse supply chain including lower total cost corresponding to the component demand satisfaction.

Supply chain optimization is a growing area due to the development of society. There are plenty
of papers on supply chains.

2.2. Related Research on the Closed-Loop Supply Chain

Kannan et al. [10] addressed a CLSC problem including two companies. A forward logistics
multi-echelon distribution inventory model was integrated with the reverse logistics multi-echelon
distribution inventory model to minimize the total cost. The problem was proposed based on two
manufacturers. Genetic algorithm and particle swarm optimization were proposed to solve this
problem. The proposed model was validated by two actual examples, and both examples were located
in the southern part of India. The results revealed that GA can get the optimum results. However,
in this paper, the demand was deterministic.

Turki et al. [11] investigated a problem with the optimization of a manufacturing-remanufacturing
transport warehousing CLSC, which was composed of two machines for manufacturing and
remanufacturing, manufacturing stock, purchasing warehouse, transport vehicle and recovery
inventory. The proposed system took into account the return of used products from the market.
The paper proposed a discrete flow model, minimizing the total cost. An optimization program, based
on a genetic algorithm, was developed to find the decision variables. The paper showed how the
optimal values of decision variables depend on different model indicators, such as transportation time
and unit remanufacturing cost.

Eleonora et al. [12] investigated the issue of minimizing the environmental burden of a CLSC,
consisting of a pallet provider, a manufacturer and several retailers. A simulation model was
developed with multi-objective optimization including some relevant environmental key performance
indicators and economic metrics. Results showed that the asset-retrieving operations contribute to the
environmental impact of the system to the greatest extent. The analysis was grounded on a real CLSC,
and the results provided practical indications to logistics and supply chain managers.

Zhao et al. [13] redesigned the supply chain of agricultural products in southwest China under
the Belt. A system dynamics simulation was conducted by using carbon emissions per product as an
indicator to obtain the optimal scenario for managerial practice and design an incentive mechanism
to drive supply chain operations. A case study was provided to demonstrate the application of the
system dynamics. However, the paper ignored the marginal cost of such reduction and other marketing
measures while focusing on the effects of incentive policies on the supply chain.

Huynh et al. [14] developed a mathematical framework to draw up an inventory replenishment
and capacity-planning problem for a CLSC with random returns. The objective was to minimize the
cost. The paper examined the impact of random loss of product in the supply chain system.

There are increasing studies on CLSC along with the increasingly prominent environmental
problems. The GCLSC is gradually becoming concerned and studied.
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2.3. The Studies on the Green Closed-Loop Supply Chain

Zohal et al. [15] addressed the problem of how a multi-objective logistics model in the gold
industry can be created and solved through an efficient meta-heuristic algorithm. The developed
model included four echelons in the forward direction and three stages in the reverse. First, an integer
linear programming model was developed to minimize costs and emissions. Then, in order to solve
the model, an algorithm based on ant-colony optimization was developed.

Soleimani et al. [16] addressed a design problem of GCLSC including suppliers, manufacturers,
distribution centers, customers, warehouse centers, return centers and recycling centers.
Three objectives were total profit optimization and reduction of lost working days due to occupational
accidents and maximizing responsiveness to customer demand, respectively. In order to solve
the model, genetic algorithm has been used, and multiple scenarios with different aspects have
been studied.

Liu et al. [17] addressed a problem of green supply chain management (GSCM). This study
proposed closed-loop orientation (CLO) as the appropriate strategic orientation to implement GSCM
practices successfully and developed a valid measurement of CLO. The structural equation modeling
method was used to examine the relationships among CLO, GSCM practice and environmental and
economic performance. The results showed that both CLO and GSCM have positive effects on the
environmental performance and economic performance.

Recently, green CLSC has become a revenue opportunity for manufacturers instead of a
cost-minimization approach [4]. Green CLSC has become a goal of many industries, which can
create a cleaner environment and give them competitive advantages. However, related literature
works that focus on GCLSC are very few. Additionally, in the above-mentioned studies, we can find
literature works that consider one or two similar constraints in common with this paper, but a study
with similar considerations to this paper has not been found. In this paper, we consider a GCLSC
problem with uncertain demand. We use some certain approximation to approximate the chance
constraint and propose two heuristics to solve it.

3. Problem Statement

According to the actual situations in famous e-commerce platforms in China, we divide the
forward logistics into four layers, i.e., manufacturers, first-class warehouses, second-class warehouses
and customers.

Most traditional supply chains are decentralized and nearly have no cooperation between
manufacturer and retailer. With the market becoming more and more complex, cooperation is essential
for every company in the free market. Hence, a centralized supply chain has gradually been adopted
by many companies, such as Mengniu Dairy (a famous dairy company in China), which has formed a
large dairy industry chain including milk source construction, research and development, production
and sales. With such a supply chain, Mengniu can integrate resources, improve the product quality
effectively and set a better corporate image. If the manufacturer and retailer cooperate with each other,
they can get more profits. Additionally, the retailer decides the retail price based on production cost,
operation cost and other costs instead of the wholesale price [4]. Concerning the profit distribution,
we assume that there is a revenue sharing contract between manufacturers and retailers.

Collecting a certain number of used products is an important part of GCLSC, and we can get
two facts from the paper [18]. Firstly, the amount of recycled products is related to the recycling
price. Secondly, it is economic to use traditional distribution centers as collection centers. Second-class
warehouses will recycle the used products mostly through the on-line channel.

Based on the classification of return-objects proposed by Fleischmann et al. [19] and the main
recovery options categorized by Thierry et al. [20], four kinds of basic reverse logistics networks can be
identified [21]: the directly reusable network (DRN), the remanufacturing network (RMN), the repair
service network (RSN) and the recycling network (RN). In this article, we focus on the recycling
network (RN).



Sustainability 2018, 10, 967 5 of 22

In our studied problem, customer satisfaction includes logistics speed, the quality of products
and the number of recycled used products. We mainly consider the defect coefficient of raw material,
which has an impact on the quality [22]. As for logistics, residence time in facilities and transportation
time between facilities should be considered. Different transportation modes, such as road, rail,
inland navigation or air transport, mean different transportation times. Although aircraft is fast,
it is also expensive. Moreover, the residence time is also related to the operation system of facilities.
For example, the application of an intelligent system can markedly reduce processing time.

As described in the preceding paragraph, the reverse logistics order is from the customer to the
second-class warehouses and then to the second-class warehouses and finally to the factory or others.
In this reverse logistics, second-class warehouses play a role in recycling, classifying, inspecting (money
can be given to customers after inspecting the used products such as computers) and transporting.
First-class warehouses take the responsibilities of centralizing, disposing and transporting. However,
in order to simplify the problem, we only consider the amount of used products recycled. As for the
whole supply chain, our objectives are minimizing the cost of the whole supply chain and maximizing
the satisfaction of customers. The cost includes production cost, operation cost, transportation cost
and construction cost. The second objective includes shipping time, products quality and recovery
quantity. The GCLSC designed in this article is as shown in Figure 1.

Figure 1. A green closed loop supply chain considering recycling.

Some assumptions for this problem are made as follows.

1. Our study mainly focuses on the choice of warehouses. Therefore, we assume that manufacturer
and customer locations are fixed and known.

2. The potential locations of all entities in the network are identified, and the numbers of facilities
that can be opened are limited.

3. We do not consider the transshipment of goods between the same echelon. We assume that
there are only flows between two different echelons. For example, the production cannot be
transported from one first-class warehouse to another first-class house, but can be transported
from a first-class warehouse to a second-class warehouse.

4. In order to simplify the model, the price of recycled products is consistent regardless of quality.

4. Mathematical Formulation

In this section, a model with the chance constraint is formulated for a generalized problem.



Sustainability 2018, 10, 967 6 of 22

4.1. Notation

Indices:

i: index of manufacturer;
j: index of first-class warehouse;
k: index of second-class warehouse;
l: index of customer demand point;
r: index of raw material;
o: index of operation;
q: index of transportation method;

Sets:

I: set of manufacturers;
J: set of first-class warehouses;

K: set of second-class warehouses;
L: set of customer demand points;
R: set of raw materials;
O: set of operations;
Q: set of transportation methods;

Problem parameters:

Dl : the products’ maximum quantity of customer demand point l;
dl : the products’ mean quantity of customer demand point l;
πl : the maximum probability the second-class warehouses fail to meet customer demand l

wir: the defect coefficient of raw material r to product quality of manufacturer i;
u: the upper bound of recycling price;
v: the lower bound of recycling price;

TCe: the unit transportation cost when recycling;
OPoi: the operation cost of manufacturer i using operation system o, non-negative;
OFoj: the operation cost of first-class warehouse j using operation system o, non-negative;
OSok: the operation cost of second-class warehouse k using operation system o, non negative;
TCqij: the unit transportation cost from manufacturer i to first-class warehouse j by vehicle q,

non-negative;
TFqjk: the unit transportation cost from first-class warehouse j to second-class warehouse k by

vehicle q, non-negative;
TSqkl : the unit transportation cost from second-class warehouse k to customer demand point l by

vehicle q, non-negative;
PCir: the production of manufacturer i cost using raw material r, non-negative;
tmoi: the stay time of products with the manufacturer i under the operation cost OPoi, non-negative;
t foj: the stay time of products in the first-class warehouse j under the operation cost OPoj,

non-negative;
tsok: the stay time of products in the second-class warehouse k under the operation cost OPok,

non-negative;
t1
qij: the transportation time from manufacturer i to first-class warehouse j under the transportation

cost TCqij, non-negative;
t2
qjk: the transportation time from first-class warehouse j to second-class warehouse k under the

transportation cost TCqjk, non-negative;
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t3
qkl : the transportation time from second-class warehouse k to customer demand point l under the

transportation cost TCqkl , non-negative;
pm: the recycling price;

b: parameter denoting the incentive sensitivity of return amounts;
β: parameter between zero and one, depending on the proportion of products that are possible

to recycle;
αm: parameter denoting the coefficient of the amounts of recycling products, which changes with

the recycling price;
δ: a scaling parameter to adjust the dimension of time;
γ: a scaling parameter to adjust the dimension of product quality;
ε: a scaling parameter to adjust the dimension of the amounts of recycling products;
a: positive integer, denoting the minimal traffic volume;
s: positive integer, denoting the minimal production of manufacturer i;
f : positive integer;
c: positive number, and c = u−v

f ;

h: positive integer, and h = [ pm−v
c ];

M: a sufficiently large positive number;

Decision variables:

Xir: the production yield of manufacturer i using raw material r;
Hqij: the amounts of products shipped from manufacturer i to first-class warehouse j using

transportation vehicle q;
FWqjk: the amounts of products shipped from first-class warehouse j to second-class warehouse k

using transportation vehicle q;
SWqkl : the amounts of products shipped from second-class warehouse k to customer demand point

l using transportation vehicle q;
Y1

j : binary variable; equals one if constructing first-class warehouse j, zero otherwise;

Y2
k : binary variable; equals one if constructing second-class warehouse k, zero otherwise;

Y3
oi: binary variable; equals one if manufacturer i uses operation system o, zero otherwise;

Y4
oj: binary variable; equals one if first-class warehouse j uses operation system o, zero otherwise;

Y5
ok: binary variable; equals one if second-class warehouse k uses operation system o,

zero otherwise;
T1

qij: binary variable; equals one if using transportation vehicle q between manufacturer i and
first-class warehouse j, zero otherwise;

T2
qjk: binary variable; equals one if using transportation vehicle q between first-class warehouse j

and second-class warehouse k, zero otherwise;
T3

qkl : binary variable; equals one if using transportation vehicle q between second-class warehouse
k and customer demand point l, zero otherwise;

T4
ir: binary variable; equals one if manufacturer i uses raw material r to produce products,

zero otherwise;
T5

m: binary variable; equals one if recycling used products with price m, zero otherwise;

4.2. Problem Model

min f1 = OBJ1 + OBJ2 + OBJ3 + OBJ4 (1)

Equation (1) is the first objective, i.e., minimizing the total costs.
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OBJ1 = ∑
q

∑
i

∑
j

TCqij × Hqij + ∑
q

∑
j

∑
k

TFqjk × FWqjk

+∑
q

∑
k

∑
l

TSqkl × SWqkl + TCe × β×∑
l

dl ×∑
m

αm ×Y5
m

(2)

Equation (2) states the transportation cost between facilities. The first three parts are the
transportation costs from manufacturers to first-class warehouses, from first-class warehouses
to second-class warehouses and from second-class warehouses to customer points, respectively.
The fourth part is the transportation cost of recycling used productions.

OBJ2 = ∑
i

∑
r

PCir × Xir (3)

Equation (3) states the production cost of productions.

OBJ3 = ∑
o

∑
i

OPoi ×Y3
oi + ∑

o
∑

j
OFoj ×Y4

oj + ∑
o

∑
k

OSok ×Y5
ok (4)

The four parts of Equation (4) are the operation cost of manufacturers, first-class warehouse and
second-warehouse, respectively.

OBJ4 = β×∑
l

dl ×∑
m
(αm × T5

m × pm) (5)

Equation (5) states the recycling cost.

max f2 = −OBJ5 + OBJ6 + OBJ7 (6)

Equation (6) is the second objective of this paper, i.e., maximizing the customers’ satisfaction
including shipping time, production quality and the amount of recycling productions.

OBJ5 = (∑
o

∑
i

tmoi ×Y3
oi + ∑

o
∑

j
t foj ×Y4

oj + ∑
o

∑
k

tsok ×Y5
ok+

∑
q

∑
i

∑
j

t1
qij × T1

qij + ∑
q

∑
j

∑
k

t2
qjk × T2

qjk+

∑
q

∑
k

∑
l

t3
qkl × T3

qkl)× δ

(7)

Equation (7) states the total transportation time from manufacturers to customer points.

OBJ6 = γ× (1−∑
i

∑
r

wir) (8)

where γ is to make the value of OBJ6an order of magnitude with the value of OBJ5. According to wir,
which denotes the the defect coefficient of raw material r for product quality [22], we can assume that
1− wir denotes the quality. The bigger the 1− wir, the better the quality.

OBJ7 = ε× β×∑
l

dl ×∑
m
(αm × T5

m) (9)

where ε is to make the value of OBJ7 an order of magnitude with the value of OBJ5. According to the
existing paper [18], the coefficient of recycling products is 1− e−bp, where b is the incentive sensitivity
of return amounts and pm is the recycling price. However, in this paper, in order to linearize the model,
we divide the region of price, which is between v and u, into n parts, if v + hc ≤ pm ≤ v + (h + 1)c,

α =
∫ v+(h+1)c

v+hc (1−e−bpm )dpm
c and pm = hc+(h+1)c

2 + v.
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Hqij −Y1
j ×M ≤ 0 q ∈ Q, i ∈ I, j ∈ J (10)

The constraint (10) ensures the number of products, which are shipped from manufacture i to
first-class warehouse j, equal to zero if first-class warehouse j is not constructed.

FWqjk −Y1
j ×M−Y2

k ≤ 0 q ∈ Q, j ∈ J, k ∈ K (11)

FWqjk − (1−Y1
j )×M−Y2

k ×M ≤ 0 q ∈ Q, j ∈ J, k ∈ K (12)

FWqjk −Y1
j ×M− (1−Y2

k )×M ≤ 0 q ∈ Q, j ∈ J, k ∈ K (13)

The constraints (11)–(13) ensure the number of products, which are shipped from first-class
warehouse j to second-class warehouse k, equal to zero if first-class warehouse j or second-class
warehouse k is not constructed.

SWqkl −Y2
k ×M ≤ 0 q ∈ Q, k ∈ K, l ∈ L (14)

The constraint (14) ensures the number of products, which are shipped from second-class
warehouse k to customer demand point l, equal to zero if second-class warehouse k is not constructed.

Hqij − T1
qij ×M ≤ 0 q ∈ Q, i ∈ I, j ∈ J (15)

T1
qij × a− Hqij ≤ 0 q ∈ Q, i ∈ I, j ∈ J (16)

The constraints (15) and (16) limit the minimum amount of traffic between manufacturers and
first-class warehouses, in other words, the number of transshipment productions are no less than a.

FWqjk − T2
qjk ×M ≤ 0 q ∈ Q, j ∈ J, k ∈ K (17)

T2
qjk × a− FWqjk ≤ 0 q ∈ Q, j ∈ J, k ∈ K (18)

The constraints (17) and (18) limit the minimum amount of traffic between first-class warehouses
and second-class warehouses.

SWqkl − T3
qkl ×M ≤ 0 q ∈ Q, k ∈ K, l ∈ L (19)

T3
qkl × a− SWqkl ≤ 0 q ∈ Q, k ∈ K, l ∈ L (20)

The constraints (19) and (20) limit the minimum amount of traffic, which is a, between second-class
warehouses and customer points.

∑
q

∑
j

Hqij = ∑
r

Xir i ∈ I (21)

∑
q

∑
i

Hqij = ∑
q

∑
k

FWqjk j ∈ J (22)

∑
q

∑
j

Hqjk = ∑
q

∑
l

SWqkl k ∈ K (23)

∑
i

∑
r

Xir = ∑
q

∑
i

∑
j

Hqij (24)

∑
q

∑
i

∑
j

Hqij = ∑
q

∑
j

∑
k

FWqjk (25)

∑
q

∑
j

∑
k

FWqjk = ∑
q

∑
k

∑
l

SWqkl (26)



Sustainability 2018, 10, 967 10 of 22

The constraints (21)–(26) ensure the flow is balanced.

Pr(∑
q

∑
k

SWqkl ≥ Dl) ≥ 1− πl (27)

The constraint (27) ensures that, with a probability of at least 1− πl , the amounts of products
shipped from second-class warehouses to customer demand point l are sufficient to meet the demand
of customer l.

v ≤ pm ≤ u (28)

The constraint (28) states the price limitation.

Xir − T4
ir ×M ≤ 0 r ∈ R, o ∈ O, i ∈ I (29)

T4
ir × s− Xir ≤ 0 r ∈ R, o ∈ O, i ∈ I (30)

The constraints (29) and (30) ensure the production cost r and the deficient coefficient wr equal
zero if raw material r is not used.

∑
o

Y3
oi = 1 i ∈ I (31)

∑
o

Y4
oj = Y1

j j ∈ J (32)

∑
o

Y5
ok = Y2

k k ∈ K (33)

The constraints (31)–(33) state one facility can only choose one operation systems.

∑
q

T1
qij = Y1

j i ∈ I, j ∈ J (34)

∑
q

T2
qjk ≤ Y1

j j ∈ J, k ∈ K (35)

∑
q

T2
qjk ≤ Y2

k j ∈ J, k ∈ K (36)

∑
q

T2
qjk ≤ 1 + (2−Y1

j −Y2
k )×M j ∈ J, k ∈ K (37)

∑
q

T2
qjk ≥ 1− (2−Y1

j −Y2
k )×M j ∈ J, k ∈ K (38)

∑
q

T3
qkl = Y2

k k ∈ K, l ∈ L (39)

The constraints (34)–(39) ensure only one vehicle can be chosen between facilities.

∑
r

T4
ir = 1 i ∈ I (40)

The constraint (40) guarantees only one raw material can be chosen when producing.

∑
m

T5
m = 1 m ∈ f (41)

The constraint (41) states only one price can be chosen when recycling.

∑
q

∑
k

SWqkl ≥ dl + µl (42)
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f (µl) = minλ>0(e−λµl /dl (1 +
E[Z2

l ]

b2
l

(eλbl − λbl − 1))− πl) (43)

f (µl) = 0 (44)

According to the existing research [23], we use the constraint (42) to approximate the
constraint (27). µl is some real number, and the value of µl can be found by Equations (43) and
(44); where Zl is a random variable to model deviations from the mean demand of demand point l,
and λ is a positive number. In addition, it is assumed that there exists some positive real number bl
such that Zl ≤ bl with probability one.

wir, Hqij, FWqjk, SWqkl ≥ 0

r ∈ R, q ∈ Q, i ∈ I, j ∈ J, k ∈ K, l ∈ L (45)

The constraint (45) gives the range of variables.

5. Solution Approach

In this section, we introduce three methods to solve the linear model after approximation. The first
method is the ε-constraint method, which is suitable for small-scale problems. The other two methods
are heuristics including NSGA-II and MOSA suited for larger scale problems.

5.1. ε-Constraint Method

From the above description, we can know that the two objectives are conflicting: one objective
increases, while the other objective decreases. Therefore, there cannot exist a single optimum that
simultaneously optimizes both objectives, but a set of Pareto optimal solutions. If a feasible solution is
not dominated by any other feasible solution, it is called Pareto optimal or non-dominated, and its
objective vector is called as a non-dominated point. All the non-dominated points make up the Pareto
front, denoted by z.

The ε-constraint method has been widely used to solve the multi-objective problem since its
incipient practice [24]. The structure of the feasible solution cannot affect the usage of the ε-constraint
method, whose basic idea is to focus on a single objective and restrict the remaining objectives.
Therefore, we need to obtain the minimum and maximum of the objective that is taken into account as
a constraint.

5.1.1. The ε-Constraint Method Framework

For a bi-objective optimization problem, the following concepts are needed when using the
ε-constraint method [25].

Ideal point:

Let f I=( f I
1 , f I

2 ) with f I
1 = min{ f1(X)} and f I

2 = min{ f2(X)}, X ∈ ZV ;

Nadir point:

Let f N=( f N
1 , f N

2 ) with f N
1 = min{ f1(X) : f2(X) = f I

2} and f N
2 = min{ f2(X) : f1(X) = f I

1},
X ∈ ZV ;

Extreme point: f E ={ f I
1 , f N

2 } and f E = { f N
1 , f I

2 } are two extreme points on the Pareto front.

In this paper, the two objectives are total cost and the combination of time, quality and the
amounts of recycled used products. The total cost could be regarded as a constraint in the design of
the method. The detailed exact ε-constraint method is shown as follows:

1. Compute the ideal point fI = ( f I
1 , f I

2 ) and nadir point fN = ( f N
1 , f N

2 ).
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2. Set z′ = {( f N
1 , f I

2 )} and ε = f N
1 −4 (4 = 2000 for this problem).

3. While ε ≥ f I
1 , do:

(a) solve the ε-constraint problem with Obj1 ≤ ε as a constraint
and the Obj2as the single objective function to optimality,
and add the optimal solution value ( f ∗1 , f ∗2 ) to z′.

(b) set ε = f ∗1 −4.

4. Obtain the Pareto front z by removing dominated points from z′, if existing.

5.1.2. An Example with the ε-Constraint Method

To illustrate the solution procedures of the problem by the ε-constraint method with CPLEX 12.6,
we consider a small instance with I = 2, J = 4, K = 6, L = 14, respectively. In other words, there are
two manufacturers, four first-class warehouses, six second-class warehouses and fourteen demand
points. We assume that two types of raw materials, two types of operation systems and three types of
transportation methods, which can be chosen by managers.

We obtain the ideal point ( f I
1 , f I

2 ) = (84,995, −70,748) and nadir point ( f N
1 , f N

2 ) = (175,177,
−31,913). Considering the customers’ satisfactory minimization as the only objective and total cost,
the iteration procedure is carried out from the extreme point (175,177, −70,748). Finally we obtain 29
non-dominated solutions, listed in Columns 2 and 4 of Table 1. The distances between each solution
and its corresponding ideal value are presented in Columns 3 and 5. When the value of customers’
satisfaction increases progressively to approach the ideal value, the distance between the resulting cost
and its ideal value grows consequently.

Table 1. Summary of the dominant solutions.

Solution ID
Objective 1 Objective 2

Cost ∆Opt1 Satisfaction ∆Opt2

(1) min Obj.2 84,995 0.00% 31,913 −54.89%
(2) Obj.1 ≤ 87177 85,292 0.35% 48,263 −31.78%
(3) Obj.1 ≤ 89177 87,292 2.70% 54,593 −22.83%
(4) Obj.1 ≤ 91177 89,394 5.18% 56,103 −20.70%
(5) Obj.1 ≤ 93177 91,394 7.53% 57,621 −18.55%
(6) Obj.1 ≤ 95177 93,393 9.88% 58,951 −16.67%
(7) Obj.1 ≤ 97177 95,394 12.23% 60,111 −15.04%
(8) Obj.1 ≤ 99177 97,395 14.59% 61,386 −13.23%
(9) Obj.1 ≤ 101177 99,395 16.94% 62,521 −11.63%
(10) Obj.1 ≤ 103177 101,395 19.30% 63,578 −10.13%
(11) Obj.1 ≤ 105177 103,395 21.65% 64,358 −9.03%
(12) Obj.1 ≤ 107177 105,395 24.00% 64,928 −8.23%
(13) Obj.1 ≤ 109177 107,395 26.35% 65,738 −7.08%
(14) Obj.1 ≤ 111177 109,412 28.73% 66,368 −6.19%
(15) Obj.1 ≤ 113177 111,412 31.08% 66,848 −5.51%
(16) Obj.1 ≤ 115177 113,411 33.43% 67,328 −4.83%
(17) Obj.1 ≤ 117177 115,412 35.79% 67,808 −4.16%
(18) Obj.1 ≤ 119177 117,412 38.14% 68,258 −3.52%
(19) Obj.1 ≤121177 119,412 40.49% 68,678 −2.93%
(20) Obj.1 ≤ 123177 121,451 42.89% 69,068 −2.37%
(21) Obj.1 ≤ 125177 123,452 45.25% 69,398 −1.91%
(22) Obj.1 ≤ 127177 125,453 47.60% 69,728 −1.44%
(23) Obj.1 ≤ 129177 127,547 50.06% 70,058 −0.98%
(24) Obj.1 ≤ 143177 141,617 66.62% 70,268 −0.68%
(25) Obj.1 ≤ 147177 145,638 71.35% 70,328 −0.59%
(26) Obj.1 ≤ 157177 156,399 84.01% 70,478 −0.38%
(27) Obj.1 ≤ 161177 160,408 88.73% 70,538 −0.30%
(28) Obj.1 ≤ 171177 171,157 101.37% 70,688 −0.08%

Ideal 84,995 0.00% 70,748 0.00%
Nadir 175,177 106.10% 31,913 −54.89%
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It is very time-consuming when using the ε-constraint method to solve this small-scale instance,
not to mention the middle or large scales. For real-world practice, it is essential to solve the much
larger scale problem. Hence, developing heuristic algorithms is extremely necessary.

5.2. Multi-Objective Simulated Annealing Method

In order to address the complexity of problems, Kirkpatrick et al. [26] proposed simulate annealing
(SA) first, which used the concept of the annealing process to seek for the optimal solution from the
feasible domain. This algorithm iterates from a set of initial solutions with a high temperature, Tmax,
and finishes with a final temperature, Tmin. The new solutions generated in each iteration are received
with probability, prob, whose value is a function of the temperature. An annealing rate α ∈ (0, 1) is
used to determine the speed of annealing. The bigger value of α means optimizing at a slower pace,
which can approach the optimal solutions gradually.

Since there is more than one objective in this paper, a modified SA algorithm is developed to find
appropriate Pareto solutions rather than getting one result used in a single objective environment.
Based on the framework of Bandyopadhyay et al. [27], the multi-objective simulated annealing (MOSA)
method is used to solve our problem. The procedure of MOSA is indicated in Figure 2.

Figure 2. The procedure of multi-objective simulated annealing (MOSA).

5.3. Non-Dominated Solution Genetic Algorithm

NSGA-II is an evolutionary algorithm, integrating a fast non-dominated sorting procedure and
an elitist-preserving approach. The approach is widely used to solve the multi-objective problems
effectively, and the procedure is shown as Figure 3. In this paper, the chromosome can be divided into
three parts. The first part and second are binary variables, which denote the facilities and operation
system (including transportation modes), respectively. The third part is the number of productions
between facilities. The genetic operations are as follows.
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• Genetic Operator 1:

1. Randomly select two chromosomes;
2. Exchange the facility locations of the two chromosomes;
3. Change the second and third parts accordingly;
4. Recalculate the objectives.

• Genetic Operator 2:

1. Randomly select two chromosomes;
2. Exchange the facility operation system of the two chromosomes;
3. Change the first and third parts accordingly;
4. Recalculate the objectives.

• Genetic Operator 3:

1. Randomly select a chromosome;
2. Change the number of transportation production;
3. Change the first and second parts accordingly;
4. Recalculating the objectives.

Figure 3. The procedure of non-dominated sorting genetic algorithm (NSGA-II).

6. Performance Measurement

In this subsection, we first tune the parameter values in NSGA-II and MOSA. Then, we make
a comparison between the two proposed algorithms using three indices, mainly in two aspects:
the distance from the true Pareto front and the diversity of the solutions. All these algorithms are
coded in MATLAB R2014b and are conducted on a PC with a 3.90-GHz Intel Core CPU processor and
4 GB RAM memory.
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6.1. Introduction of Indicators

Three indicators are introduced in this section for algorithms’ performance measurement,
which have been widely adopted in previous studies. The first one is distance from reference set
indicator ID. It is used to measure the ‘distance’ between the approximate Pareto front and the true
Pareto front [28]. A smaller ID means the approach performs better. For an approximate non-dominated
solution set A and a reference solution set R, ID is calculated by the following expression:

ID(A, R) =
1
|R| ∑

y∈R
min
x∈A

d(x, y)

where d(x, y) presents the distance between solutions x (in set A) and y (in set R),

d(x, y) =

√√√√ M

∑
i=1

( fi(x)− fi(y)
f max
i − f min

i

)2

where M is the number of objectives and f min
i , f max

i , i ∈ [1, M] are minimum and maximum values of
the i-th objective in set R, respectively.

More precisely, the reference set R in the indicator expression refers to the true Pareto front.
However, it is extremely difficult to obtain the true Pareto front, especially for large-scale instances.
In this situation, R is formed by the total solutions obtained from the two heuristics.

The second one is the average e-dominance D. For two given non-dominated solution sets A, B,
it is used to get the dominance relations between them [29]. The indicator D is defined below.

D =
1
|R| ∑

y∈R

(
min
x∈A

max
{ f1(y)

f1(x)
,

f2(y)
f2(x)

})

where y ≥ x represents the relation that solution y dominates solution x. C(A, B) ∈ [0, 1],
where C(A, B) = 0 means that all the solutions in A are dominated by the solutions in B
and C(A, B) = 1 means the opposite. Both C(A, B) and C(B, A) should be calculated for sets A
and B, and A is judged better than B in the set coverage indicator when C(A, B) > C(B, A).

The third one is maximum spread indicator MS. This indicator illustrates the spread performance
of the non-dominated solution set [30]. It is calculated by comparing with the reference set R mentioned
in the first indicator, and set A is considered to cover a wider range of objective values when the
indicator achieves a larger value.

MS(A) =

√√√√ M

∑
i=1

(
max
x∈A

fi(x)− f min
i

f max
i − f min

i
−min

x∈A

fi(x)− f min
i

f max
i − f min

i

)2

6.2. Parameter Tuning

The performance of MOSA partly depends on the parameter set in the algorithm, including
population size, the initial temperature, iteration generations and the coefficient of cooling.
Since parameters of the proposed heuristics should be tuned under appropriate scale problem firstly,
in our study, our tuning scale combination is I = 2, J = 4, K = 6, L = 14. We consider all four
parameters mentioned above and carry out 36 parameter combinations with the following values:
pop = {200, 250}, Tm = {200, 250}, iter = {20, 25, 30}, temp = {0.94, 0.96, 0.97}.

The exact Pareto fronts of these instances can be obtained with the ε-constraint method. Parameter
analysis using the exact Pareto front as the reference set is desirable and accurate. For each instance
combination, ten independent runs are implemented considering the probability randomness of the
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obtained results. The mean value of the distance from reference set indicator ID is calculated for each
parameter combination.

The results are listed in Table 2, and we select the parameter combination with the smallest
ID value for the MOSA, marked in bold, which is 0.1961; where ID is indicated in the following
experiments, i.e., the parameters of MOSA are set as {pop = 250, Tm = 250, iter = 20, temp = 0.97}.

The parameters, population size, the number of generations, the probability of cross and the
probability of mutation have an influence on the performance of NSGA-II. In this paper, we take the
four parameters mentioned above into account and consider the 36 combinations with the following
values: pop = {150, 200}, gen = {100, 150}, pc = {0.2, 0.5, 0.8}, pm = {0.2, 0.5, 0.8}. Similar to
MOSA, the reference set is the true front obtained by the method of ε-constraint, and we get the best
parameter combination through calculating the mean value of indicator ID. The results are listed in
Table 3. The smallest indicator ID is 0.1896. The best parameter combination of NSGA-II is set as
{pop = 150, gen = 150, pc = 0.8, pm = 0.5}.

Table 2. Computational results for parameter tuning of MOSA.

{pop, Tm, iter, temp} ID {pop, Tm, iter, temp} ID

{200, 200, 20, 0.94} 0.2382 {250, 200, 20, 0.94} 0.2308
{200, 200, 20, 0.96} 0.2184 {250, 200, 20, 0.96} 0.2390
{200, 200, 20, 0.97} 0.2175 {250, 200, 20, 0.97} 0.2243
{200, 200, 25, 0.94} 0.2473 {250, 200, 25, 0.94} 0.2535
{200, 200, 25, 0.96} 0.2243 {250, 200, 25, 0.96} 0.2236
{200, 200, 25, 0.97} 0.2343 {250, 200, 25, 0.97} 0.2210
{200, 200, 30, 0.94} 0.2594 {250, 200, 30, 0.94} 0.2359
{200, 200, 30, 0.96} 0.2251 {250, 200, 30, 0.96} 0.2300
{200, 200, 30, 0.97} 0.2149 {250, 200, 30, 0.97} 0.2103
{200, 250, 20, 0.94} 0.2183 {250, 250, 20, 0.94} 0.2467
{200, 250, 20, 0.96} 0.2289 {250, 250, 20, 0.96} 0.2169
{200, 250, 20, 0.97} 0.2028 {250, 250, 20, 0.97} 0.1961
{200, 250, 25, 0.94} 0.2433 {250, 250, 25, 0.94} 0.2588
{200, 250, 25, 0.96} 0.2340 {250, 250, 25, 0.96} 0.2513
{200, 250, 25, 0.97} 0.2396 {250, 250, 25, 0.97} 0.2052
{200, 250, 30, 0.94} 0.2341 {250, 250, 30, 0.94} 0.2255
{200, 250, 30, 0.96} 0.2028 {250, 250, 30, 0.96} 0.2196
{200, 250, 30, 0.97} 0.2140 {250, 250, 30, 0.97} 0.2022

Table 3. Computational results for parameter tuning of NSGA-II.

{pop, gen, pc, pm} ID {pop, gen, pc, pm} ID

{150, 100, 0.8, 0.2} 0.2335 {200, 100, 0.8, 0.2} 0.2159
{150, 100, 0.8, 0.5} 0.2220 {200, 100, 0.8, 0.5} 0.1939
{150, 100, 0.8, 0.8} 0.2060 {200, 100, 0.8, 0.8} 0.2076
{150, 100, 0.5, 0.2} 0.2228 {200, 100, 0.5, 0.2} 0.2286
{150, 100, 0.5, 0.5} 0.2318 {200, 100, 0.5, 0.5} 0.2030
{150, 100, 0.5, 0.8} 0.2047 {200, 100, 0.5, 0.8} 0.2148
{150, 100, 0.2, 0.2} 0.2682 {200, 100, 0.2, 0.2} 0.2277
{150, 100, 0.2, 0.5} 0.2398 {200, 100, 0.2, 0.5} 0.2471
{150, 100, 0.2, 0.8} 0.2550 {200, 100, 0.2, 0.8} 0.2288
{150, 150, 0.8, 0.2} 0.2161 {200, 150, 0.8, 0.2} 0.2035
{150, 150, 0.8, 0.5} 0.2027 {200, 150, 0.8, 0.5} 0.1896
{150, 150, 0.8, 0.8} 0.2078 {200, 150, 0.8, 0.8} 0.2086
{150, 150, 0.5, 0.2} 0.2227 {200, 150, 0.5, 0.2} 0.2066
{150, 150, 0.5, 0.5} 0.2027 {200, 150, 0.5, 0.5} 0.2011
{150, 150, 0.5, 0.8} 0.2141 {200, 150, 0.5, 0.8} 0.2099
{150, 150, 0.2, 0.2} 0.2291 {200, 150, 0.2, 0.2} 0.2346
{150, 150, 0.2, 0.5} 0.2374 {200, 150, 0.2, 0.5} 0.2362
{150, 150, 0.2, 0.8} 0.2384 {200, 150, 0.2, 0.8} 0.2359
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6.3. Comparison of the Proposed Algorithms

In the computational experiments, we generate 108 instances in total. Among 108 instances,
there are 36 small-sized instances with the parameter combinations: I = {1, 2}, J = {3, 4},
K = {5, 6, 7}, L = {12, 14, 16}; 36 middle-scale instances with the following values: I = {2, 3},
J = {5, 6}, K = {8, 9, 10}, L = {18, 20, 22}; 36 large-sized instances with the following parameters:
I = {2, 3}, J = {5, 6}, K = {9, 10, 11}, L = {24, 26, 28}. Both NSGA-II and MOSA are applied to all
108 instance combinations. Each example is calculated ten times independently with ten random
parameters’ combinations. For all the instances, the average results of ten independent runs are
recorded, and we apply the three indicators to measure the performance of the algorithms. In addition,
the average running time of each algorithm in every instance test is also recorded as an indicator,
to evaluate the computational efficiency.

For instance combination, it is rather difficult or time-consuming to get the true front, so that we
apply the solutions generated by the two heuristics to the reference set. The results of three indicators
of three scales are listed in Tables 4–6, respectively.

Table 4. Computational results for 36 small-scale instance combinations.

Instance
NSGA-II (Referred to as A) MOSA (Referred to as B)

ID C (AR) MS Time ID C (BR) MS Time

{1, 3, 5, 12} 0.0100 0.5226 1.3780 101.35 0.0122 0.3516 1.3382 72.18
{1, 3, 5, 14} 0.0098 0.7102 1.3916 105.45 0.0121 0.1864 1.2971 92.58
{1, 3, 5, 16} 0.0087 0.7758 1.4097 102.90 0.0120 0.1506 1.3378 161.64
{1, 3, 6, 12} 0.0095 0.6097 1.3816 107.83 0.0131 0.2388 1.3111 126.57
{1, 3, 6, 14} 0.0116 0.6521 1.4026 113.09 0.0149 0.2356 1.2812 125.13
{1, 3, 6, 16} 0.0077 0.6776 1.4003 108.02 0.0123 0.1969 1.2890 178.31
{1, 3, 7, 12} 0.0119 0.5649 1.3784 115.05 0.0146 0.3560 1.3562 88.83
{1, 3, 7, 14} 0.0074 0.5552 1.3763 121.84 0.0159 0.3320 1.3151 219.94
{1, 3, 7, 16} 0.0114 0.6031 1.3634 115.28 0.0120 0.3089 1.3592 205.14
{1, 4, 5, 12} 0.0061 0.3688 1.3985 104.74 0.0124 0.4832 1.3527 82.54
{1, 4, 5, 14} 0.0076 0.6874 1.3919 109.45 0.0118 0.2127 1.3039 105.54
{1, 4, 5, 16} 0.0113 0.5518 1.3738 103.75 0.0140 0.3601 1.3243 147.02
{1, 4, 6, 12} 0.0096 0.4977 1.3643 112.40 0.0130 0.2636 1.3638 75.85
{1, 4, 6, 14} 0.0081 0.5834 1.3940 117.15 0.0118 0.1564 1.3031 188.61
{1, 4, 6, 16} 0.0107 0.5454 1.3879 112.12 0.0140 0.3347 1.3327 194.39
{1, 4, 7, 12} 0.0122 0.7435 1.3474 120.78 0.0177 0.1640 1.2944 152.60
{1, 4, 7, 14} 0.0103 0.5582 1.3901 126.80 0.0129 0.2876 1.3510 182.62
{1, 4, 7, 16} 0.0122 0.7437 1.3684 121.01 0.0158 0.1206 1.3168 292.99
{2, 3, 5, 12} 0.0104 0.7024 1.3780 103.64 0.0202 0.1916 1.3272 57.68
{2, 3, 5, 14} 0.0093 0.7931 1.3718 103.94 0.0182 0.1313 1.3063 79.99
{2, 3, 5, 16} 0.0095 0.7972 1.3728 103.51 0.0183 0.2283 1.3173 131.24
{2, 3, 6, 12} 0.0104 0.7547 1.3912 106.48 0.0204 0.1547 1.2772 95.36
{2, 3, 6, 14} 0.0099 0.5850 1.3312 112.28 0.0192 0.3182 1.3198 73.52
{2, 3, 6, 16} 0.0089 0.6870 1.3809 112.62 0.0184 0.2066 1.3359 109.62
{2, 3, 7, 12} 0.0167 0.8011 1.3563 114.90 0.0235 0.1620 1.3316 105.89
{2, 3, 7, 14} 0.0119 0.5546 1.3791 117.38 0.0232 0.2494 1.3151 178.35
{2, 3, 7, 16} 0.0104 0.7362 1.3674 119.16 0.0172 0.1670 1.3453 185.41
{2, 4, 5, 12} 0.0135 0.5919 1.3251 104.55 0.0233 0.3522 1.3210 83.03
{2, 4, 5, 14} 0.0119 0.6937 1.3522 107.57 0.0217 0.2098 1.2818 107.09
{2, 4, 5, 16} 0.0106 0.6750 1.3548 109.36 0.0221 0.2688 1.3081 73.63
{2, 4, 6, 12} 0.0117 0.7808 1.3515 111.51 0.0186 0.2068 1.3365 128.20
{2, 4, 6, 14} 0.0131 0.6378 1.3580 116.10 0.0202 0.2124 1.3300 156.43
{2, 4, 6, 16} 0.0148 0.8224 1.3638 117.14 0.0235 0.0895 1.2997 184.92
{2, 4, 7, 12} 0.0130 0.8044 1.3779 119.57 0.0255 0.1459 1.2758 141.30
{2, 4, 7, 14} 0.0116 0.6986 1.3314 124.44 0.0220 0.2338 1.3377 146.16
{2, 4, 7, 16} 0.0121 0.7887 1.3862 125.07 0.0229 0.1726 1.3130 223.88

Average 0.0107 0.6627 1.3730 112.45 0.0172 0.2345 1.3196 137.62
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From the previous description, the smaller the value of first indicator ID is, the better the algorithm
is, and it is opposite for the remaining two indicators. For the small-scale problem shown in Table 4,
NSGA-II and MOSA’s average values of the first indicator are 0.0107, 0.0172, which means NSGA-II is
about 37.79% better than MOSA considering the indicator ID. Similarly, the mean values of NSGA-II
and MOSA are 0.6627 and 0.2345 for the average e-dominance indicator. The values 1.3730 and 1.3196
are of the third indicator of the two algorithms. Additionally, the NSGA-II performs better, by about
64.61% and 3.89% for the second and third indicators. After taking the average value, we can find that
NSGA-II is 35.43% better than MOSA considering the quality of solutions. As for the running times of
the two algorithms, the mean times are 112.45 seconds and 137.62 seconds, respectively. The results
reflect that NSGA-II is more efficient, about 18.29% faster than MOSA.

Table 5. Computational results for 36 middle-scale instance combinations.

Instance
NSGA-II (Referred to as A) MOSA (Referred to as B)

ID C (AR) MS Time ID C (BR) MS Time

{2, 5, 8, 18} 0.0115 0.7638 1.3794 168.05 0.0332 0.1743 1.2044 166.79
{2, 5, 8, 20} 0.0135 0.6159 1.3462 162.56 0.0312 0.2883 1.2577 297.51
{2, 5, 8, 22} 0.0164 0.9437 1.3561 170.55 0.0264 0.0270 1.2994 336.88
{2, 5, 9, 18} 0.0111 0.4888 1.3810 167.92 0.0247 0.4312 1.2873 286.48
{2, 5, 9, 20} 0.0184 0.7109 1.3638 175.74 0.0254 0.2256 1.3096 297.37
{2, 5, 9, 22} 0.0112 0.7458 1.3456 184.84 0.0226 0.1199 1.2834 343.98
{2, 5, 10, 18} 0.0127 0.6460 1.3829 180.20 0.0238 0.3029 1.2502 479.56
{2, 5, 10, 20} 0.0149 0.6520 1.3141 188.44 0.0230 0.1896 1.3165 418.46
{2, 5, 10, 22} 0.0188 0.7224 1.3286 196.97 0.0278 0.1469 1.3177 503.24
{2, 6, 8, 18} 0.0173 0.8583 1.3028 161.83 0.0283 0.1150 1.3225 317.92
{2, 6, 8, 20} 0.0171 0.7302 1.3831 171.46 0.0382 0.2119 1.2709 429.53
{2, 6, 8, 22} 0.0148 0.4792 1.2774 177.64 0.0277 0.3553 1.2837 415.91
{2, 6, 9, 18} 0.0175 0.8452 1.3112 175.90 0.0275 0.0766 1.2536 392.62
{2, 6, 9, 20} 0.0147 0.7081 1.3529 183.90 0.0388 0.2099 1.2561 398.30
{2, 6, 9, 22} 0.0147 0.7445 1.3947 191.79 0.0252 0.0740 1.2567 476.39
{2, 6, 10, 18} 0.0105 0.7796 1.3936 190.11 0.0289 0.0654 1.2302 459.14
{2, 6, 10, 20} 0.0170 0.6724 1.3733 199.59 0.0326 0.2308 1.2338 517.90
{2, 6, 10, 22} 0.0217 0.9453 1.3682 228.69 0.0460 0.0453 1.2156 402.23
{3, 5, 8, 18} 0.0185 0.8342 1.3292 170.68 0.0374 0.1462 1.1944 234.35
{3, 5, 8, 20} 0.0154 0.7669 1.2929 180.07 0.0291 0.1356 1.3191 251.36
{3, 5, 8, 22} 0.0178 0.7820 1.3631 195.66 0.0404 0.1127 1.2365 351.81
{3, 5, 9, 18} 0.0119 0.8291 1.4044 193.84 0.0415 0.1375 1.1971 305.07
{3, 5, 9, 20} 0.0079 0.6072 1.4040 206.17 0.0234 0.2614 1.2466 462.42
{3, 5, 9, 22} 0.0131 0.6965 1.3766 217.64 0.0392 0.1750 1.1405 383.77
{3, 5, 10, 18} 0.0111 0.6226 1.3055 221.22 0.0375 0.3092 1.2879 309.20
{3, 5, 10, 20} 0.0093 0.6916 1.3861 225.92 0.0299 0.2059 1.2501 453.90
{3, 5, 10, 22} 0.0112 0.7246 1.3671 215.32 0.0284 0.1739 1.2863 466.66
{3, 6, 8, 18} 0.0185 0.8622 1.3412 497.96 0.0434 0.0309 1.2928 315.60
{3, 6, 8, 20} 0.0101 0.8339 1.3027 173.53 0.0304 0.1372 1.2529 309.32
{3, 6, 8, 22} 0.0135 0.8259 1.3898 180.01 0.0408 0.1159 1.1954 352.42
{3, 6, 9, 18} 0.0058 0.5509 1.3948 178.04 0.0269 0.1759 1.1632 393.94
{3, 6, 9, 20} 0.0102 0.6675 1.2766 182.85 0.0352 0.1705 1.2190 353.93
{3, 6, 9, 22} 0.0182 0.9771 1.3945 190.94 0.0479 0.0000 1.2074 414.19
{3, 6, 10, 18} 0.0175 0.8455 1.3340 193.24 0.0447 0.1178 1.2712 224.56
{3, 6, 10, 20} 0.0164 0.5859 1.3144 212.44 0.0410 0.3086 1.2279 401.46
{3, 6, 10, 22} 0.0143 0.8788 1.2704 225.04 0.0378 0.0698 1.2865 427.43

Average 0.0143 0.7399 1.3501 198.24 0.0330 0.1687 1.2534 370.88

Concerning the middle-sized problem, the results of three indicators are listed in Table 5. As for
the distance from the reference set indicator, the values of the two heuristics are 0.0143 and 0.0330;
hence, NSGA-II performs better, by about 56.67%, than MOSA. We can find that the values of NSGA-II
are smaller for the first index comparing every instance. While we use the average e-dominance
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indicator to evaluate the performance, the value of every MOSA instance is smaller, which means
MOSA performs worse, and the means are 0.7399 and 0.1687 for NSGA-II and MOSA, respectively.
NSGA-II is about 77.20% better overall for second indicator. While considering the third indicator, we
can find there are only five instances, {2, 5, 10, 20}, {2, 6, 8, 18}, {2, 6, 8, 22}, {3, 5, 8, 20}, {3, 6, 10, 22},
whose value of MOSA is bigger. However, on average, 1.3501 and 1.2534 for NSGA-II and MOSA state
that NSGA-II performs better about 7.16%. It is easy to get the mean value, 47.01%, which illustrates
that NSGA-II is about 47.01% better than MOSA from the perspective of solutions. The average
running time of 36 instances is 198.24 seconds for NSGA-II and is 370.88 seconds for MOSA. NSGA-II
is about 46.55% faster than MOSA.

Table 6. Computational results for 36 large-scale instance combinations.

Instance
NSGA-II (Referred to as A) MOSA (Referred to as B)

ID C (AR) MS Time ID C (BR) MS Time

{2, 5, 9, 24} 0.0208 0.8480 1.3020 185.78 0.0353 0.1116 1.3027 291.55
{2, 5, 9, 26} 0.0159 0.7381 1.3560 193.37 0.0332 0.1353 1.2413 438.01
{2, 5, 9, 28} 0.0120 0.7386 1.3648 199.57 0.0289 0.1144 1.2652 503.86
{2, 5, 10, 24} 0.0125 0.5849 1.3274 198.00 0.0262 0.3069 1.2574 441.82
{2, 5, 10, 26} 0.0164 0.6745 1.3577 206.27 0.0286 0.2453 1.3129 491.11
{2, 5, 10, 28} 0.0152 0.5364 1.3613 224.37 0.0256 0.3591 1.2763 530.42
{2, 5, 11, 24} 0.0199 0.7814 1.3271 222.04 0.0246 0.1697 1.3011 540.14
{2, 5, 11, 26} 0.0267 0.8926 1.3170 233.84 0.0397 0.0781 1.2840 531.98
{2, 5, 11, 28} 0.0101 0.7059 1.3839 242.92 0.0265 0.2386 1.2957 640.47
{2, 6, 9, 24} 0.0158 0.7523 1.3826 194.49 0.0290 0.1382 1.2593 476.12
{2, 6, 9, 26} 0.0112 0.6075 1.3189 201.12 0.0246 0.2200 1.2975 463.04
{2, 6, 9, 28} 0.0162 0.8251 1.3521 209.27 0.0394 0.0692 1.1945 440.44
{2, 6, 10, 24} 0.0114 0.7019 1.3551 207.88 0.0278 0.1611 1.2404 591.58
{2, 6, 10, 26} 0.0134 0.6143 1.3423 216.56 0.0298 0.1410 1.2860 464.02
{2, 6, 10, 28} 0.0222 0.6362 1.3341 226.15 0.0320 0.1470 1.2786 744.03
{2, 6, 11, 24} 0.0156 0.7165 1.3543 223.49 0.0309 0.2354 1.2624 576.32
{2, 6, 11, 26} 0.0232 0.8749 1.3110 233.66 0.0449 0.0567 1.2649 603.27
{2, 6, 11, 28} 0.0205 0.5352 1.3151 245.32 0.0404 0.4110 1.2916 662.85
{3, 5, 9, 24} 0.0096 0.7493 1.3123 188.10 0.0292 0.1870 1.2786 361.94
{3, 5, 9, 26} 0.0123 0.8378 1.2840 206.80 0.0318 0.0767 1.3151 460.95
{3, 5, 9, 28} 0.0128 0.6184 1.3509 206.19 0.0313 0.2687 1.2126 510.66
{3, 5, 10, 24} 0.0174 0.6621 1.3612 201.38 0.0410 0.2218 1.2301 485.29
{3, 5, 10, 26} 0.0151 0.4228 1.2622 210.86 0.0323 0.4506 1.3129 526.35
{3, 5, 10, 28} 0.0099 0.8439 1.3591 220.27 0.0304 0.1188 1.2751 530.91
{3, 5, 11, 24} 0.0146 0.8410 1.3088 216.80 0.0469 0.1239 1.2809 539.27
{3, 5, 11, 26} 0.0147 0.6601 1.3197 228.60 0.0402 0.2437 1.3063 577.52
{3, 5, 11, 28} 0.0121 0.6361 1.3844 239.59 0.0324 0.2553 1.2630 598.84
{3, 6, 9, 24} 0.0146 0.8087 1.3377 195.46 0.0403 0.1666 1.2761 450.28
{3, 6, 9, 26} 0.0136 0.8042 1.3520 202.87 0.0402 0.0428 1.2094 509.48
{3, 6, 9, 28} 0.0158 0.8969 1.3518 211.26 0.0440 0.0419 1.2602 515.24
{3, 6, 10, 24} 0.0187 0.8761 1.3509 212.39 0.0604 0.0501 1.2194 76.46
{3, 6, 10, 26} 0.0175 0.8285 1.2685 220.61 0.0398 0.1734 1.2286 89.00
{3, 6, 10, 28} 0.0176 0.9089 1.3618 230.55 0.0673 0.0869 1.1285 49.08
{3, 6, 11, 24} 0.0246 0.9521 1.3407 227.82 0.0746 0.0258 1.1803 79.01
{3, 6, 11, 26} 0.0234 0.8519 1.3065 239.19 0.0599 0.0981 1.2557 67.59
{3, 6, 11, 28} 0.0129 0.7744 1.3402 250.23 0.0463 0.1992 1.2193 86.22

Average 0.0160 0.7427 1.3365 215.92 0.0377 0.1714 1.2601 442.92

Likewise, the large-scale instance experiment has similar conclusions shown in Table 6. For the
first and second indicators, MOSA is worse than NSGA-II for every instance. The mean values of the
distance from the reference set indicator are 0.0160 and 0.0377 for the two algorithms, which state that
the NSGA-II is about 57.56% better than MOSA. For the average e-dominance indicator, the average
values are 0.7427 and 0.1714, respectively, which illustrates that MOSA is worse than NSGA-II by about
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76.92%. Concerning the third indicator, we can find that there are only three instances, {2, 5, 9, 24},
{3, 5, 9, 26}, {3, 5, 10, 26}, whose value of MOSA is bigger. It is obvious that the NSGA-II is better
for the mean values, which are 1.3365 and 1.2601 for NSGA-II and MOSA. When considering the
quality of solutions, NSGA-II is on average46.73% better than MOSA for the three indicators. From the
perspective of running time, the two algorithms’ running times are 215.92 and 442.92, respectively,
which illustrates that NSGA-II is faster by about 51.25% than MOSA.

Considering the above description synthetically, the mean values of three indicators are 0.0137,
0.7151, 1.3532 for NSGA-II and 0.0293, 0.5746, 1.2777 for MOSA. The average running times of the two
algorithms are 175.54 and 317.14 seconds, respectively. Furthermore, NSGA-II is about 43.06% better
than MOSA on average for 108 instances in terms of the quality of solution. From the perspective of
running time, NSGA-II is about 38.70% faster than MOSA.

7. Conclusions

In this paper, we study the GCLSC problem. Similar to E-commerce service, the GCLSC is
divided into four parts including manufacture, first-class warehouse, second-class warehouse and
customer point. Furthermore, the locations and number of manufacturer and customer points
are known, and several candidate locations of facilities are available. Recycling happens between
customer points and second-class warehouses. A bi-objective model with the chance constraint was
proposed considering uncertain demand in this paper. From the perspective of customers, they are
very concerned about the quality of goods and the logistics speed, as well as the performance on
environmental protection, so one objective is to maximize the satisfaction, which consists of the logistics
speed, quality of goods and the amount of recycling products in this paper. Recycling more products
means that the contribution of enterprises to environmental protection is more remarkable, which will
also improve the satisfaction of the customer. The other conflict objective is to minimize the total cost.

To find a trade-off relation between these two objectives, we establish a bi-objective mathematical
programming model joined with the chance constraint. An approximation method is used to handle
the chance constraint. Additionally, an exact ε-constraint method is introduced to obtain exact Pareto
fronts for small-scale instances. Two heuristic algorithms, NSGA-II and MOSA, are proposed to
solve the GCLSC problem efficiently, especially for middle- and large-scale instances. Computational
experiments are conducted, and the results illustrate the efficiency of the algorithms. Additionally,
we can conclude that NSGA-II performs better than MOSA in this problem. Our research solves the
problem of GCLSC under certain demand and provides guidance for manufacturers.

Future research directions, as well as research limitations of this paper may cover the following
aspects: (i) inventory constraint; inventory plays an important role when making the production plan;
the mathematical model can be extended to be closer to the actual situation; (ii) it is also interesting to
consider a decentralized supply chain, then it should be a two-stage decision problem where suppliers
and retailers only consider their own costs and profits. In this way, the problem becomes a two-stage
stochastic programming problem, and we can use a sample approximation approach to solve it.
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