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Abstract: Although the importance of risk management and failure management has been
emphasized in many organizations for sustainable development, most of the related studies have
dealt with manufacturing or service processes, rather than R&D processes. Since R&D projects have
high uncertainty in schedule and the quality of output, more attention should be paid to manage
the risks of R&D activities. Thus, this paper proposes a systemic approach to performing R&D
failure and risk management in the R&D process. To these ends, failure mode and effect analysis
(FMEA) is employed, and is modified to meet the specific features of R&D activities with a stage-gate
model that can identify the failure modes in each stage of the R&D process model. In addition,
a process to prioritize the risks of R&D failure is suggested to support a decision-making process in
R&D management, by applying the decision-making trial and evaluation laboratory (DEMATEL).
The proposed approach is applied to a case of R&D process of a software development company, in
order to illustrate its validity. This paper can help R&D managers to identify and cope with the risks
in the R&D process by employing a systematic method.

Keywords: R&amp; D failure; uncertainty; FMEA; DEMATEL; R&amp; D process model;
stage-gate model

1. Introduction

The contemporary intensified competitive environment renders innovation capability a key
success factor for companies to enhance profitability and growth. Many previous studies have
presented empirical evidence of the relationship between market-specific performance and firm
innovation [1,2]. Thus, R&D projects for developing innovative products and processes are crucial
for firms to achieve high performance. However, one of the major difficulties in R&D projects
is the uncertainty in managing technology and markets, which reduces the possibility of success
in product development and sales [3]. Many empirical studies show that the success rate of new
product development (NPD) projects is still low [4,5]. Since innovation mostly requires a new way
of developing products and/or implementing processes, uncertainty is inevitably involved in R&D
projects. Moreover, fast technology change and diverse customer demands make the R&D process more
complex and uncertain [6]. Such high uncertainty increases R&D risks, causing many failures in R&D
projects [7]. In particular, diverse types of innovation, such as sustaining innovation and disruptive
innovation have different degrees of uncertainty that may result in failures of R&D projects [8,9].
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Therefore, managing R&D risks across all of the processes is critical to elevating the level of success
rates [10].

Since firms should be agile to survive in the turbulent business environment, they must
monitor the changing situations of technology and markets. In particular, technology plans as well
as manufacturing plans should be modified, when considering the uncertainty in the process of
technology development and production. Thus, risk management is important in the whole business
cycle to cope with various risk factors that might cause serious damage to current and future businesses.
Risk management can be defined as a systematic approach that identifies, assesses, and prioritizes
risks, followed by planning of resources that minimises, monitors and controls the probability and
impact of undesirable events [11]. Since the concepts and practices of risk management have widely
prevailed in many fields, such as management, finance and insurance, the R&D and engineering
disciplines should also apply risk management both theoretically and practically. The main purpose of
risk management in R&D management is to advance the success rate of an R&D project by supporting
a decision-making process, while minimizing R&D uncertainty. For this, various approaches, such
as concurrent engineering and quality function deployment, have been suggested to reduce R&D
uncertainty, by collecting valuable information [12,13]. In addition, adopting managerial flexibility in
the R&D project can introduce new products to market in a minimal level of disruption, as technologies
and markets change rapidly [14,15].

However, the important problem in risk management of R&D projects is the difficulties in
identifying and prioritizing R&D risks, because most of the R&D ideas are fuzzy, and the project
management of R&D is largely poorly organized, forcing the waste of time and cost. In addition,
most existing studies focus on applying qualitative approaches to identify and measure R&D risk
factors. Such research sometimes fails to consider the unique characteristics of R&D projects that
include the multiple stages of the R&D process, and ill-defined ideas in the early stage of projects.
Most importantly, since most of the studies recognize markets and businesses as major determinants of
the outcomes of new product development projects, technology-oriented risks can be underestimated
in evaluating the risk factors. Even though such risks are extremely important in the R&D process,
most researchers focus on the cost and time perspectives, rather than on technological factors. Thus,
a systematic approach to identifying the risk factors and prioritizing them should be suggested and
implemented in the practical field of R&D project management. Therefore, the objectives of this
paper are to propose a conceptual model of a structured process to define R&D failure modes, and to
analyse their effect. For this, the stage-gate model that is often applied in R&D project management
is considered to reflect the characteristics of the R&D process in R&D risk management. The model
enables risk factors to be derived in all important activities without a bias to market and businesses,
including earlier stages, such as idea generation and technology development. Furthermore, this
paper employs quantitative methods, such as Failure Mode and Effect Analysis (FMEA) and Decision
Making Trial and Evaluation (DEMATEL), to prioritize the risk factors identified, by considering the
stage-gate model.

This paper is structured as follows. Section 2 reviews related studies on R&D risk management, as
well as important methods (FMEA and DEMATEL) for quantitative analysis. Section 3 then proposes a
new framework for R&D risk management, and explains the detailed process to identify and prioritize
the R&D risk factors. Section 4 illustrates the proposed approach through the example of a software
development project, and then Section 5 discusses the limitations of this paper and the directions for
future study.

2. Background

2.1. R&D Risk Management

Since risk can occur in many different disciplines, such as economy, management, and human
life, the definition of risk also varies according to the perspectives of risk management. In economic



Sustainability 2018, 10, 972 3 of 18

theory, risk can be defined as circumstances where probabilities for a decision-making can be assigned
to potential outcomes [16]. In the view of decision theory, risk refers to situations in which a decision
maker should make a decision under the condition of known probability, because decision theory is
concerned with calculating the consequences of uncertain decision. In innovation theory, it can be
regarded as a driver that enables the most durable and valuable inventions to be devised, because
they normally come from a desire to either remove or exploit risks. For example, in financial markets,
some of the innovations have been designed to help investors to protect themselves against risk;
but other innovations aim at providing ways of exploiting risk for higher returns. In particular,
disruptive innovation can trigger a new paradigm for the development of technology and markets
under the situation of risk that existing products are obsolete; and, a variety of new designs are
devised to be chosen as a dominant design. From the perspectives of project management, risk can
be considered to be an uncertain event or condition that has a positive or negative impact on the
objectives of projects [17,18]. However, most practitioners still think that risk is potentially harmful to
project performance. Thus, risk management should successfully identify and control the threats in
project management.

Since risk management is a general concept in the discipline of management, many empirical
papers have dealt with various issues of R&D risk management. Most research on R&D risk
management has been conducted to manage the uncertainty of R&D activities, focusing on an NPD
process. Uncertainty in R&D management can be defined as the unpredictability of the business and
technology environment, and an incapability to forecast the impacts of environmental change and
the results of a choice [18]. Several researchers have insisted that methods for risk management can
improve the success rate of R&D projects. Salomo et al. [19] found that project risk planning in NPD
projects could significantly improve performance, by examining the effects of business planning on
project performance. Mu et al. [20] showed that the strategies of risk management on risk factors
that are related to technology, organization, and marketing affect the performance of NPD projects.
Raz et al. [8] presented the results of an empirical study that risk management can be applied to
enhance the performance of higher-risk projects, emphasizing that it is strongly associated with
project success.

Various methodologies for R&D risk management have been developed to increase the success
rates of projects. Browning et al. [21] suggested a new methodology that quantifies a risk value to
identify, assess, monitor, and control the identified risks during performing a project, just concentrating
on technical risks. Lefley [22] reviewed various state-of-the-art techniques in identifying and assessing
innovative R&D project risk. Cooper [23] proposed the use of a knowledge management system that
captured practitioner experience to reduce R&D risks. In addition, Keizer et al. [5] suggested a risk
reference framework to diagnose the risks in technological breakthrough projects, and concluded that
formal risk assessment can enhance the success of breakthrough innovation projects. Ogawa and
Piller [24] proposed a new market research method that was called “collective customer commitment”,
which was integrating the opinions of customers into the innovation process, in order to meet customer
needs. Gidel et al. [25] developed a decision-making framework for risk management from the
cognitive science perspective. However, Wang et al. [26] maintained that existing research in R&D
risk management was struggling from a lack of research on linking operational risk management of
R&D projects with corporate strategies, and providing a systematic process for risk identification,
assessment, response planning, and control.

2.2. Failure Mode and Effect Analysis (FMEA)

Since FMEA was first suggested by NASA in 1963 to meet reliability requirements, it has
been actively utilized as a key tool for analysing system safety and the reliability of products and
processes [27]. FMEA is regarded as a pro-active engineering quality method for identifying and
handling the weak points in the early phase of developing products and implementing processes [28].
Thus, it enables the investigation of potential reliability issues in the whole cycle of projects, allowing
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for managers to take action to solve identified problems, mitigating the effect of possible failure modes.
This method can examine each component to explore potential failures, by applying three indexes: the
probability of failure occurrence (O), the impact or severity of the failure (S), and the capacity to detect
failure before it occurs (D). Multiplying the three indexes can be used to prioritize the failure modes,
enabling them to be focused on in risk management.

Since FMEA has been broadly considered to be a risk assessment tool to enhance the analysis of
quality, international quality organizations, such as the International Organization for Standardization
(ISO), use this technique as a powerful analysis in the ISO-9000 series [29]. The scope of applications
has been extended into many industries, including the aviation, automotive, machinery, semiconductor,
and medical industries. Onodera [30] examined approximately 100 FMEA applications in various
industries in Japan, and showed that this technique is being actively applied in many areas. Many
studies have dealt with the applications of FMEA to a specific reliability problem. Hsu et al. [31]
suggested a method that uses this technique to analyse the risks of components in compliance with
the EU RoHS directive in the quality control stage. Pickard et al. [32] proposed an integrated model
that combined multiple failure modes into a single one, to investigate a system that simultaneously
considers various failure modes. Recently, FMEA has often been coupled with other methods to
improve its applicability in risk management. The Taguchi method plays a complementary role in
performing failure detection and the optimization of parameters to minimize failure [33]. In addition,
Chang et al. [29] integrated grey relational analysis with FMEA to investigate the relationships between
the components in a system, while Bowles and Pelaez [34] used a fuzzy logic-based approach to
improve the FMEA by extensively evaluating S, O, and D, and their relative weight.

Although FMEA is a widely utilized technique for risk analysis, several shortcomings have been
pointed out by many researchers. Spreafico et al. [35] summarized four main problems, investigating
academic articles and industrial reports: applicability, cause-effect, risk analysis, and problem-solving
issues. First, in the perspective of applicability, FMEA is regarded as a time-consuming approach
and its results are mostly subjective when analysers have different levels of expertise. The second
shortcoming is the cause-effect category that mainly includes the difficulty in distinguishing the types
of failures and their topology. In addition, the risk analysis issues concern ambiguous definitions
about risk factors during risk evaluation and the lack of specific criteria of the risk. Finally, the
problem-solving category refers to the limitation in the ability to support the decision making by
quantifying the feasible results. In this paper, the integration of FMEA with stage-gate model and
DEMATEL can solve the aforementioned limitations. First, the systematic approach that extracts the
failure modes with the stage-gate model can provide the time reduction and objectivity because the
failure modes can be easily derived in each stage. In addition, the risk factors can be clearly defined
and analysed with a low level of domain expertise. The DEMATEL is employed to quantify the effect
of causes of failure and consider the direct relationship between failure modes and causes of failure.
Thus, it can help the analysers make a decision on risk management in a quantitative way.

2.3. Decision Making Trial and Evaluation Laboratory (DEMATEL)

DEMATEL is a representative method to design and analyse structural models of casual
relationships between complex factors [36]. This technique can facilitate an understanding of the
complex structure of a specific problem under consideration, and identifying relationships between
factors in a form of hierarchical structure [37]. Thus, it has been utilised in many circumstances,
including marketing strategies, manufacturing systems, and group decision making [38]. DEMATEL
was applied to explore complex relationships, construct an impact-relation map, and moreover, obtain
the impacts of each element over others. This approach is mostly applied to support a decision-making
process, assisting analysers in prioritizing alternatives, and deriving important factors for analysis.
For example, DEMATEL is employed for evaluating key success factors, analysing risk factors in
outsourcing, selecting knowledge management strategies, and investigating the relationships among
organizations. For this, the original version of DEMATEL is modified to elevate the performance
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of analysis. An extension of DEMATEL that combines fuzzy theory and DEMATEL is proposed
to evaluate the factors of service quality [39], and Back-Propagation Neural Network (BPNN) is
applied to calculate the inter-relationship between quality factors with the method [40]. In particular,
Wei et al. [41] proposed a structural equation model that was modified by DEMATEL technique as the
causal model of Web-advertising effects. Although many studies emphasized a lot of advantages of
DEMATEL in analysing the complex relationships and the impact of factors, several shortcomings
should be discussed for the relevant use of the methodology. First, it cannot deal with uncertain
situation and lack of information to investigate the causes and effects. Since the relationship between
objects should be evaluated by analysers, the approach is very subjective and is vulnerable to the
uncertainty of relationships. In addition, the methodology can hardly analyse ambiguous values
around a given discrete value. Thus, although several studies have proposed the use of fuzzy methods
in applying DEMATEL, most of them suffer from limitations of mapping a membership function [42].
This paper utilizes the quantified value from FMEA in evaluating the relationships between failure
modes and causes of failure in the process of DEMATEL. Moreover, since the purpose of the proposed
approach is to prioritise the risk factors, mapping a membership function in a fuzzy-based DEMATEL
is not necessary for this research. Thus, this paper intends to solve the weaknesses of DEMATEL by
integrating it with FMEA.

The procedure of applying the DEMATEL technique can be summarised by the following four
steps. First, the initial direct-relation matrix is used to calculate an average perception matrix. If we
have n criteria, we should evaluate the degree how the criterion i affects the criterion j. The degree
has the value from 0 to 3 through the pairwise comparisons between criteria. The second step is to
normalize the average perception matrix. The A of Equation (1) is a matrix before normalization, and
X means a normalized direct-relation matrix. The aij of Equation (2) is the degree to which a factor i
affects the other factor j. The third step is to derive the total relation matrix by applying Equation (3).
In the final step, four indices of D, R, D + R, D-R are calculated in order to examine the importance of
the factor by using Equations (4)–(6).

X = k · A (1)

k =
1

max
1≤i≤n

∑n
j=1 aij

, i, j = 1, 2, . . . , n (2)

T = X(I − X)−1 (3)

T = [tij]n×n, i, j = 1, 2, . . . , n (4)

D = [
n

∑
j=1

tij]

n×1

= [ti·]n×1 (5)

R = [
n

∑
i=1

tij]
1×n

= [t·j]n×1 (6)

3. The Proposed Method for R&D Risk Management

3.1. Overall Framework

Since the level of risks in R&D activities is relatively higher than in other types of projects, such as
production and service development, and the results of R&D projects affect the profits of companies
more critically than do routine activities in companies, the R&D risks should be carefully and properly
managed in a systematic manner. Thus, this paper first applies the stage-gate model to identify the
significant factors of R&D risks. The stage-gate model has been widely used to efficiently control
product development processes with multiple stages and gates. In addition, each stage consists of
specific activities that are supposed to be performed within that stage. Therefore, the model can be
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useful to understand the R&D process, and identify failure modes (FMs) and cause factors (CFs) in the
process. Since the usefulness of FMEA to investigate a variety of risks in project management has been
demonstrated, it can be employed to analyse R&D risks. Thus, two approaches—the stage-gate model
and FMEA—are applied to identify and analyse the risk factors in the first step together. Then, FMs
and CFs in the R&D process are defined and are evaluated with the typical ranking rule, in order to
analyse which factors are critical in the management of an R&D project. Consequently, the risk priority
number (RPN) of pairs of FMs and CFs can be calculated to rank the listed risks in the R&D process.
In the third step, the relation matrix of FMs and CFs is constructed by considering the RPN of FMs and
CFs, and the relationship among FMs as well as CFs, applying the DEMATEL that is usually utilized
to examine the impacts of factors. Finally, the CFs in R&D projects can be prioritized from the relation
matrix. Figure 1 presents the overall process of the proposed R&D risk management.

Figure 1. Overall process of research.

The proposed approach can be distinguished from the traditional FMEA that has been normally
applied in risk management. First, the RPN of FMs in the traditional FMEA method fails to reflect
the influence of risks in a whole system. In this paper, the DEMATEL methodology is employed to
investigate the impacts of risks in the R&D process, analysing the relations of causes and effects. Thus,
the combination of FMEA and DEMATEL methodologies can provide more accurate information on
the priority of risks in R&D management, by considering their influence. In terms of identifying the
FMs, the stage-gate model can provide a systematic outlet to extract FMs and CFs of R&D. Most of
the existing FMEA approaches examine a whole system to identify FMs and CFs without a structured
framework. Instead, this approach decomposes an R&D process into several stages, in order to facilitate
the identification of FMs and CFs in R&D risk management. Table 1 compares the characteristics of the
proposed approach and traditional FMEA.

Table 1. Comparison of the proposed approach and traditional Failure Mode and Effect Analysis (FMEA).

Type of Approach Proposed Approach Traditional FMEA

Prioritization of risk factors Impact of risk RPN (Severity, Occurrence, Detection)
Identification of FMs Applications of Stage-gate model A whole system

Methodology FMEA and DEMATEL FMEA

3.2. Step 1: Identifying the Risk Factors of R&D Projects

Since R&D projects have unique characteristics of R&D activities, they should be carefully
managed in a different way from ordinary projects, such as software development and construction.
Traditional techniques of project management do not show high performance in R&D management,
because they normally deal with well-defined processes of general projects that have clear objectives
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and constraints on time and budgets. Thus, Cooper [43] proposed the stage-gate model shown in
Figure 2 for new product development, insisting that leading companies successfully implemented the
model to develop new products. The model consists of multiple stages and gates to make a decision on
whether a project should be killed or go. In particular, the main factors of this model are various stages,
such as idea generation (stage 0), scoping (stage 1), business case (stage 2), development (stage 3),
testing & validation (stage 4), and launch (stage 5). The gates that are positioned between stages play
a critical role in deciding whether a project can proceed through the next stage or not. Thus, each
project should be evaluated by several criteria that are defined to measure the value of projects in each
gate. The classic model has been adapted to reflect specific situations with modified models such as a
three-stages technology development process and agile stage gate model [6,44]. In particular, a lot of
firms have introduced modified versions of the stage-gate model to deal with technology development
projects where the deliverable is not a new product [6]. However, the technology development projects
are increasingly rare, showing the dramatic shift of R&D portfolio to smaller, shorter-term projects in
an open innovation era. Thus, in this paper, the original stage-gate model is utilized to investigate
the risk factors in R&D risk management because new product development projects are a main task
in the R&D project management of firms. In addition, since new process development stages can be
covered in stage 3 (development), this paper does not modify the original model to perform the risk
analysis for R&D projects.

Figure 2. Stage-gate model proposed by Cooper [43].

Many studies in project management, when investigating the reasons for successes and failures,
have proposed success factors, as well as failure factors. From the perspective of risk management, the
identification of failure factors is straightforward to the success of projects. Although several papers
deal with risk management in R&D activities, little attention has been paid to identifying failure factors
in R&D management. Thus, the list of failures in R&D processes can be generated by a literature
survey on general project management, as well as on R&D project management. Then, each failure
mode is enumerated by reasonable causes that lead to such failures in R&D activities. Since the list
of failure modes and causes needs to be structured, the stage-gate model is employed to provide a
frame for in-depth analysis. Thus, the failure modes and causes of the failures in the R&D process are
listed, referring to each stage and gate of the model. For example, in the Stage 0 (idea), two failure
modes, including ‘unclear ideas’ and ‘wrong ideas’, can affect the success of R&D projects. These
can occur due to three possible causes—‘discrepancy with corporate strategy’, ‘low competence’, and
‘insufficient R&D resources’. In the stage 1 (primary assessment), in which the ideas screened in stage 0
are evaluated in brief, the failure mode ‘wrong assessment’ can be caused by ‘market assessment error’,
‘technology assessment error’, and ‘financial assessment error’. Failure modes and causes in each
stage are, respectively, identified by considering their interrelationship based on the literature survey.
Table 2 shows the FMEA of the R&D process based on the original stage-gate model. The generic lists
of failure modes and causes of failure in each stage can be modified according to a specific situation of
companies. Since there are so many types of R&D projects and processes, this paper intends to suggest
a standard model to identify risk factors. If a firm has lighter versions of stage-gate model to handle
less complex and better-defined projects, the list can be simpler by deleting or integrating some failure
modes and causes of failure.
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Table 2. FMEA of the R&D process.

No. Stage Gate Failure Mode Causes of Failure

1 Stage 0: Idea Gate 1: Initial screen FM1: Unclear ideas
FM2: Wrong ideas

CF1: Discrepancy with corporate strategy
CF2: Low competence
CF3: Insufficient R&D resources

2 Stage 1: Primary
assessment Gate 2: Second screen FM3: Wrong

assessment

CF4: Market assessment error
CF5: Technology assessment error
CF6: Financial assessment error

3 Stage 2: Detailed
investigation

Gate 3: Decision on
business cases

FM4: Inaccurate
investigation

CF7: Customer analysis error
CF8: Competitor analysis error
CF9: Value proposition definition error
CF10: Technological feasibility test error
CF11: Operation definition error

4 Stage 3:
Development

Gate 4: Post
development review

FM5: Failure of
development

CF12: Rapid prototyping error
CF13: Customer feedback error
CF14: Prototype development error
CF15: In-house testing error
CF16: Operation process development error

5 Stage 4: Testing &
Validation

Gate 5:
Pre-commercialization
decision

FM6: Wrong
testing
FM7: Wrong
validation

CF17: Customer field trials error
CF18: Production equipment acquisition error
CF19: Production trials error
CF20: Market testing error
CF21: Operations and launch plan error

6
Stage 5: Full
production &
Market launch

Post-implementation
review

FM8: Failure of
production
FM9: Failure of
marketing

CF22: Production error
CF23: Selling error
CF24: Market launch error
CF25: Results monitoring error

3.3. Step 2: Calculating the RPN of FMs and CFs

After identifying the list of FMs and CFs in each stage of the R&D process, nine FMs and 25 CFs
are drawn, matching each factor of FMs with CFs. The combinations of FMs and CFs are presented by
investigating the relations of the two factors, when considering the characteristics of stages. Since their
list is already constructed from the stage-gate model, the matching relations between FMs and CFs can
be easily analysed. In each stage, the numbers of FMs and CFs are multiplied, and the total number of
combinations can be derived by summing the number of cases in each stage. Consequently, the number
of combinations of FMs and CFs becomes 32. Then, all of the combinations should be evaluated to
prioritize the importance of potential risks. Since all the R&D projects have different stakeholders and
situations, each pair of FMs and CFs should be evaluated with the values of severity (S), occurrence
(O), and detection (D) in terms of R&D risks, reflecting the characteristics of a specific project.

In the process of evaluation, the first factor is the severity of the R&D risk. Since an R&D failure
can be associated with a core process or peripheral process, all of the failures in a whole project do
not have the same severity. The severity of a failure in an R&D project needs to be evaluated by
considering the impacts on product designs, costs, schedule, and so on. In particular, such sub-factors
are identified to measure the level of severity in R&D projects. If a failure occurs in a core process, and
the range of impact is broad over the R&D process, the results of the failure can be severe. In addition,
when the failure is interdependent with other failures and resides in a bottleneck, it produces negative
impacts on the performance of R&D projects. The second factor is the occurrence of a failure. Basically,
the main criterion of occurrence can be described as frequency, because the frequency of failure can be
easily understood and measured. However, the repeatability of failure might be more important in
risk management. In terms of occurrence, if a failure consistently reoccurs in the R&D process, the
impact will be harsh in creating an excellent result of R&D activities. Moreover, the impact of a failure
at one time, without repeat, might be enormous. Finally, detection can be evaluated by considering the
difficulty of detection, the difficulty of proactive inspection and the possibility of systematic detection.
If a failure can be difficult to detect in the process, the level of risks is higher than for easily detected
failures. In addition, if a manager or researcher cannot proactively detect a failure, its impact can be
large. In contrast, a systematic detection can mitigate the level of R&D risks because it enables the
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easy detection of risks. Table 3 presents the description of sub-factors of three factors. Table 4 shows a
typical way to decide a specific level that a pair of FM and CF has in each factor of severity, occurrence,
and detection.

Table 3. Factors for risk priority.

Factors Sub-Factors Description

Severity

Core How much is a failure of a process critical?
Range How broad is the affected range?

Interdependency How closely is a failure related with other processes?
Bottleneck How possibly is a process a bottleneck?

Occurrence
Frequency How frequently does a failure occur?

Repeatability How repeatedly does a failure occur?
Singularity Does the R&D project fail if a single failure occurs?

Detection
Difficulty in detection How difficult is the detection of a failure?

Difficulty in proactive inspection How can a failure be inspected proactively?
Systematic detection Does a systematic approach detect a failure?

Table 4. Typical rankings of failure mode measures.

Level S O D

1 No Almost never Almost certain
2 Very slight Remote Very high
3 Slight Very slight High
4 Minor Slight Moderate high
5 Moderate Low Medium
6 Significant Medium Low
7 Major Moderately high Slight
8 Extreme High Very slight
9 Serious Very high Remote

10 Hazardous Almost certain Almost impossible

In general, the RPN is calculated by multiplying the values of severity, occurrence, and detection.
The scorer should be careful in evaluating the value in each factor, because multiplying the values of
three factors can generate a larger difference than summing the values. The generic process of the
traditional FMEA approach can be identically applied to the proposed process.

3.4. Step 3: Constructing the Relation Matrix

In order to derive critical factors for R&D risk management, causes of failure in R&D projects
should be prioritized. DEMATEL provides high performance to extract the influential factors, analysing
the relation between causes and results. In the process of applying DEMATEL, the relation matrix needs
to be constructed by utilizing the matrix of FMs and CFs. Two relation matrices—the direct-relation
matrix and the total relation matrix—are subsequently generated according to the procedure of
DEMATEL. First, in terms of the direct-relation matrix, an asymmetric matrix is normally constructed
that has causes in the rows, and results in the columns. Since the FMEA can provide two elements of
FMs and CFs, the direct-relation matrix of DEMATEL can be easily constructed, ascribing FMs and
CFs to results and causes, respectively. Basically, in the general DEMATEL technique, each element has
a score among three points (strong relationship), two points (normal relationship), one point (weak
relationship), and zero point (no relationship), according to the degree of cause-result relationships.
However, in the proposed approach, the RPN value plays a role of measuring the relationships in a
quantitative manner with the specific indices of severity, occurrence, and detection. Each row and
each column of the direct relation matrix is summed, obtaining the maximum value of the summed
rows and columns. Then, the matrix can be normalized by applying Equations (1) and (2), to obtain a
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normalized relative matrix that indicates the degree of influence of CFs on FMs. Based on this matrix,
the total relation matrix is derived by applying Equation (3).

3.5. Step 4: Prioritizing the CFs and FMs

Four indices of DEMATEL are important to analyse the impacts of CFs. Among those indices, the
degree of causes (D) and the results (R) are utilized as basic indices, because the other indices (D + R
and D-R) can be calculated by computing these first two indices. While the D index means the level of
effects that a CF in the R&D process gives to FMs, the R index can be described as an index that can
measure the degree to which an FM received the effects from CFs. The importance of CFs and FMs
is calculated by summing the D and R indices, regardless of the causes and results, indicating their
influence. The degree of cause-result that is calculated by computing D-R shows whether CFs and
FMs are causes or results in the relationship between CFs and FMs. If the value of D-R is positively
high, then the CFs become important causes. Based on the values, the CFs are prioritized as critical
factors that might harm the R&D activities in a project.

This paper constructs two types of direct-relation matrix to analyse the impacts of CFs and FMs.
First, the degree of relations between CFs and FMs is inserted at the corresponding cell in the initial
direct-relation matrix, letting all the other cells have zero values. Thus, the relations between CFs,
as well as those between FMs, are excluded, in order to focus on the analysis of the impact of CFs
on FMs. In addition, the impact of FMs on CFs should not be considered in constructing the initial
direct-relation matrix, because the FMs are the results of CFs that cause the failure of R&D projects.
From another perspective, the initial direct-relation matrix needs to be developed by additionally
reflecting the relations among CFs as well as FMs, because the impact of CFs should be accurately
calculated. Thus, such cause-result relations among CFs, and FMs are evaluated by the scoring scheme
of the traditional DEMATEL approach, ranging from 3 points to 0 point. Since the scales of RPN and
DEMATEL are different, they should be normalized to construct the total relation matrix, making each
value range between 0 and 1. Thus, after making two types of initial direct-relation matrix, the CFs are
prioritized to derive critical factors in each type of matrix. Then, the results are compared to decide the
better approach in drawing the impactful factors for the risk management of R&D projects.

4. Illustration

4.1. Case Description

The types of R&D projects vary according to the characteristics and the contexts of projects,
including basic research, applied research, and development projects. Although all of the R&D projects
are important to the competency of companies, an R&D project that has high risk in the process can be
relevant to illustrate the proposed approach. Thus, this paper selected a representative R&D project
that develops a new patent analysis system in a software industry by a Korean company. This project
aims to implement a full-fledged system that applies a neural network method to visualize patents and
to explore patent vacuums, providing new opportunities for disruptive innovation. Since the idea of
system development was newly generated in the system area, the R&D process for this project had to
be fully implemented from idea generation to market introduction that the stage-gate model normally
covers. The proposed standard list of FMs and CFs can be applied to this case because the system
development project does not require new technology development. Although a tailored model for
R&D risk analysis can be utilized to consider specific project types, such as technology development
and very small development for a minor product change, the standard model is appropriate to
investigate this case. The project was performed over about two years from 2014 to 2015 by various
experts, namely software engineers, research consultants, and data miners. Although the project was
terminated, this research collected the details and data of the project through an interview to analyse
the risks of the R&D project.
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4.2. RPN of the R&D Process

A software development project has several types of risks, and causes of the risks to perform
the development of new software. Since this paper proposes a generic framework of the risks and
causes with FMs and CFs, this case is investigated by utilizing the predefined FMs and CFs that are
shown in Table 2. Although the generic form of FMs and CFs can be modified according to the unique
characteristics of each project, this research applies the generic form for illustration, because it can
appropriately explain the project. Table 5 shows the RPN of each pair of FMs and CFs, presenting
the values of severity, occurrence, and detection. The values of severity, occurrence, and detection
are subsequently given by referring to the typical rankings of FMs and CFs, ranging from 1 point to
10 points. For example, if a pair of FMs and CFs has hazardous severity, 10 points in the evaluation
of the S factor should be marked. After the evaluation on S, O, and D of all the pairs is complete,
RPNs are calculated by multiplying the values of the three factors. Consequently, the pair of FM9 and
CF23 has the highest RPN value (384); and, in contrast, the combination of FM4 and CF11 has the
lowest RPN value (48). Thus, the risk that ‘selling error’ causes failure of marketing is superficially
most serious in the R&D process of this project, whereas the ‘operation definition error’ that causes
inaccurate investigation is not significant. Since most innovation process models emphasize the linkage
among the detailed processes, the relationships between each stage of the R&D processes should
be considered to derive critical risk factors. For example, the chain-linked model that Kline and
Rosenberg [45] suggested has main chains, their feedbacks, and linkages between main chains and
research activities/knowledge. Thus, the RPN value should be elaborated to prioritize the important
risks, by considering the influential relationships between CFs and FMs.

Table 5. Risk priority number (RPN) of R&D process.

No. Failure Mode Cause of Failure Severity Occurrence Detection RPN

1 FM1 CF1 7 4 7 196
2 FM1 CF2 6 5 6 180
3 FM1 CF3 3 6 6 108
4 FM2 CF1 6 6 6 216
5 FM2 CF2 8 6 6 288
6 FM2 CF3 5 5 5 125
7 FM3 CF4 7 3 6 126
8 FM3 CF5 6 3 7 126
9 FM3 CF6 5 3 5 75
10 FM4 CF7 8 6 6 288
11 FM4 CF8 7 6 8 336
12 FM4 CF9 4 4 5 80
13 FM4 CF10 4 4 4 64
14 FM4 CF11 3 4 4 48
15 FM5 CF12 8 4 5 160
16 FM5 CF13 9 5 6 270
17 FM5 CF14 6 4 4 96
18 FM5 CF15 5 4 4 80
19 FM5 CF16 7 5 5 175
20 FM6 CF17 7 5 4 140
21 FM6 CF18 5 4 4 80
22 FM6 CF19 6 4 5 120
23 FM6 CF20 7 4 5 140
24 FM7 CF17 8 6 5 240
25 FM7 CF19 6 5 5 150
26 FM7 CF20 6 5 6 180
27 FM7 CF21 7 5 6 210
28 FM8 CF22 8 8 5 320
29 FM8 CF25 7 8 6 336
30 FM9 CF23 8 8 6 384
31 FM9 CF24 7 5 7 245
32 FM9 CF25 8 7 6 336
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4.3. Relation Matrix of CFs and FMs

This paper constructs two types of relation matrix of CF and FM. First, the basic version of the
initial direct-relation matrix uses one part of the four parts of the matrix. The structure of the matrix
has four parts, because both the column and the row have groups of CF and FM, yielding four parts,
i.e., CF-CF, CF-FM, FM-CF, and FM-FM. The first version of the matrix has significant values of RPN
in the CF-FM part, whereas other parts have 0 values in all of the cells. The second version of the
direct-relation matrix has significant values in three parts among all parts of the matrix. Since the
relation of CF-CF and FM-FM can affect the analysis on the R&D risks, the values of relation in two
parts are included in the matrix. However, the FM-CF part is exempted for the analysis of relation,
because FM is the result of CF, and it is always affected by the CF. Thus, with the two types of the
direct-relation matrix, the CFs can be differently prioritized, when considering different perspectives of
risk analysis. Based on Table 5, the R&D process has nine FMs and 25 CFs, thus enabling the formation
of a 34x34 initial relation matrix, as shown in Table 6. This table shows the basic version of the matrix
can be derived by just using the CF-FM part. The second version of initial relation matrix utilizes
the three parts of the matrix, including the CF-CF, CF-FM, and FM-FM parts. Then, the basic version
of initial direct-relation matrix was normalized by the Equation (2) and total relation matrix can be
generated by the Equation (3) shown in Table 7.

Table 6. Basic version of initial direct-relation matrix X of the R&D process.

Matrix X CF1 CF2 CF3 . . . CF25 FM1 FM2 FM3 FM4 FM5 FM6 FM7 FM8 FM9

CF1

0

196 216 0 0 0 0 0 0 0
CF2 180 288 0 0 0 0 0 0 0
CF3 108 125 0 0 0 0 0 0 0
CF4 0 0 126 0 0 0 0 0 0
CF5 0 0 126 0 0 0 0 0 0
CF6 0 0 75 0 0 0 0 0 0
CF7 0 0 0 288 0 0 0 0 0
CF8 0 0 0 336 0 0 0 0 0
CF9 0 0 0 80 0 0 0 0 0
CF10 0 0 0 64 0 0 0 0 0
CF11 0 0 0 48 0 0 0 0 0
CF12 0 0 0 0 160 0 0 0 0
CF13 0 0 0 0 270 0 0 0 0
CF14 0 0 0 0 96 0 0 0 0
CF15 0 0 0 0 80 0 0 0 0
CF16 0 0 0 0 175 0 0 0 0
CF17 0 0 0 0 0 140 240 0 0
CF18 0 0 0 0 0 80 0 0 0
CF19 0 0 0 0 0 120 150 0 0
CF20 0 0 0 0 0 140 180 0 0
CF21 0 0 0 0 0 0 210 0 0
CF22 0 0 0 0 0 0 0 320 0
CF23 0 0 0 0 0 0 0 0 384
CF24 0 0 0 0 0 0 0 0 245
CF25 0 0 0 0 0 0 0 336 336

FM1

0 0
FM2
. . .

FM9



Sustainability 2018, 10, 972 13 of 18

Table 7. Total relation matrix X.

Matrix X CF1 CF2 CF3 . . . CF25 FM1 FM2 FM3 FM4 FM5 FM6 FM7 FM8 FM9

CF1

0

0.29 0.32 0 0 0 0 0 0 0
CF2 0.27 0.43 0 0 0 0 0 0 0
CF3 0.16 0.19 0 0 0 0 0 0 0
CF4 0 0 0.19 0 0 0 0 0 0
CF5 0 0 0.19 0 0 0 0 0 0
CF6 0 0 0.11 0 0 0 0 0 0
CF7 0 0 0 0.43 0 0 0 0 0
CF8 0 0 0 0.50 0 0 0 0 0
CF9 0 0 0 0.12 0 0 0 0 0
CF10 0 0 0 0.10 0 0 0 0 0
CF11 0 0 0 0.07 0 0 0 0 0
CF12 0 0 0 0 0.24 0 0 0 0
CF13 0 0 0 0 0.40 0 0 0 0
CF14 0 0 0 0 0.14 0 0 0 0
CF15 0 0 0 0 0.12 0 0 0 0
CF16 0 0 0 0 0.26 0 0 0 0
CF17 0 0 0 0 0 0.21 0.36 0 0
CF18 0 0 0 0 0 0.12 0 0 0
CF19 0 0 0 0 0 0.18 0.22 0 0
CF20 0 0 0 0 0 0.21 0.27 0 0
CF21 0 0 0 0 0 0 0.31 0 0
CF22 0 0 0 0 0 0 0 0.48 0
CF23 0 0 0 0 0 0 0 0 0.57
CF24 0 0 0 0 0 0 0 0 0.36
CF25 0 0 0 0 0 0 0 0.50 0.50

FM1

0 0
FM2
. . .

FM9

4.4. Prioritizing R&D Risks

Table 8 shows the results that are derived by applying the DEMATEL to the analysis of R&D
risks. The D, R, D + R, and D-R values of the matrix are calculated by applying Equations (5) and
(6). The D + R values enable analysts to find important CFs that highly affect FMs, or are affected by
other CFs or FMs. D-R values can provide information on which CFs or FMs affect or are affected,
as well as to what degree they influence the others. In the analysis of the first type of direct-relation
matrix where the one-way relation from CFs to FMs is just considered, the value of D + R and D-R in
all the cases of CFs is definitely identical, because the relation that CFs received from other CFs and
FMs is not analysed. In this case, the CF 25 (results monitoring error), CF 2 (low competence), and
CF1 (discrepancy with corporate strategy) are included in the top three ranks in both D + R and D-R.
In contrast, the CF 11 (operation definition error), CF 10 (technological feasibility test error), and CF 18
(production equipment acquisition error) have low values of D + R and D-R, because the CFs have low
value of RPN, and little influence on FMs.

In terms of the second type of direct-relation matrix that considers all the possible relations of
CF-CF, CF-FM, and FM-FM, the final results are totally different from the first analysis. The CF4
(market assessment error), CF2 (low competence), and CF3 (insufficient R&D resources) are highly
ranked causes of failure, because those CFs have enormous influence on the failure of R&D projects.
In this software development project, the product is very sensitive to markets, and various types of
R&D resources should be spent, because the software for patent analysis requires a broad spectrum
of knowledge on technology, as well as software. Therefore, they are more important than other
causes of failure, making analysers deal with the factors very carefully. In contrast, CF24 (market
launch error), CF23 (selling error), and CF22 (production error) have negative values of D-R index,
because those CFs normally received influences from other CFs. In other words, while the errors on
market launch, selling, and production have some impact on FMs, they are strongly affected by other
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influential CFs, such as production trial errors, market testing errors, and operation and launch plan
errors. Interestingly, the CFs have high values of D + R and the lowest values (even negative values)
of D-R. Thus, the results show that those three CFs are important in the R&D process of the software
development, whereas they are most affected by other CFs.

Table 8. Prioritization of cause factors (CFs) of R&D Process.

No.
Analysis Based on the Initial Relation

Matrix 1
Analysis Based on the Initial Relation

Matrix 2

D R D + R D-R D R D + R D-R

CF1 0.61 0 0.61 0.61 2.96 1.03 3.99 1.93
CF2 0.70 0 0.70 0.70 31.91 0.70 32.62 31.22
CF3 0.35 0 0.35 0.35 20.72 1.12 21.85 19.60
CF4 0.19 0 0.19 0.19 34.65 3.37 38.01 31.28
CF5 0.19 0 0.19 0.19 12.64 0.00 12.64 12.64
CF6 0.11 0 0.11 0.11 14.88 1.44 16.32 13.45
CF7 0.43 0 0.43 0.43 16.82 2.89 19.71 13.94
CF8 0.50 0 0.50 0.50 13.55 2.89 16.44 10.66
CF9 0.12 0 0.12 0.12 2.47 2.11 4.58 0.36

CF10 0.10 0 0.10 0.10 8.74 0.66 9.40 8.08
CF11 0.07 0 0.07 0.07 4.59 0.00 4.59 4.59
CF12 0.24 0 0.24 0.24 3.89 1.99 5.88 1.91
CF13 0.40 0 0.40 0.40 5.47 3.99 9.46 1.49
CF14 0.14 0 0.14 0.14 2.09 3.96 6.05 −1.87
CF15 0.12 0 0.12 0.12 2.14 1.26 3.40 0.88
CF16 0.26 0 0.26 0.26 2.48 1.55 4.04 0.93
CF17 0.57 0 0.57 0.57 2.81 7.28 10.09 −4.47
CF18 0.12 0 0.12 0.12 3.15 3.56 6.71 −0.40
CF19 0.40 0 0.40 0.40 3.38 5.38 8.76 −2.00
CF20 0.48 0 0.48 0.48 3.05 4.35 7.40 −1.30
CF21 0.31 0 0.31 0.31 2.11 5.50 7.61 −3.40
CF22 0.48 0 0.48 0.48 0.48 13.50 13.98 −13.02
CF23 0.57 0 0.57 0.57 0.57 16.92 17.49 −16.35
CF24 0.36 0 0.36 0.36 0.36 22.90 23.26 −22.54
CF25 1.00 0 1.00 1.00 1.00 3.01 4.03 −2.03

5. Discussions & Implications

The previous studies that utilize FMEA to analyse the managerial risks generally only consider
the directional relation of CFs and FMs. However, this simple approach fails to reflect the complex
relation of R&D risks, because a generic R&D process has multiple stages from idea generation to
market launch, and each activity in the stages is sometimes strongly associated with other activities.
From the results of analyses that employed two different initial relation matrices, the influential CFs
that are derived from the second type of direct-relation matrix are more realistic and practical, than
those from the first type of matrix. Market assessment error, low competence, and insufficient R&D
resources that are derived from the second approach seem to be fundamental factors that should be
carefully dealt with in R&D risk management. However, in terms of ‘results monitoring errors’, ‘low
competence’, and ‘discrepancy with corporate strategy’ from the first matrix, those factors need to be
considered the first-order risk factors that have high values of influence based on the direct relationship
with FMs. Thus, the two types of risk factors should be differently tackled according to the objectives
of risk management.

This paper suggests the use of the stage-gate model to investigate the R&D risk management.
Thus, although the CF itself is critical to manage R&D risks, important stages should be highlighted
to focus on the R&D process. In the aforementioned case, most of the influential CFs are included in
the stages of idea generation and primary assessment. In contrast, the CFs that belong to the stage
of full production & market launch are mostly dependent on other CFs, show low impacts to FMs,
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having low values of D-R. In the case of the software development project, the risks in two stages (idea
generation and primary assessment) should be carefully managed for successful completion of the
project. Since R&D projects have unique characteristics according to the type of projects, different
stages among all of the six stages can be highlighted and controlled in each project.

In terms of the selection of the initial relation matrix, two types of the matrix were considered
to prioritize the causes of failure. The first type that reflects the one-way relation from CFs to FMs
has a value larger than 0 in each cell. On the other hand, the second type can have negative value,
which means that a CF receives influence from other CFs, even if the CF has positive value of D + R,
the index for measuring the importance of CFs. The differences are caused by utilizing the different
approaches to examining the relations between CFs and FMs. The first type does not consider the
relation of CF-CF and FM-FM. Thus, the D-R value of CFs is always positive, because the CFs just
influence FMs, without receiving impacts from FMs. However, since the second type of matrix adds
the relations of CF-CF and FM-FM in the relation matrix, the D-F value of CFs is calculated by using
both RPN and the relation among CFs. From the perspective of the use of the matrix, the first type of
matrix can be utilized for the purpose of considering the basic relation, because the RPN that is used
to construct the matrix is a fundamental index to investigate the R&D risks. The second type can be
applied to reflect the relations between the CFs. Thus, it can be regarded as an advanced approach that
includes the relations among CFs, as well as the RPN (relations from CFs to FMs). Thus, according to
the purpose of the analysis of risk management, one out of the two types of matrix can be selected.

In order to apply the proposed approach in practice, several managerial implications should be
considered. First, the failure modes can be modified to customize the risk factors, by considering the
unique characteristics and situations of R&D projects. Since there can be a large number of risk factors
and the types of R&D projects are various, risk factors need to be appropriately defined and selected.
For example, the stage-gate model also has two main different types, namely NPD and NTD (new
technology development); and, the constitution of stages and gates differs according to the type. Thus,
the risk factors can be differently identified in different stages, because this approach is based on the
stage-gate model. Second, in terms of the selection of an initial relation matrix in the DEMATEL step,
analysers can consider two options of the matrix. While the basic matrix for initial relations focuses
on the direct relations between the failure modes and causes of failure, the advanced matrix can be
used to investigate the sophisticated influences of risk factors, by adding the relations between CFs
and CFs, as well as FMs and FMs. Although the utilization of the advanced matrix is theoretically
recommendable, practitioners can favour the basic matrix that is easy to understand and apply to
fields. Thus, analysers should conclude which type of initial relation matrix needs to be chosen in their
projects, considering various aspects of time, costs, and human resources. Finally, the risk analysis can
be conducted in ex ante or ex post manner, because such analysis aims at evaluating the importance of
risk factors prospectively or retrospectively. Although risks are identified and managed in advance,
the results of risk analysis without historical data can be inaccurate. Thus, in order to perform risk
management correctly, experience in conducting R&D projects and investigating R&D risks should be
involved in the process of risk analysis. The priority of risk factors in a specific project can be utilized
to forecast the importance of potential risks that might occur in a future R&D project. Therefore, after
a project is completed, managers need to compile the results of risk analysis, enabling the anticipation
of critical risk factors in future projects.

6. Conclusions

Although most of the actual costs in the life cycle of products are allocated in the latter phase
of the cycle, such as production and marketing, they are fixed in the earlier phase, such as ideation
and R&D fulfilment. Thus, successful control of R&D risk improves the profitability of products,
while mitigating the failure rate of R&D projects. This paper suggested a systematic approach to
prioritize the factors to manage R&D risks. For this, the two main techniques of the FMEA and
DEMATEL are applied to analyse the influence of risk factors that are derived from the stage-gate
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model. The proposed approach can enhance the process of R&D risk management, because it can
perform the risk analysis of an R&D project in a systematic manner, instead of depending on the
experience and the intuition of managers. In particular, this research contributes to the literature of
R&D risk management by presenting an approach to identifying the risk factors of R&D projects, based
on the stage-gate model. Even though there are many risk factors in a broad spectrum of R&D projects,
the stage-gate model enables this paper to systematically organize the list of failure modes and causes
of failure.

This paper does have several limitations. First, this research did not provide a process to integrate
the results of this approach in a decision-making process. In fact, the priority of risk factors helps
managers to make a decision to devise a strategy in R&D risk management. However, this paper
focuses on proposing an approach to analysing and evaluating the influence of risk factors. Second,
since this research proposes a generic framework to investigate the R&D risks, the list of FMs and
CFs are too general to reflect specific cases. Although the suggested list is proper to the selected case
for illustration, it can be modified to analyse various project types. Thus, the standard model needs
to be customized to each project, in order to accurately explain the characteristics of diverse projects,
such as technology development and product improvement. Finally, when the RPN in the FMEA is
calculated to investigate the importance of risks, the pairs of FM and CF are derived by analysers,
when considering the possible sets of the pairs. However, since all of the CFs can hypothetically affect
all of the FMs, the comprehensive relations between FMs and CFs can be included for the risk analysis.
Thus, future research can be conducted to deal with the limitations of this research. At the application
level, an approach to applying the proposed method to a decision-making process can be performed.
In addition, the process can be improved by enriching the list and relation of FMs and CFs from the
perspective of methodology.
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