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Abstract: There is a growing interest in the literature to understand how actions taken by occupants
and facility managers can affect building performance. However, user-centric building energy
research: (1) remains understudied compared to design-focused research efforts; (2) overlooks
combined effects or uncertainty in multiple parameters; and (3) typically does not cover particular
types of buildings (e.g., educational facilities), nor buildings subject to extreme weather conditions.
This paper fills an important gap in the literature by proposing a comprehensive energy modeling
and analysis framework to quantify the impact of human action on building energy consumption.
The framework applies various data analysis methods such as differential, fractional factorial, and
Monte Carlo analysis methods, in order to capture potential combined or synergetic effects of human
actions on building performance. A case study is then presented on typical educational buildings
located in the extreme hot climate of Abu Dhabi, United Arab Emirates (UAE). Results indicate that
uncertainty in human actions can lead up to a ±25% variation from average energy consumption
levels, confirming the significant role that people have in making their built environment more
efficient and sustainable.

Keywords: human actions; uncertainty analysis; building operation; energy consumption;
educational buildings; United Arab Emirates (UAE)

1. Introduction

The building sector is a major contributor to the high and increasing demands for energy and
corresponding carbon emissions [1]. Worldwide, this sector accounts for 30% to 40% of total energy
consumption [2]. This ratio is even significantly higher in countries with extreme climate conditions
such as the United Arab Emirates (UAE), where more than 70% of the power generated is consumed
by buildings [3,4]. Over the life cycle of a typical building, more than 80% of the energy is consumed
during the operation phase [5], while the remaining energy mainly goes to the construction and
demolition phases. As a result, targeting the operation phase of buildings is essential to achieve
long-term energy savings. In general, a building’s performance during operation is highly dependent
on its design, especially the choice and sizing of its electro-mechanical systems. For this purpose,
building energy modeling software is commonly used during the design phase to: (1) simulate
the building under study; (2) predict its energy consumption levels during operation; and (3) help
designers and engineers choose and size different building systems (e.g., air conditioning units) [6,7].
A large number of building energy modeling tools can be found in the market and in literature; four of
the most commonly used tools are: EnergyPlus, IES Virtual Environment, TRNSYS, and eQuest [8].

In practice, while the accuracy of these models is essential for a good building design, important
discrepancies are typically observed between their predicted energy consumption levels (obtained
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during design) and actual levels (observed during operation). These differences typically vary between
30% and 100% in some cases, and can be attributed to three main factors: (1) inaccurate assumptions
regarding external building conditions (e.g., variations in weather conditions); (2) inaccurate
assumptions regarding building design (e.g., efficiency of different systems); and (3) inaccurate
assumptions regarding human actions and operation (e.g., energy use patterns) [7,9]. While the
literature has been traditionally mostly focused on the first two, numerous field studies confirm that
human actions and operation patterns have a significant impact on building energy performance and
require further study. For instance, Roth et al. [10] estimated that in United States (US) commercial
buildings, 20% of the energy consumed by systems such as lighting and the heating, ventilation, and
air conditioning (HVAC) can be attributed to undetected faults or poor operational assumptions during
the design and commissioning phases. Along the same lines, Granderson et al. [11] argued that poorly
operated equipment in commercial buildings account for 10% to 30% of the energy consumed. Finally,
additional studies confirm that occupancy actions, such as leaving equipment or lights running after
hours, can lead to significant and unnecessary energy use levels (e.g., [12–14]).

In recent years, there has been a growing trend in the literature to study operation and user-centric
drivers of building energy performance. One such effort is the Annex 66 project on the “Definition and
Simulation of Occupant Behavior in Buildings” by the International Energy Agency (IEA) Energy in
Buildings and Community (EBC) programme. The objectives of Annex 66 include: (1) setting up a
general occupant behavior definition platform; (2) establishing a quantitative simulation methodology
to model occupancy behaviors in the built environment; and (3) understanding the influence of
occupancy behavior on the indoor environment and building energy consumption levels [15]). While
the three above objectives are essential, the current paper focuses on the latter, particularly on the
impact of individual human actions on building energy use.

Various research efforts have aimed to understand and quantify the impact of individual human
actions on building energy performance. Delzendeh et al. [16] provide a comprehensive review
of these studies, which cover the use of appliances and electrical devices (e.g., [17,18]), lighting
usage (e.g., [19–21]), window opening (e.g., [22,23]), and HVAC settings (e.g., [24]). In parallel to
the assessment of individual drivers of energy use, Azar and Menassa [25,26] used building energy
modeling to simulate the impact of various human actions on the performance of typical US commercial
buildings. Through parametric variations, the authors isolated and quantified the effect of lighting,
equipment, HVAC, and hot water use patterns on the energy use of the studied buildings. The above
studies contribute to an improved understanding of the impact of human actions on the performance
of their built environment. However, important gaps can be found in the existing literature, and are
yet to be addressed, motivating the need for the current research.

First, most studies have mainly considered the impact of individual parameters on energy
consumption. The combined effects of parameters, as well as simultaneous uncertainty in all
parameters, have rarely been considered. In practice, potential synergies might exist between
parameters causing an impact on energy consumption that is larger than the sum of the individual
parameters’ effects. Addressing this gap will provide important and comprehensive insights on the
true impact of people’s actions on the energy used in buildings. Second, the majority of studies on the
energy use patterns of occupants mainly focus on typical commercial or residential buildings. The
influence of human actions on educational buildings, such as in a campus environment, has been
rarely investigated. This motivates the need to expand the scope of study to educational buildings,
(e.g., classroom or dormitory buildings). Such building types might show different sensibilities in their
performance to human actions when compared with traditional commercial or residential building
types. Finally, the reviewed studies in the literature mostly originate from and focus on regions such
as North America or Europe. It is important to expand the scope of analysis to regions with extreme
hot climates such as the UAE, where buildings might exhibit different behaviors when subjected to
variations in human actions and energy use patterns.
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This study proposes an energy modeling and analysis approach to comprehensively evaluate and
quantify the impact of human actions on building energy performance. Specific objectives include:
(1) determining the direct impact of actions taken by occupants or facility managers on the energy
consumption of buildings of different types; (2) identifying potential synergetic or combined effects
between parameters; (3) evaluating and comparing the response of buildings to potential uncertainty
in human-related parameters; and (4) using the results to recommend user-centric energy-saving
solutions. The followed approach is general, and can be applied to any building. In this paper, it
is applied to a set of educational buildings in Abu Dhabi, UAE, highlighting the capabilities and
uniqueness of the work.

2. Methodology

The proposed methodology in this paper has three main steps, which are detailed in the following
subsections. In Step 1, the characteristics of typical educational buildings in the UAE are gathered
from different sources. Those buildings are categorized as office, classroom, and dormitory (“dorm”)
buildings. Step 2 consists of developing and calibrating building energy models to simulate the energy
performance of those buildings. Extensive parametric variations are then conducted in Step 3 using
different methods, including differential, fractional factorial, and Monte Carlo analyses.

2.1. Data Gathering

The data needed to develop the base case energy models are divided between three categories:
“Building Design Characteristics”, “Energy Systems Characteristics”, and “Business-as-usual
Occupancy Characteristics”. The first covers parameters such as total floor area, floor height, number of
stories, glazing fraction, and U-values for roof, walls, and gazing. The second covers the characteristics
of various end-use systems such as the HVAC, lighting, and equipment (i.e., plug loads). Finally, the
base case occupancy characteristics are factors that affect the operational performance of the building;
these include, but are not limited to: people density, occupancy schedule, equipment use patterns,
lighting use patterns, and HVAC operation schedule and thermostat temperature set points.

The values of all of the above-mentioned parameters are obtained from a variety of sources,
including a report by the Abu Dhabi Urban Planning Council (UPC) [27], a study on the life-cycle
analysis of building retrofits at the urban scale in the UAE [3], building standards [28], and other
sources covering building benchmarking efforts [29,30]. A summary of the gathered data, which
is later used as inputs to develop building energy models, is shown in Table 1. The table includes
information for the three types of buildings considered, obtained from a variety of sources that are
cited in the table.
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Table 1. Modeled buildings’ parameters.

Parameter Units Office Classroom Dorm

Typical Total Floor
Area [27,29] m2 4982 19,592 3135

Building Width (calculated) m 40.8 100.0 28.0
Building Length (calculated) m 40.8 100.0 28.0

Floor Height [29] m 4.0 4.0 3.1
Number of Stories [29] Floors 3 2 4

Location —– Abu Dhabi Abu Dhabi Abu Dhabi
Glazing Fraction

Window-to-Wall Ratio (WWR) [27,29] —– 50% 33% 15%

People Density [28] m2/person 18.6 3.7 9.3
Minimum Fresh Air [27] L/s/person 10 10 2

Infiltration Rate [30] Air changes per hour (ACH) 0.5 0.5 0.7
Equipment Intensity [27,28] W/m2 15.0 15.0 6.4

Lighting Intensity [27,28] W/m2 10.0 10.7 6.6
Domestic Hot Water (DHW) [28] L/Person 3.8 6.8 48.1

Wall U-Values [3] W/m2·K 1.7 1.7 1.7
Roof U-Values [3] W/m2·K 0.5 0.5 0.5

Glazing U-Values [27] W/m2·K 2.4 2.4 2.4
Occupants Maximum Sensible Gain [28] W/Person 73.3 73.3 73.3
Occupants Maximum Latent Gain [28] W/Person 58.6 58.6 58.6
Occupancy, Equipment, Lighting, and

HVAC Profiles [28] (Refer to Appendix A
for more details)

—– Table 5-J Schedule A Table G-K School Occupancy Table 5-M Schedule D

HVAC Occupied [27] & Unoccupied Set
points

◦C Occupied: 22
Unoccupied: 24

Occupied: 22
Unoccupied: 24

Occupied: 22
Unoccupied: 24

Cooling System Type [29] —– PACU (packaged air
conditioning unit) Chiller—air cooled PACU—SS (Split System)

Air Distribution [29] —– MZ VAV (multi-zone variable
air volume) MZ VAV SZ CAV (single-zone constant

air volume)

Note: In Deru et al. [29], it is assumed that the classroom and dorm buildings are equivalent to secondary school and mid-rise apartment buildings, respectively.
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2.2. Energy Modeling

Three prototype building energy models are developed in IES-VE (Integrated Environmental
Solutions—Virtual Environment), which is a commonly used building energy modeling software [8].
The models are representative of archetype office, classroom, and dorm educational buildings in
the UAE, which were described in Table 1. Figure 1 illustrates the geometries of three models in
IES-VE. The general floor layouts are adapted from Deru et al. [29], while a square shape is chosen
for all of the buildings to minimize the effect of building orientation on performance. Following the
geometry development, the parameters of Table 1 are assigned to the three models, hence adding
the building material, energy systems, and base case occupancy layers of information. As for the
outdoor weather conditions, they are obtained from the weather files of Abu Dhabi airport for the
year 2014, which include variables such as hourly temperatures, humidity, and air speed [31]. It is
important to note that no studies were found that explicitly define typical HVAC unoccupied set point
temperatures in UAE buildings. Given the academic nature of the facilities, which are typically open to
students and/or staff around the clock, values of 24 ◦C are chosen to reflect more relaxed temperature
values compared to occupied set points (i.e., 22 ◦C), while maintaining acceptable indoor conditions
in case the space becomes occupied beyond regular working hours. Moreover, choosing unoccupied
temperature settings that are close—or even similar—to those of occupied hours is common when
modeling buildings in the UAE and other Arabian Gulf countries such as Kuwait [3,32,33], which
further supports the choice of 24 ◦C as a set point for unoccupied periods.

Figure 1. Geometry and layout of the base case models.

Next, the building energy models are run, generating energy intensity estimates (i.e., site electricity
demand) of 257.1 kWh/m2/year for the typical office building, 195.1 kWh/m2/year for the classroom
building, and 363.9 kWh/m2/year for the dorm building. In the UAE, the vast majority of the
electricity delivered to the building sector is generated from natural gas power plants. According to
Sgouridis et al. [34] an average of 8.28 MJ of fossil primary energy is needed for 1 kWh of residential
electricity delivered. Consequently, the primary energy intensity of the three modeled buildings are
estimated at 2.13 GJ/m2/year, 1.16 GJ/m2/year, and 3.01 GJ/m2/year, respectively.

Following the model development, it is important to verify that the energy predictions of
the models are close in value to the energy consumption that is observed in actual buildings of
similar characteristics. When developing an energy model of a typical or prototype building, a
common practice is to compare the model’s predictions to those collected from a stock of similar
buildings [25]. One commonly used building database for this purpose is the Commercial Buildings
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Energy Consumption Survey (CBECS) [35], which gathers data from thousands of commercial
buildings in the US. The CBECS is commonly used for benchmarking building performance and
developing typical or reference energy models [29,35].

In the UAE, and in the absence of such consumption benchmarks, the authors compared the
energy predictions of the models to those of individual buildings in Abu Dhabi of a similar type
(i.e., office, classroom, and dorm) and size (i.e., number of floors and floor area). More specifically,
energy consumption data was obtained from 12 buildings including four office, five classroom, and
three dorm buildings, whose characteristics are presented in Table 2. It is important to note that these
buildings were not used in the model development phase, hence separating the data that was used to
develop the models from the one that was used to validate them.

Table 2. Surveyed buildings’ characteristics.

Building Year Built Floors Percent Glazed
(Front/Right)

Glazing Type
(Front/Right)

Tinting Type
(Front/Right)

Shading
(Front/Right)

Office #1 1990–1994 2 80–100%/<20% Single/n/a None/n/a No/No
Office #2 2000–2004 2 20–40%/n/a Single/n/a Tinted/n/a No/n/a
Office #3 2005–2007 2 <20%/<20% Single/n/a Tinted/n/a No/No
Office #4 2008–2012 2 <20%/<20% Dble./Dble. Reflect./Reflect. No/No
Class. #1 1990–1994 1 60–80%/60–80% Single/Single Reflect./Reflect. Yes/Yes
Class. #2 <1990 2 40–60%/40–60% Single/Single Tinted/Tinted Yes/Yes
Class. #3 1990–1994 2 <20%/<20% Single/Single Tinted/Tinted No/Yes
Class.#4 2000–2004 3 20–40%/<20% Single/Single Reflect./Reflect. No/No
Class. #5 1995–1999 2 40–60%/20–40% Single/Single Tinted/Tinted Yes/Yes
Dorm #1 n/a 4 <20%/<20% Single/Single Tinted/Reflect. No/No
Dorm #2 n/a 4 20–40%/<20% Dble./Single Tinted/None No/Yes
Dorm #3 2008–2012 4 0%/20–40% Single/Single None/None No/No

The average energy intensities of the buildings described in Table 2 are presented in Table 3,
along with the differences, or deviations, between the models’ predictions. The results show that the
differences do not exceed 5.4%, and are within the acceptable error range of 10% [25]. Nonetheless,
the authors acknowledge that collecting data from a larger number of buildings could have further
ensured the validity of the models. Since such a task is beyond the scope of the current study, a subset
of the CBECS was also used to compare the predictions of the models to additional buildings of similar
characteristics as an additional mean of validation. This was done by filtering the CBECS data to
only show buildings that have similar characteristics to the three types of buildings considered in this
study. These characteristics include building type, size, and weather zones in order to ensure that the
surveyed buildings are in climate conditions similar to those encountered in the UAE (i.e., very hot
and dry such as in CBECS weather zone 5) [35]. The filtering process identified a total of 54 office,
59 classroom, and 37 dorm buildings that fit these criteria. The average energy intensities of those
buildings are also shown in Table 3. When compared to the base case energy predictions of the
models, the differences do not exceed 9.0%. Therefore, the obtained results are here again within
the acceptable 10% error range, re-confirming the accuracy of the models and their adequacy for
conducting further analysis.

Table 3. Comparison of energy intensity values. CBECS: Commercial Buildings Energy
Consumption Survey.

Models Abu Dhabi Buildings CBECS Buildings

Energy Intensity
[kWh/m2/Year]

Energy Intensity
[kWh/m2/Year]

Difference with
Models [%]

Energy Intensity
[kWh/m2/Year]

Difference with
Models [%]

Office 257.1 243.1 +5.4 278.1 −8.1
Classroom 195.1 205.1 −5.2 191.8 +1.7
Dorm 363.9 354.5 +2.6 331.2 +9.0
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Finally, Figure 2 illustrates the distribution of the energy consumption of the base case models by
end use. As expected, HVAC is the largest consumer given the hot weather of Abu Dhabi, followed by
equipment loads for office and classroom buildings, and domestic hot water (DHW) heating energy
for the dorm building.

Figure 2. Baseline energy consumption distribution by end use.

2.3. Parametric Variation

Three different parametric variation methods are used in this study as detailed next: differential
analysis [36,37], fractional factorial analysis [38,39], and Monte Carlo analysis [40,41]. Prior to
proceedings, it is important to highlight that the literature lacks a standard on the design of parametric
variation experiments, in particular, the choice of the ranges over which to vary each parameter.
Consequently, the authors adopted a conservative approach by using ranges that are smaller than
or equal to those used in previous comparable studies [25,26,42]. This ensures that the variations
simulated in this study are in line with previously published work on the topic, which helps confirm
the validity of the experimental design. In this study, the parametric variation is performed by directly
changing the input parameters of the building energy models, running them, and observing the
changes in their energy predictions. Such an approach is adequate, since the number of runs is not
significantly high. For cases where the number of runs are excessive, a surrogate statistical or machine
learning model can be trained to mimic the behavior of the building systems and predict their outputs
(e.g., energy use levels) for a given series of inputs (e.g., design and operation characteristics). Once a
model is trained and validated, a high number of simulations can be conducted at a significantly lower
time than when the building energy models are used directly [43].

2.3.1. Method 1: Differential Analysis

The goal of this method is to quantify and isolate the effect of each parameter on the total energy
consumption, which is achieved by gradually changing its initial value while fixing all of the other
parameters at their baseline values [36,37]). Seven human or operation-related parameters are tested
for the three developed energy models.

As shown in Table 4, the first two parameters are equipment and lighting use during unoccupied
periods. The focus on the unoccupied period helps simulate scenarios where lighting systems or
equipment (i.e., plug loads) are left running while a space is unoccupied, potentially indicating an
inefficient operation of these systems. Four values are used: 0%, 10%, 20%, and 30%, where a value of
30% represents a scenario where 30% of the equipment or lighting systems are left running after hours
(e.g., at night or over the weekend). The third parameter consists of shifting building schedules by
±1 h and ±2 h. This helps test potential uncertainty in building schedules or specific strategies such
as “green scheduling”, where building operation schedules are shifted to save energy, mainly through
reduced cooling or heating loads. Then, window opening is tested using three different scenarios. The
first represents a daily opening of half of the windows for 1 h (at 8 a.m.), the second scenario has an
opening duration of 2 h (1 h at 8 a.m. and another at 1 p.m.), and the third scenario has an opening
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a duration of 3 h (at 8 a.m., 1 p.m., and 6 p.m.). While the opening of windows in air-conditioned
buildings is not extremely common nor recommended, studies confirm that such actions are observed
in actual buildings [44,45], which motivated their consideration in the current analysis. It is important
to note that the parametric variation does not consider the probability or frequency of such actions
occurring; rather, it aims to simulate the impact that they will have on building performance in the
case of their occurrence. Lastly, different settings for HVAC set point temperatures for occupied and
unoccupied periods are simulated. A variation of ±2 ◦C from the base case values is particularly tested
for occupied and unoccupied periods.

Table 4. Differential analysis parameters.

Parameter Scenarios

Equipment use during unoccupied periods 0%, 10%, 20%, and 30%
Lighting use during unoccupied periods 0%, 10%, 20%, and 30%

Shifting schedules Baseline schedule varied by ±1 h and ±2 h
Window opening 1 h (8 a.m.), 2 h (8 a.m. + 1 p.m.), 3 h (8 a.m. + 1 p.m. + 6 p.m.)

HVAC occupied set point Baseline value (22 ◦C) ±2 ◦C
HVAC unoccupied set point Baseline value (24 ◦C) ±2 ◦C

HVAC occupied and unoccupied aet points
simultaneously Baseline values (22 ◦C and 24 ◦C) ±2 ◦C

Equation (1) is used to calculate the main effect of each factor, which was adapted from the work
of Hamby [37]:

E f fA =
EItest − EIbase

EIbase
(1)

where, E f fA is the main effect of parameter A, EItest is the energy intensity predicted by the model
when parameter A is at the test level, and EIbase is the energy intensity when all of the parameters are
at their base levels. The number of simulations required for this method are 21 for each model, and 63
for the three models.

2.3.2. Method 2: Fractional Factorial Analysis

Fractional factorial analysis is used to analyze the interactions between the parameters, as well as
any combined effect that they may have on building energy use [38,39]. This technique helps identify
potential synergies between parameters, where the combined effect of two parameters might be higher
than the sum of their individual effects. Equation (2) is used to calculate this effect, which was adapted
from the work of Langner et al. [38]:

E f fab =
(EIab + EIAB)− (EIAb + EIaB)

EI
(2)

where, E f fab is the combined impact of parameters a and b, EI is the energy intensity average of all of
the simulations, EIab is the energy intensity average of the simulations where the parameters a and b
are at their base levels, EIAB is the average of the simulations where the parameters A and B are at
their test levels, and EIAb and EIaB are the averages of the simulations where one parameter is at the
test level, while the other at the base level.

The total number of simulations required for this analysis is P2, where P is the number of
parameters. Four parameters are chosen at this stage: (a) combined equipment and lighting unoccupied
usage; (b) window opening; (c) HVAC occupied and unoccupied set points; and (d) shifting schedules.
Therefore, a total of 48 simulations is needed, 16 simulations for each building type. The values that
are used as the base and test values for the three buildings are shown in Table 5. The 16 combinations
for each model are later shown in the results section.
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Table 5. Base and test values for the fractional factorial analysis.

Parameter Base Test

Equipment & Lighting Unoccupied 0% Unoccupied 30%
Window Opening None 3 h (8 a.m. + 1 p.m. + 6 p.m.)

Shifting HVAC set points by 2 ◦C 22 ◦C (occupied)
24 ◦C (unoccupied)

20 ◦C (occupied)
22 ◦C (unoccupied)

Shifting Schedules None −2 h

2.3.3. Method 3: Monte Carlo Analysis

Monte Carlo analysis (MCA) is one of the most commonly used techniques for carrying out
global sensitivity and uncertainty analyses [40,41]. It allows studying how potential uncertainties in
model input values propagate to produce variations in overall model outputs (i.e., energy predictions).
In this study, random sampling (i.e., uniform distribution) is used to randomly perturb the model
inputs without assuming or forcing particular distributions. While other distributions (e.g., triangular,
normal, log-normal, etc.) can be also applied, the literature lacks empirical data on the human-related
parameters that are studied to force a particular distribution on the simulation of uncertainty.
Consequently, a uniform distribution was chosen to avoid making such assumptions, especially that the
goal of the analysis is to capture the potential variability in energy consumption from human actions.

Multiple iterations are needed for this type of analysis. A total of 60 iterations are used in this
paper, a number that is considered adequate for Monte Carlo simulations independently of the number
of parameters varied [40,41]. The considered input parameters are presented in Table 6, along with
their ranges of variation (i.e., lower and upper bounds of the uniform distribution function).

Table 6. Monte Carlo analysis input parameters and range.

Parameter Range

Equipment use during unoccupied periods 0%, 10%, 20% and 30%

Lighting use during unoccupied periods 0%, 10%, 20% and 30%

Window Opening None, 1 h (8 a.m.), 2 h (8 a.m. + 1 p.m.), 3 h (8 a.m. + 1 p.m.
+ 6 p.m.)

Shifting HVAC set points Occupied Period: 20 ◦C, 21 ◦C, 22 ◦C, 23 ◦C, and 24 ◦C
Unoccupied Period: 22 ◦C, 23 ◦C, 24 ◦C, 25 ◦C, and 26 ◦C

Shifting Schedules −2 h, −1 h, None, +1 h, +2 h

3. Results

The following subsections present the results of the three parametric variations methods
conducted, namely differential, fractional factorial, and Monte Carlo analysis, respectively. A general
discussion of the results follows.

3.1. Differential Analysis Results

Figure 3 summarizes the results of the differential analysis where the parameters of Table 4 are
individually varied for each model. In general, the dorm building shows the highest energy intensity
levels, exceeding 300 KWh/m2/year. This high energy intensity of the dorm building is mainly due to
its demand for domestic hot water, as opposed to the classroom building and office buildings, which
require minimal to negligible levels of hot water (refer to Figure 2).
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Figure 3. Individual parametric variation effects.

When analyzing the results of the differential analysis, the most influential parameter is the HVAC
temperature set point. As shown in Figure 3, varying this parameter by ±2 ◦C leads to important
differences in building energy intensity, reaching up to 26.5% for the classroom building. Put differently,
if building occupants set the thermostat temperatures at 2 ◦C higher than the baseline values, instead
of 2 ◦C lower, they can reduce the energy consumption of their buildings by an estimated 26.5%. Such
a finding is significant, and can be attributed to the HVAC system’s large share of total energy use,
given the hot weather conditions of the buildings under study. As previously shown in Figure 2, this
ratio exceeds 60% for the three considered building types.

As for the equipment and lighting use after hours, a maximum of 17.7% difference in energy
intensity is observed for the classroom building when varying after-hours equipment use from 0%
to 30%. The office building also showed important variations in energy intensity, with 13.5% and
8.0% for the after-hours equipment and lighting variation, respectively. The dorm building, on the
other hand, showed a lower sensitivity to these input parameters, with its differences in energy
intensity not exceeding 2%. This can be attributed to two main factors. Firstly, as previously shown
in Figure 2, the equipment and lighting end uses are less dominant in the dorm building, given
the importance of the domestic hot water end use. Secondly, as per the equipment and lighting
schedule patterns used in the base case [28], the difference between the energy consumption patterns
of occupied and unoccupied periods is less significant for the dorm building. In other words, for this
building type, some appliances (e.g., refrigerator) and systems (e.g., air conditioning) operate to some
degree independently of whether the space is occupied or not, decoupling an important portion of the
energy demand from the occupancy status. On the other hand, since office and classroom buildings
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are typically unoccupied at night and on weekends, larger energy differences are typically expected
between occupied and unoccupied periods.

As for the window-opening scenarios, a maximum of a 4.8% increase in energy is observed when
opening the windows three times a day as opposed to none. This occurs in the dorm building, which
has a type of HVAC system (i.e., SZ CAV) that is typically less efficient than the one used in the
other buildings (i.e., MZ VAV) (refer to Table 1). Therefore, when windows are opened, the HVAC
system of the dorm building requires a higher amount of energy to cool down and replace the hot air
coming into the building, which can explain the observed higher sensitivity of the dorm building to
window openings.

Finally, shifting the building schedule by ±2 h did not show a significant impact on energy
intensity. A maximum of 1.5% difference in energy intensity is observed for the dorm building, a
difference that is considered minimal when compared to the results of the other parametric variations.
In summary, the classroom building showed the highest sensitivity to variations in equipment,
lighting, and HVAC-related parameters, while the dorm building is the most sensitive to changes in
window-opening frequency and building schedules.

3.2. Fractional Factorial Analysis Results

The four parameters analyzed using the fractional factorial method are: (a) combined equipment
and lighting unoccupied usage (EL); (b) window opening (WO); (c) HVAC occupied and unoccupied
set points (HVAC); and (d) shifting schedules (SS). Table 7 below shows the results of all 16 simulations
needed for the analysis, with the respective energy intensities obtained for the three building types
considered. Table 8 shows the calculated relative effects of each pair of parameters on the three models,
which were computed using Equation (2). In general, all of the observed effects are consistently low,
indicating an absence of combined parameter effects. The findings indicate that when two parameters
are varied simultaneously, the resulting impact on energy intensity is not significantly different than
the sum of their individual effects. The relatively highest impact is observed between parameter A
(combined equipment and lighting unoccupied usage) and D (shifting schedules), with an absolute
value of 0.058 for the classroom building. While still minimal in value, this effect can be due to the
internal heat gain generated from an increase in equipment and lighting use, which requires the HVAC
system to reject this heat and keep the indoor conditions stable. The energy required for this process is
dependent on the outdoor air conditions, since the HVAC needs to bring in and cool outside air prior
to distributing it in the building. In turn, these conditions depend on the time of the day, which can
explain the combined effect with parameter D (shifting schedules).

Finally, in order to ensure that the results are not dependent on the specific values used in Table 5,
the analysis was repeated with different “test” levels for parameters A to D. Values at the middle of
the ranges presented in Table 5 are particularly chosen. The obtained results were similar to the ones
presented in Table 7, showing very weak combined effects between the parameters. The consistency in
the results can be attributed to two main factors. Firstly, the fractional factorial analysis measures the
potential synergy between two parameters in a relative manner, rather than an absolute manner. As
shown in Equation (2), the combined effect is a unit-less coefficient that compares the simultaneous
effect of any two parameters with the summation of their individual effects [38,39]. Secondly, buildings
typically exhibit linear relationships between the characteristics of their end-use systems (e.g., lighting,
equipment, and HVAC) and energy use levels [46–49]. Such linearity helps explain the low synergies
that are observed between parameters, which is shown to be independent of the specific base and test
values used in the analysis.
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Table 7. Fractional factorial analysis runs.

Run
Parameter Energy Intensity (kWh/m2/Year)

-A-
(EL)

-B-
(WO)

-C-
(HVAC)

-D-
(SS) Office Classroom Dorm

1 Base Base Base Base 257.1 195.1 363.9
2 Base Base Base Test 256.3 193.2 366.8
3 Base Base Test Base 281.7 229.8 383.8
4 Base Base Test Test 281.4 229.3 386.2
5 Base Test Base Base 265.7 204.4 373.9
6 Base Test Base Test 265.5 203.0 376.6
7 Base Test Test Base 291.3 238.5 394.8
8 Base Test Test Test 291.8 237.7 396.6
9 Test Base Base Base 270.0 242.8 363.9

10 Test Base Base Test 259.6 227.2 365.0
11 Test Base Test Base 294.8 277.1 383.9
12 Test Base Test Test 284.8 262.8 384.4
13 Test Test Base Base 278.8 251.4 374.0
14 Test Test Base Test 268.9 236.4 374.8
15 Test Test Test Base 304.4 285.1 394.8
16 Test Test Test Test 295.4 270.8 394.8

Table 8. Fractional factorial combined parameters’ effects.

A&B
[EL&WO]

A&C
[EL&HVAC] A&D [EL&SS] B&C

[WO&HVAC]
B&D

[WO&SS]
C&D

[HVAC&SS]

Office Building Results

EI 277.97 EI 277.97 EI 277.97 EI 277.97 EI 277.97 EI 277.97
EIab 269.13 EIac 261.15 EIad 273.95 EIbc 260.75 EIbd 275.90 EIcd 267.90
EIAB 286.88 EIAC 294.85 EIAD 277.18 EIBC 295.73 EIBD 280.40 EICD 288.35
EIAb 277.30 EIAc 269.33 EIAd 287.00 EIBc 269.73 EIBd 285.05 EICd 293.05
EIaB 278.58 EIaC 286.55 EIaD 273.75 EIbC 285.68 EIbD 270.53 EIcD 262.58
E f fab 0.000 E f fac 0.000 E f fad −0.035 E f fbc 0.004 E f fbd 0.003 E f fcd 0.002

Classroom Building Results

EI 236.54 EI 236.54 EI 236.54 EI 236.54 EI 236.54 EI 236.54
EIab 211.85 EIac 198.93 EIad 216.95 EIbc 214.58 EIbd 236.20 EIcd 223.43
EIAB 260.93 EIAC 273.95 EIAD 249.30 EIBC 258.03 EIBD 236.98 EICD 250.15
EIAb 252.48 EIAc 239.45 EIAd 264.10 EIBc 223.80 EIBd 244.85 EICd 257.63
EIaB 220.90 EIaC 233.83 EIaD 215.80 EIbC 249.75 EIbD 228.13 EIcD 214.95
E f fab −0.006 E f fac −0.002 E f fad −0.058 E f fbc −0.004 E f fbd 0.001 E f fcd 0.004

Dorm Building Results

EI 379.89 EI 379.89 EI 379.89 EI 379.89 EI 379.89 EI 379.89
EIab 375.18 EIac 370.30 EIad 379.10 EIbc 364.90 EIbd 373.88 EIcd 368.93
EIAB 384.60 EIAC 389.48 EIAD 379.75 EIBC 395.25 EIBD 385.70 EICD 390.5
EIAb 374.30 EIAc 369.43 EIAd 379.15 EIBc 374.83 EIBd 384.38 EICd 389.33
EIaB 385.48 EIaC 390.35 EIaD 381.55 EIbC 384.58 EIbD 375.60 EIcD 370.80
E f fab 0.000 E f fac 0.000 E f fad −0.005 E f fbc 0.002 E f fbd −0.001 E f fcd −0.002

3.3. Monte Carlo Analysis Results

The results of the 60 runs of Monte Carlo analysis are shown in Figure 4. The upper part of
the figure illustrates the spread of the results for the three types of buildings. Each dot indicates the
energy intensity obtained from one of the 60 runs. Box-and-whisker plots are also overlaid showing
the average, first, and third quartiles, as well as the minimum and maximum values observed. In
general, significant levels of variations are observed between the runs, with the highest difference
for the classroom building and the lowest difference for the dorm building. As shown in Figure 4,
the classroom building baseline average is 212.3 KWh/m2/year, with a possible minimum and
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maximum of 157.6 KWh/m2/year and 265.6 KWh/m2/year, respectively. This is equivalent to
a variation exceeding ±25% from the average energy intensity. The office building, on the other
hand, shows a variation of ±19%, while the dorm building a variation of ±7%. Results confirm
that uncertainty in the chosen human-related parameters can lead to significantly different energy
intensity levels. These results are in accordance with those of the differential analysis, confirming the
particularly high sensitivity of the building energy use levels, particularly the classroom building, to
the studied parameters.

Figure 4. Monte Carlo analysis results.

The lower part of Figure 4 shows the same data, but in a histogram format in order to
better visualize the variability within the runs. The X-axis represents energy intensity bins of
12 KWh/m2/year, while the Y-axis shows the frequency distribution of the 60 runs. In general,
the results of the runs for the three buildings are relatively well distributed around their means. The
symmetry is best illustrated in the office building case, where the results of the runs form a bell-shaped
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distribution. It is important to mention that the choice of the bin size influences these shapes to
some degree. While other bin sizes can better illustrate the symmetry in the results of the classroom
and dorm building, one bin size was chosen for all of the buildings for consistency when analyzing
the results.

4. Discussion

The findings of this study confirm that human actions can have major effects on building
performance. In addition to equipment, lighting, and window operation patterns, a simple action
such as adjusting HVAC set point temperatures by ±2 ◦C can lead to a 26.5% change in the energy
consumption of the classroom building, while the office and dorm buildings have shown changes of
16.6% and 8.5%, respectively. Assuming an electricity tariff of 0.087 $/kWh, which is the unsubsidized
cost of electricity generation in Abu Dhabi [32], the estimated savings in utility costs amount to
$88.1 K/year, $18.5 K/year, and $8.4 K/year for the classroom, office, and dorm buildings, respectively.
The results are in line with the work of Afshari et al. [3], who varied HVAC set points for a commercial
office building in the UAE. While the building type and experimental settings are different than the
ones used in the current study, the authors in [3] estimated that a 4 ◦C increase in set point temperatures
could lead to a reduction of 29% in cooling loads, which is equivalent to a change of 17.6% in the total
building energy consumption. The findings are very comparable to the ones observed in the current
study, further confirming the validity of the results.

In practice, despite the highlighted energy monetary savings from a ±2 ◦C change in thermostat
settings, such measure might not be realistic given its potential negative impact on the thermal comfort
levels of occupants. To shed light on this matter, we calculate and show in Figure 5 the predicted
impact of various thermostat set point values on the comfort levels of occupants according to ASHRAE
55-2013 standard [50], which was calculated using the University of California Berkeley Center for
the Built Environment CBE thermal comfort tool [51]. The calculations are made assuming an indoor
relative humidity of 50% [52], an indoor air speed of 0.1 m/s [50], a “light wearing” average clothing
level for occupants (i.e., clo value of 0.61), and an average metabolic rate of 1.2 METS, corresponding
to a relaxing or standing activity level [50,51]. The thermal comfort metric used is the percentage of
people dissatisfied (PPD), which is calculated for thermostat values ranging from 20 ◦C to 28 ◦C at
a 0.5 ◦C increment. According to ASHRAE 55-2013 standard [50], only PPD values lower than 10%
are considered acceptable. As shown in Figure 5, the acceptable range of set point values is between
22.5 ◦C and 25.5 ◦C, inclusive. This indicates that starting from the current base case value of 22 ◦C, a
maximum increase of 3.5 ◦C (i.e., reaching up to 25.5 ◦C) can be considered realistic, beyond which the
PPD drops below the maximum recommended value of 10%.

Another interesting observation in the results of Figure 5 is that the base case value of 22 ◦C, which
is very common in the UAE and other countries in the Gulf region [3,32,33], results in sub-optimal
conditions for the building occupants (i.e., PPD = 11%). This observation leads us to question whether
it is adequate to apply standards developed in Western countries (e.g., ASHRAE 55-2013) to other
regions such as the Arabian Gulf, or not, where a temperature of 22 ◦C might be considered comfortable
by building occupants. It also motivates the need to study and better understand the link between
occupants’ characteristics and the way they perceive the indoor conditions of their building spaces.
Important research efforts have been deployed on this topic linking the comfort levels of building
occupants to their gender [53], age [54], nationality [55], and economic class [56], among other factors.
We believe that more research efforts are needed that originate from Gulf countries and assess the
applicability of Western standards to the region.
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Figure 5. Impact of thermostat set points on thermal comfort, expressed in percentage of people
dissatisfied (PPD).

This paper also provided an overall understanding of the human role and responsibility in energy
conservation. In the Monte Carlo analysis, all of the buildings have shown important variations in
their energy intensity when uncertainty was applied to their human-related parameters. A ±25%
variation in energy intensity was observed for the classroom building, followed by ±16% and ±9% for
the office and dorm buildings. The results for the classroom and office buildings are in line with the
work of Azar and Menassa [26], who estimated the potential energy savings from human actions in
US commercial office buildings located in hot weather zones to be in the range of 21–27%. Here again,
while the building type and location are different than the ones used in this study, the comparability
of the results help validate the findings of the current work. To sum up, it can be concluded that if
building designers and engineers do not properly account for uncertainty in operation parameters
during the design phase, they run the risk of generating energy estimates that deviate from actual
levels by as much as 25%.

5. Conclusions

Prior to concluding, it is important to highlight some of the limitations of this study, which can
guide future research on the topic. One such limitation is the lack of publically available building
energy data in the UAE, which resulted in the partial reliance on data from international sources.
Future research can involve local data collection efforts to overcome this barrier. Another limitation
is the lack of distinction between the levels of building systems’ control of occupants and facility
managers. Nonetheless, the main goal of this paper was to quantify the potential impact of changes in
existing energy use patterns independently of the controlling stakeholder, a goal that was successfully
achieved. Along the same lines, the current work did not focus on the probabilities of occupants taking
specific actions, such as adjusting thermostat set points. Assumptions were therefore made in the
parametric variation phases, such as occupants opening windows in a pre-defined pattern. Future data
collection efforts can help overcome such assumptions by monitoring the actual energy use behaviors
of educational building occupants in the UAE. Finally, while studying the water consumption patterns
of occupants is beyond the scope of this paper, it can be included in future extensions of this work.

In summary, this paper fills an existing gap in the literature by studying the impact of human
operation and actions on the energy consumption of typical UAE educational buildings. Three
different building types were modeled, namely: office, classroom, and dorms. Several sensitivity
analysis methods including differential, fractional factorial, and Monte Carlo analyses, were then
applied to test the influence of human actions on building energy use. Based on the findings of this
study, the following conclusions are made.
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First, there is an urgent need for programs and initiatives to educate occupants and facility
managers on the significant influence of thermostat control on building performance. Programmable
thermostats are recommended for office and classroom buildings to ensure that an efficient HVAC
strategy for occupied and unoccupied periods is implemented. Facility managers have a key role
to frequently test and update this strategy, ensuring low energy consumption levels coupled with
acceptable thermal comfort levels for occupants. In dorm buildings, smart thermostats can also be
employed to learn from the schedules and thermal preference of occupants in an effort to optimize
and customize the thermostat settings for different rooms.

Another finding from the current work is that different building types respond differently to
changes in human-related parameters. In general, the classroom building has shown the highest
sensitivity, followed by the office and dorm buildings, respectively. Consequently, the authors
recommend that interventions targeting educational buildings (e.g., in a campus) should start with
classroom buildings, which can result in significant and fast energy savings. Furthermore, given the
low after-hours levels of occupancy in these buildings, aggressive energy saving strategies can be
implemented without compromising the thermal comfort and well-being of occupants.

Finally, the findings of this paper motivate the need to further investigate user-centric solutions
that aim to diffuse energy conservation practices among building occupants (e.g., energy education
and feedback, financial or social incentives, and gamified energy conservation programs) [26,57–59].
More specifically, future research can build on the results of the current work to develop interventions
that specifically target the actions of occupants with the highest influence on building performance.
Such a customized individual-level approach to energy conservation can help promote sustainable
behaviors and reduce the energy intensity and carbon footprint of the building sector.
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draft of the paper. Elie Azar coordinated and reviewed the work, he also prepared the final version of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1 presents the building schedules used in the base case models, expressed in terms of
diversity factors for the different hours of the day. A value of 0 represents 0% occupancy while a value
of 1 represents 100% occupancy.

Table A1. Building schedules for the base case energy models, obtained from ASHRAE (2013a).

Office Building Classroom Building Dorm Building

Week-Days Week-End
Day 1

Week-End
Day 2 Week-Days Week-End

Day 1
Week-End

Day 2 Week-Days Week-End
Day 1

Week-End
Day 2

1 h 0 0 0 0 0 0 1 1 1
2 h 0 0 0 0 0 0 1 1 1
3 h 0 0 0 0 0 0 1 1 1
4 h 0 0 0 0 0 0 1 1 1
5 h 0 0 0 0 0 0 1 1 1
6 h 0 0 0 0 0 0 1 1 1
7 h 0.1 0.1 0.05 0 0 0 1 1 1
8 h 0.2 0.1 0.05 0.05 0 0 0.9 0.9 0.9
9 h 0.95 0.3 0.05 0.75 0.1 0 0.4 0.4 0.4
10 h 0.95 0.3 0.05 0.9 0.1 0 0.25 0.25 0.25
11 h 0.95 0.3 0.05 0.9 0.1 0 0.25 0.25 0.25
12 h 0.95 0.3 0.05 0.8 0.1 0 0.25 0.25 0.25
13 h 0.5 0.1 0.05 0.8 0.1 0 0.25 0.25 0.25
14 h 0.95 0.1 0.05 0.8 0 0 0.25 0.25 0.25
15 h 0.95 0.1 0.05 0.8 0 0 0.25 0.25 0.25
16 h 0.95 0.1 0.05 0.45 0 0 0.25 0.25 0.25
17 h 0.95 0.1 0.05 0.15 0 0 0.3 0.3 0.3
18 h 0.3 0.05 0.05 0.05 0 0 0.5 0.5 0.5
19 h 0.1 0.05 0 0.15 0 0 0.9 0.9 0.9
20 h 0.1 0 0 0.2 0 0 0.9 0.9 0.9
21 h 0.1 0 0 0.2 0 0 0.9 0.9 0.9
22 h 0.1 0 0 0.1 0 0 1 1 1
23 h 0.05 0 0 0 0 0 1 1 1
24 h 0.05 0 0 0 0 0 1 1 1
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