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Abstract: An impervious surface is considered one of main factors affecting urban waterlogging.
Previous studies found that spatial pattern (composition and configuration) of impervious surfaces
affected urban waterlogging. However, their relative importance remains unknown, and the
scale-effect of the spatial pattern on urban waterlogging has been ignored. To move forward,
our research studied the relationship between spatial patterns on the impervious surface and its
subcategories (building and pavement) on urban waterlogging risk spots using Pearson correlation,
partial redundancy analysis and performed at three grid scales (1 km × 1 km, 3 km × 3 km,
5 km × 5 km) and the catchment scale based on different spatial resolution land cover maps (2 m,
10 m and 30 m). We identified positively-correlated metrics with urban waterlogging risk spots,
such as the composition of impervious surface (i.e., total impervious surface, building, pavement)
and the aggregation metric of the total impervious surface at most scales, as well as two negatively
correlated metrics (i.e., proximity metric of building, fragmentation metric of total impervious surface).
Furthermore, the total variance of urban waterlogging risk spots explained by the spatial pattern of
the total impervious surface and its subcategories increased with studied grid and catchment scales
while decreasing from a fine to a coarse resolution. The relative contribution of the impervious surface
composition and configuration to the variation of urban waterlogging risk spots varied across scales
and among impervious surface types. The composition contributed more than the configuration did
for the total impervious surface at both grid and catchment scales. Similar to total impervious surface,
the composition of buildings was more important than its configuration was at all the grid scales,
while the configuration of buildings was more important at the catchment scale. Contrary to the total
impervious surface, the configuration of pavement at both the grid and catchment scales mattered
more than their compositions did. Furthermore, the composition of the building was more important
than that of pavement, but its configuration mattered less. Our study could provide a multi-scale
landscape perspective with detailed suggestions for controlling the area of impervious surface and
optimizing its spatial configuration in urban waterlogging risk mitigation and urban planning.

Keywords: impervious surface; landscape metrics; urban waterlogging; multiple scales; partial
redundancy analysis
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1. Introduction

Urban waterlogging, a representative type of urban flooding [1,2], refers to the phenomenon
in which a rainstorm or a short-term period of heavy rain surpasses the capacity of the urban
drainage system, which results in a waterlogging disaster [3]. Due to global climate change and rapid
urbanization, urban waterlogging has become a serious problem in urban areas worldwide [4,5].
This has resulted in socio-environmental problems such as property damage, traffic paralysis,
water pollution and economic losses [6–8], especially in rapidly developing countries [3]. In China,
approximately 62% of Chinese cities suffered from urban waterlogging especially in larger cities such
as Beijing, Shanghai, Guangzhou and Wuhan [9]. Resolving urban waterlogging has been an urgent
problem for the government, urban storm water management and urban planning agencies.

There have been many urban waterlogging mitigation measures worldwide such as the Low
Impact Development in USA, Water Sensitive Urban Design in Australia and Sponge City in
China [10–12]. However, the influence mechanisms behind urban waterlogging, as a premise of taking
actions, have not yet been fully understood [13,14]. For example, although both the composition and
configuration (i.e., spatial pattern) of impervious surfaces were found to affect urban waterlogging [15],
their relative importance remains unknown, and the scale-effect of the influence is also unknown.

There are many factors influencing urban waterlogging such as topography [16,17], land
subsidence [18,19], irrational land use planning [20–22] and additional features. Among these factors,
the increase in impervious surface area, extreme rainstorms and poor drainage infrastructure were
universally acknowledged as the three primary driving forces of urban waterlogging [23]. Among these
factors, the impervious surface was easily obtained by remote sensing images and studied extensively.
For example, many studies have been conducted to explore the relationship between impervious
surface area and hydrological response (i.e., runoff and peak discharge), which are closely associated
with urban waterlogging from the local scale to the watershed scale [11,24]. A few studies explored the
relationship between the impervious surface area and the spatial pattern of urban waterlogging risk
spots in urban regions [25,26]. Previous studies found that the composition of the impervious surface
(the impervious surface area) reduced the total infiltration of water into the surface and, thereby,
increased the surface runoff and peak discharge, which ultimately raised the associated risk of urban
flooding [27,28]. In addition, several studies showed that the spatial configuration of the impervious
surface influenced surface runoff and the potential urban flood risk, as well [27,29,30]. However, most
previous studies primarily highlighted the importance of the location of the impervious surface (e.g.,
upstream, midstream or downstream) in an urban watershed or catchment to define the influence of
the spatial configuration of the impervious surface. This may not be sufficient considering the high
spatial heterogeneity in the urban context [31,32].

Landscape metrics measured by remote sensing images [33] (a basic tool in landscape ecology to
characterize the composition and configuration of land use [34,35]) could be a new way to measure
the spatial pattern (i.e., composition and configuration) of impervious surfaces to better understand
the variability in hydrological responses to urbanization [36] and analyze urban waterlogging risk
spots [15]. Currently, it is still unknown whether the composition or the configuration plays a
more significant role in influencing waterlogging. Furthermore, the impacts of the composition and
configuration of impervious surfaces on urban flooding are also scale dependent [37,38]. For example,
Poelmans et al. [37] found that the relative importance of the area and spatial configuration of
the impervious surface to potential urban flood risk varied with the studied scales. However, the
majority of previous studies focused on a single spatial scale, while a multi-scale study is needed for a
better understanding.

To move forward, this study took Guangzhou, South China, which is a city experiencing
rapid urbanization and extensive urban waterlogging, as an example to explore the impact of the
spatial pattern of the impervious surfaces and its subcategories (building and pavement) on urban
waterlogging risk spots at multiple scales using Pearson correlation analysis and partial redundancy
analysis. Specifically, we propose two research questions:
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(1) Does the composition or the configuration of the impervious surface affect urban waterlogging
risk spots more?

(2) How does the impervious surface influence urban waterlogging risk spots at multiple scales?

2. Materials and Methods

2.1. Study Area

Guangzhou, the capital of the Guangdong province and the central urban area of Guangdong-
Hong Kong-Macao Greater Bay Area, is situated in Southern China (22◦26′–23◦56′ N and 112◦57′–
114◦03′ E) and covers an area of approximately 7434 km2 (see Figure 1). This city is dominated by
a sub-tropical monsoon with an average annual temperature of 21.9 ◦C, an annual precipitation of
1164~1899 mm and an annual average of 149 rainy days. When China instituted a reform and open
policy in 1978, Guangzhou began experiencing rapid urbanization. As reported by Wu et al. [39],
the urban area in Guangzhou has increased from 395.27 km2 in 1979 to 1907.52 km2 in 2013. Accordingly,
urban waterlogging has become an increasingly significant issue, particularly in the central urban area [26].

Figure 1. Geographic location of Guangzhou (a) and (c), urban waterlogging risk spots of the central
urban districts of Guangzhou (b) and land use/cover map (d).
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2.2. Data and Methods

2.2.1. Urban Waterlogging Risk Spots and Scale Selection

The term “waterlogging” used in our study was used in previous studies [15,40], which was also
called “pluvial flooding” in a few literature works [41,42]. To fully quantify waterlogging, at least three
aspects were included, i.e., waterlogging spot location and inundation range and depth. The location
of the waterlogging spot was opened to the public by the municipal water department and thus was
easily acquired in our study. However, due to data availability, the inundation range and depth were
not considered in our study.

Based on the rough locations of urban waterlogging spots as the municipal water department
reported (e.g., the intersections of two roads or a part of road), we firstly mapped the urban
waterlogging spot distribution in Google map. Note that, for the urban waterlogging inundation spots
reported as a part of the road or the extent of one, we simplified by using their geometric centers as the
urban waterlogging spots. We secondly downloaded the Google map with the coordinates and points
and lastly calibrated them with the high resolution land use maps using the tool “Georeferencing” in
ARCGIS 10.2 (Environmental Systems Research Institute, Redlands, CA, USA). The calibration error
of less than one pixel was recognized as reasonable. At last, data for urban waterlogging risk spots
(see Figure 1) from 2009–2013 were derived from the Bureau of Water Resources of the Guangzhou
Municipality, which comprises a total of 253 urban waterlogging spots with an inundation depth of
more than 15 cm. Considering that the attributes of land surface (i.e., land cover, substrate materials,
etc.) surrounding the locations probably influenced the water interception or infiltration, we randomly
selected 24 waterlogging points to do the site survey about the main substrate materials and land
surface composition in their 100-m buffer radiuses (Table A1 and Figure A1 in the Appendix A).
Table A1 shows that the main substrate materials of waterlogging points in their buffer radiuses were
nearly completely impervious with a few permeable surfaces.

Scale refers to the grain and extent in the temporal and spatial dimension from the landscape
ecology perspective [43]. In our study, the grain scale was considered. We chose two kinds of grain
scales, which included the squared grid scale and catchment scale, called a hydrological unit (see
Figure 2). We divided the study area into a series of regular squares of different sizes to represent
multiple grain scales (i.e., 1 km × 1 km, 3 km × 3 km, 5 km × 5 km) using the following criteria:
the mean nearest distance of urban waterlogging risk spots was 715 m. Due to data availability,
we obtained 87 catchments in 10 basins located in the Yuexiu and Tianhe districts of Guangzhou (see
Figure 2) derived from the Guangzhou Urban Planning and Surveying Research Institute.

2.2.2. Measurement of the Spatial Pattern of the Impervious Surface

A land use and cover map (see Figure 1) was acquired from the Guangzhou Land Resources
and Planning Commission, which was digitized based on the 1:2000 aerial remote sensing images
with orthogonal projection (spatial resolution 0.1 m) and 1:500 terrain data obtained from the field
survey of 2013. The land cover and land use map is a product of the geographical survey project
by the National Administration of Survey, Mapping and Geoinformation of China started in 2012.
The original classification system contains 10 land cover types and 46 sub-types. Forty-six classes
were reclassified into 10 land cover types of forest, farmland, grassland, building, road, non-building
structure, water and others. Depending on the criterion of the impervious surface [43–45], the total
impervious surface in our study contained building, road and non-building structure (mainly referring
to squares, car parks and other paved surfaces). The total impervious surface was further subdivided
into two subcategories of building and pavement (road and non-building structure), which considered
the different influences of their hydrological responses [46,47].
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Figure 2. Two measures of scales were selected in our study: three different grid scales of 1 km × 1 km,
3 km × 3 km, 5 km × 5 km (a–c); catchment scale (d).

Many landscape metrics have been proposed to measure the spatial pattern (i.e., area and
configuration) of impervious surfaces [48–50]. In our study, eight landscape metrics that were used in
previous studies and had a close association with hydrological responses [15,36,51–53] were selected.
The composition metrics include the percent of total impervious surface (%imp), building (%build),
pavement (%pave) and the class area (Area_imp, Area_build, Area_pave). Because %imp, %build
and %pave had a strong collinearity with their area metrics at three grid scales, they were not further
analyzed. The configuration metrics include Patch Density (PD), Edge Density (ED), Landscape
Shape Index (LSI), Mean Euclidean Nearest Neighbor Distance (ENN_MN), the Patch Cohesion Index
(Cohesion) and the Aggregation Index (AI) [53]. All of the landscape metrics (see Table 1) were
calculated using Fragstats 4.1 at the class level [54]. To facilitate our results being extrapolated to
other sites and for comparative purposes with other previous studies [43,55–57], we chose three
resolutions of maps (i.e., 2 m, 10 m and 30 m) for analysis. The vector format of the land use and cover
map was converted to the raster format with three resolutions for further landscape pattern analysis.
Considering the loss of the details of buildings and pavement from a fine to a coarse resolution, we did
not model their influences on waterlogging risk at 10-m and 30-m grid scales and the catchment scale.

2.2.3. Statistical Analyses

Using the sum number of urban waterlogging risk spots for each grid square or catchment as
the dependent factor and the landscape metrics calculated on the same grid square or catchment as
the independent factors, we quantified the effects of the spatial pattern of the impervious surface
on urban waterlogging risk spots through Pearson correlation by SPSS 18.0 and partial redundancy
analysis by CANOCO 5.0. Partial redundancy analysis, a constrained ordination method, has been
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widely used in the field of ecology and vegetation science [58,59]. It is a robust means of exploring
the relative importance of two or three groups of explanatory variables (independent variables).
The working principle behind partial redundancy analysis is variation partitioning [60–63]. In this
procedure, it usually does not quantify the effects of just two explanatory variables. Rather, it attempts
to tease apart the effects (and their overlap) of two or more groups of environmental variables
representing some distinct, ecologically-interpretable phenomena. For example, in our study, we have
two groups of explanatory variables (X1, composition, and X2, configuration), and each group contains
several variables. The variation in urban waterlogging risk spots was partitioned into three variances
individually (i.e., a, b and c). Fractions a, b and c represent the partial effect from Group X1, Group X2
and the shared effect of both two groups, respectively, which could be calculated by partial constrained
ordinations (see Figure 3). Specifically, Fraction a is calculated by the analysis where the variables from
X1 are used as environmental variables and X2 as covariables. Similarly, Fraction b is calculated by the
analysis where X2 acts as environmental variables and X1 as covariables. Fraction c is calculated by
subtracting the sum of a and b from the amount of variability explained by an ordination model with
the variables from both X1 and X2 acting as explanatory variables.

In this study, we used five partial redundancy analysis models: (1) composition of impervious
surface (%imp/Area_imp) + configuration of impervious surface; (2) composition of building (i.e.,
%build/Area_build) + configuration of building; (3) composition of building + configuration of
pavement; (4) composition of pavement (%pave/Area_pave) + configuration of building; and (5)
composition of pavement + configuration of pavement. The first model was performed in order to
answer the first research question. This question centers on the relative importance of the composition
and the configuration of the impervious surface for urban waterlogging risk spots. In addition,
we utilized the other four models to examine the relative importance of the different combinations
for composition and configuration within the subcategories of the impervious surface (i.e., building
and pavement). Before performing partial redundancy analysis, we conducted the procedure of
“interactive-forward-selection” built into CANOCO 5.0 to select variables with significant contributions
to urban waterlogging risk spots (Monte Carlo permutation test; p < 0.05). The working principal of this
procedure is actually stepwise regression [60,61], which enables us to identify multicollinearity [61,62].
Before the statistical analyses, all the variables were subjected to normal distribution tests using
the Kolmogorov–Smirnov method. The majority of variables were normally distributed. For a few
variables with non-normal distributions, we used the natural logarithm, or square root, or rank sort
method to make them meet the normal distribution after transformation.
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Figure 3. The total variation in urban waterlogging risk spots is partitioned into the contributions of
two subsets of explanatory variables (a, b and shared portion c) [62]. PD, Patch Density; ED, Edge
Density; LSI, Landscape Shape Index; ENN_MN, Mean Euclidean Nearest Neighbor Distance; AI,
Aggregation Index.

3. Results

3.1. Correlation Analysis Results at Multiple Scales

The Pearson correlation analysis between the spatial pattern of the impervious surface and
urban waterlogging risk spots is shown in Table 1. It shows that %imp was significantly positively
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correlated with urban waterlogging risk spots at all three spatial resolutions and all grid scales. At the
catchment scale, the relationship between %imp and urban waterlogging risk spots was just significant
at a 2 m spatial resolution. Similarly, %build showed a significantly positive correlation with urban
waterlogging risk spots across all the grid scales. At the catchment scale, however, it was noted that
the correlation between urban waterlogging risk spots and %pave was only significant at the 5 km
grid scale.

For the configuration metrics, their relationships with urban waterlogging risk spots were different
among metrics and spatial scales. For example, PD and LSI of the total impervious surface at a 2 m
resolution showed no significant correlations with urban waterlogging spots at both grid and catchment
scales. ENN_MN of the total impervious surface showed significantly negative correlations at both
3 km and 5 km grid scales, while Cohesion and AI showed significantly positive correlations at
both 1 km and 3 km grid scales. However, directions (positive/negative) between configuration
metrics and urban waterlogging risk spots changed with the spatial resolutions of the analysis.
ED of the total impervious surface at a 2 m resolution for the catchment scale showed significantly
negative correlations with urban waterlogging risk spots, while no correlations were found at a 10 m
resolution for the catchment scale. PD of the total impervious surface showed no correlations at a 2 m
resolution at both grid and catchment scales, while it showed negative correlations at a 10 m resolution.
The scale-effect was also indicated by the PD and LSI of buildings and pavement.

3.2. Results of Partial Redundancy Analysis at Multiple Scales

The total variance of urban waterlogging risk spots explained by the spatial pattern of the
impervious surface increased with the studied grid and catchment scales, while it decreased with
the spatial resolutions. At a 2 m spatial resolution (Model 1), the composition and configuration of
the impervious surface could explain 5.0–48.1% of the variations of urban waterlogging risk spots at
different spatial scales, and the explanatory power of the model increased from the 1 km × 1 km to
the 5 km × 5 km grid scale and to the catchment scale. When the resolution increased to 10 m and
30 m, the explanatory power of the model decreased to 4.8–41.0%, and the order of the explanatory
power at different spatial scales from high to low was 5 km × 5 km, 3 km × 3 km, catchment scale
and 1 km × 1 km. Furthermore, the combination of composition of buildings and the configuration of
pavement (Model 3) showed the highest explanatory power (67.6%), indicating their importance in
influencing urban waterlogging risk.

The results of partial redundancy analysis indicated that the relative importance of the spatial
pattern of the impervious surface was different across spatial scales and among its subcategories
(Tables 2 and 3). The composition of the total impervious surface alone contributed more to the
variation of urban waterlogging risk spots than the configuration alone did across scales regardless of
the resolutions (Model 1 in Table 2). Similarly, the composition of buildings played a more important
role than the configuration of buildings and pavement did at the grid scales (Models 2 and 3 in Table 3).
However, the composition of pavement alone contributed less than its configuration alone did at all
the studied scales, while the configurations of buildings and pavement contributed more than their
composition did at the catchment scale (Models 2, 3, 4 and 5 in Table 3). Furthermore, the contributions
of an individual fraction increased with the studied grid scales, such as the composition of the
impervious surface (Fraction a) (Model 1 in Table 2) and buildings (Fraction a1), as well as the
configuration of pavement (Fraction b2) (Model 3 in Table 3). It was noted that a few explanatory
variables were not significant (p > 0.05), such as the configuration of the impervious surface (Model 1
in Table 1), the composition and configuration of buildings (Model 2 in Table 2), the composition
of pavement (Model 4 and 5 in Table 3) and the configuration of pavement (Model 5 in Table 3).
As a comparison with the partial redundancy analysis, the stepwise models were also used to
quantify explanatory power of the spatial pattern of impervious surface and its subcategories on
urban waterlogging (Tables A2 and A3).
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Table 1. Pearson correlation coefficients between urban waterlogging risk spots and the spatial pattern of the impervious surface based on 2 m, 10 m and 30 m spatial
resolution land cover maps and building and pavement based on 2 m spatial resolution land cover maps at three grid and catchment scales.

Spatial
Resolution Class Scale

Composition Fragmentation Shape
LSI

Proximity
ENN_MN

Connectivity
Cohesion

Aggregation
AI% Area PD ED

2 m
Impervious

surface

1 km × 1 km 0.257 ** - −0.082 −0.019 −0.093 −0.085 0.198 * 0.207 **
3 km × 3 km 0.578 ** - −0.067 0.149 −0.121 −0.422 ** 0.451 ** 0.371 **
5 km × 5 km 0.671 ** - 0.013 0.359 0.076 −0.528** 0.285 0.359
Catchment 0.359 * 0.477 ** −0.112 −0.394 ** −0.169 0.047 0.416 ** 0.412 **

10 m Impervious
surface

1 km × 1 km 0.255 ** - −0.196 * 0.000 −0.080 −0.130 0.208** 0.150
3 km × 3 km 0.579 ** - −0.374 ** 0.190 −0.120 −0.357 * 0.429** 0.376 **
5 km × 5 km 0.672 ** - −0.370 0.434 * 0.110 −0.544 ** 0.330 0.360
Catchment 0.260 0.523 ** −0.170 −0.150 0.070 0.140 0.295* 0.240

30 m Impervious
surface

1 km × 1 km 0.260 ** - −0.212 ** −0.050 −0.130 −0.100 0.196* 0.181 *
3 km × 3 km 0.577 ** - −0.522 ** 0.110 −0.220 −0.407 ** 0.399** 0.439 **
5 km × 5 km 0.668 ** - −0.574 ** 0.380 0.010 −0.462 * 0.380 0.442 *
Catchment 0.270 0.523 ** −0.361 * −0.190 0.060 0.010 0.335 * 0.270

2 m

Building

1 km × 1 km 0.274 ** - −0.001 0.237 ** 0.026 −0.281 ** 0.186 * 0.159
3 km × 3 km 0.653 ** - 0.302 * 0.623 ** 0.378 ** −0.560 ** 0.382 ** 0.234
5 km × 5 km 0.752 ** - 0.449 * 0.748 ** 0.574 ** −0.816 ** 0.407 * 0.164
Catchment 0.297 * 0.545 ** 0.383 ** 0.371 * 0.423 ** −0.360 * 0.103 0.041

Pavement

1km × 1km -0.034 - 0.037 0.030 0.008 −0.013 −0.020 −0.041
3 km × 3 km 0.228 - 0.401 ** 0.309 * 0.390 ** −0.169 0.239 −0.007
5 km × 5 km 0.507 ** - 0.551 ** 0.457 * 0.627 ** −0.270 0.087 0.087
Catchment 0.433 0.433 ** 0.364 * 0.145 0.459 ** −0.117 0.202 −0.271

Note: ** and * indicate significant at the 0.01 and 0.05 levels; “-” indicates area metrics not selected.
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Table 2. Summary results of the partial redundancy analysis of the impervious surface based on 2-m, 10-m and 30-m spatial resolution land cover maps. For each of
the models, urban waterlogging risk spots as the response variable was predicted by two subsets of landscape variables: (a) composition of the impervious surface
alone, (b) configuration of the impervious surface alone, (c) the fraction of variation (c1) shared by two variables (a, b); (TE) Total Explained by variables (a, b, c1) for
Model 1. “% of all” represented the contribution of the individual fraction (i.e., a, b and c) to the total variation. p indicates the significance of the results, for which the
values less than 0.05 were significant.

Spatial
Resolution Fraction

1 km × 1 km 3 km × 3 km 5 km × 5 km Catchment

Variation Test Selected Variation Test Selected Variation Test Selected Variation Test Selected
% of All p Metrics % of All p Metrics % of All p Metrics % of All p Metrics

2 m

a 3.0 0.025 %imp 10.3 0.008 %imp 27.3 0.003 %imp 25.1 0.001 Area_imp
b −0.9 0.777 AI −2.1 0.646 AI 2.0 0.277 ENN_MN 15.6 0.003 ED
c1 2.9 0.027 Cohesion 21.7 0.002 Cohesion 15.5 0.002 7.4 0.001 AI
TE 5.0 29.9 ENN_MN 44.8 48.1 Cohesion

10 m

a 1.3 0.079 %imp 14.8 0.003 %imp 17.5 0.012 %imp 19.4 0.004 Area_imp
b −1.1 0.884 PD 1.1 0.315 PD, AI −1.9 0.569 ED 0.3 0.274 Cohesion
c1 4.6 0.034 Cohesion 17.3 0.002 Cohesion 25.4 0.006 ENN_MN 6.3 0.002
TE 4.9 33.2 ENN_MN 41.0 26.0

30 m

a 1.8 0.079 %imp 1.6 0.145 %imp 3.4 0.155 %imp 18.8 0.003 Area_imp
b −0.7 0.589 PD, AI −0.7 0.467 PD, AI −1.8 0.515 PD, AI 3.1 0.163 PD
c1 3.8 0.046 Cohesion 30.3 0.004 Cohesion 38.9 0.012 ENN_MN 6.9 0.002 Cohesion
TE 4.8 31.2 ENN_MN 40.5 28.8
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Table 3. Summary results of the partial redundancy analysis of building and pavement based on 2-m spatial resolution land cover maps. For each of the models,
urban waterlogging risk spots as the response variable was predicted by two subsets of landscape variables: (a1) composition of building alone and (a2) composition
of pavement alone; and (b1) configuration of building alone and (b2) configuration of pavement alone; (c) the fraction of variation shared by two c1 (a, b), c2 (a1, b1),
c3 (a1, b2), c4 (a2, b1), c5 (a2, b2) variables; (TE) Total Explained by variables (a1, b1, c2) for Model 2, (a1,b2,c3) for Model 3, (a2, b1, c4) for Model 4 and (a2, b2, c5) for
Model 5.

Fraction
1 km × 1 km 3 km × 3 km 5 km × 5 km Catchment

Variation Test Selected Variation Test Selected Variation Test Selected Variation Test Selected
% of All p Metrics % of All p Metrics % of All p Metrics % of All p Metrics

a1 3.1 0.013 %build 0.7 0.222 %build −2.0 0.636 %build 10.7 0.012 Area_build
b1 0.9 0.166 ED −3.3 0.754 PD, ED −5.9 0.793 PD, ED 20.6 0.008 ED, LSI
c2 3.8 0.001 ENN_MN 40.2 0.001 LSI, ENN_MN 56.7 0.005 LSI, ENN_MN −4.0 0.005 ENN_MN
TE 7.9 37.6 Cohesion 48.8 Cohesion 27.3

a1 6.9 0.002 %build 39.1 0.001 %build 45.3 0.001 %build 16.5 0.001 Area_build
b2 −4.0 0.974 LSI 6.3 0.045 LSI 12.9 0.022 LSI 25.0 0.001 LSI
c3 <0.1 0.168 1.8 0.001 PD, ED 9.4 0.001 PD, ED −9.8 0.001
TE 2.9 47.3 67.6 31.7

a2 <0.1 0.323 %pave 2.6 0.100 %pave −0.4 0.382 %pave 10.7 0.029 Area pave
b1 5.3 0.007 ED 36.3 0.001 ED 44.9 0.011 ED, PD 12.8 0.031 ED, LSI
c4 −0.5 0.023 ENN_MN 0.6 0.001 ENN_MN 5.9 0.01 ENN_MN 4.3 0.006 ENN_MN
TE 4.8 39.5 50.4 27.8

a2 0.0 0.407 %pave <0.1 0.293 %pave −3.6 0.904 %pave −3.1 0.825 Area pave
b2 0.0 0.407 ENN_MN 5.0 0.139 PD, ED 13.2 0.117 PD, ED −0.3 0.420 LSI
c5 0.0 0.810 ED 3.2 0.103 ENN_MN 9.1 0.102 ENN_MN 14.7 0.033
TE 0.0 8.2 18.7 11.3
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4. Discussion

4.1. Which Contributed More to Urban Waterlogging Risk Spots: The Composition or the Configuration of the
Impervious Surface?

Previous studies have found the importance of the configuration of the impervious surface for
urban waterlogging risk spots. For example, Yang et al. [30], Du et al. [27] and Yeo et al. [64] found
that the configurations of the impervious surface in terms of the locations in the urban such as basin,
upstream and downstream played important roles in urban flood risk. Su et al. [15] analyzed the
correlation of urban waterlogging risk with the configuration of the whole landscape quantified
by landscape metrics using Pearson correlation analysis. They found that urban waterlogging risk
was positively correlated with landscape fragmentation (e.g., PD and ED) of the whole landscape,
while negatively correlated with landscape contagion (e.g., CONTAG), which was consistent with our
findings of buildings and pavement (Table 1). Our results demonstrated that the composition of the
impervious surface contributed more to the variations of urban waterlogging risk than its configuration
did across multiple spatial scales, which extends previous studies [45,65–67]. One important reason
was due to the substitution of green spaces and water bodies by the impervious surface, which changed
the natural hydrological process and increased the storm water runoff and peak flows. This ultimately
led to a higher flood risk [27,68].

The importance of the spatial patterns of the impervious surface also differed with its
subcategories. We found that the percent coverage of building made a larger contribution to urban
waterlogging risk spots than the pavement did, which was consistent with Quan et al.’s [69] study.
However, Wang et al. [14] found the pavement contributed more than the building did. Furthermore,
we found that decreasing connectivity of buildings (Cohesion) and aggregation of the impervious
surface (AI) and increasing proximity of the impervious surface and the building (ENN_MN) could
reduce the risk of waterlogging, consistent with the results of Caparros-Midwood et al.’s [51] study that
the incompact distribution of the impervious surface decreased urban waterlogging risk. This could
be attributed to the fact that the clustered pattern of the impervious surface accelerated the flow rate
without reducing the runoff amount [70,71], which subsequently gave rise to flow accumulation in
a short time and transcended drainage ability. Several studies observed that buildings constituted
an obstacle to the water flow path since they could reduce the flood depth and delay the time of
the flood [46,68]. However, this type of interference from buildings might be limited, especially in
extreme rainstorms.

4.2. Scales Effects

The scale effects of the spatial patterns of the impervious surface on urban waterlogging risk spots
were different among the subcategories of the impervious surface (i.e., building and pavement), as well
as among landscape metrics (i.e., composition and configuration). Firstly, the total explanatory power
of the impervious surface and its subcategories (i.e., building and pavement) on urban waterlogging
risk spots in five models increased as the scales varied. The composition and configuration of the total
impervious surface could explain 5.0–48.1% of the variations in urban waterlogging risk spots with
increasing explanatory power in the order of the 1 km × 1 km, 3 km × 3 km, 5 km × 5 km grid scale
and catchment scale, while for the combination of building and pavement (0–67.6%) in the order of the
1 km × 1 km, catchment scale, 3 km × 3 km, 5 km × 5 km scale from low to high. We noted that at the
small scale (1 km × 1 km), the five models accounted for less than 10% of the total variance of urban
waterlogging risk spots. One possible reason for this could be the urban micro-topography, which may
cause a larger influence on urban waterlogging risk spots at the small scale [72]. However, we did not
consider this in our study due to data availability. The combined effects of the composition of buildings
and the configuration of pavement with overall significance had better explanatory power in the 3 km
× 3 km and 5 km × 5 km scales than that of other models at grid scales. This finding was primarily
attributed to the collective effect of the dominant role of building area in the runoff generation and the
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control of the configuration of pavement [47,73]. Moreover, the highest explanatory power (67.6%) at
grid scales (Model 3, 5 km grid scale) was larger than the highest one (48.1%) at the catchment scale.
The probable cause was that the 5 km grid scale broke the constraint of a hydrological unit and included
other factors, such as runoff produced in the impervious surface located upstream, which could cause
pressure on the downstream drainage network and then increase the explanatory power. Secondly,
the correlation directions changed with spatial scales and spatial resolutions. For example,
the correlation direction of PD and ED of the total impervious surface changed with the spatial resolutions.

4.3. Implications for Urban Planning and Urban Waterlogging Mitigation

There is a growing interest in using urban ecology and the urban landscape for managing and
controlling storm water runoff [74]. Our study of the influence of the spatial pattern of the impervious
surface on urban waterlogging risk spots at multiple scales could provide important insights and
perspectives into urban waterlogging risk mitigation and urban planning. Taking into account the
impact of the area of the impervious surface on urban waterlogging, especially the building, a green
roof could be considered as an effective way to mitigate urban waterlogging risk in highly-urbanized
areas [10,75,76]. Our study also implies that optimizing the configuration of the building and pavement
might be an effective solution in new urban district planning. Specifically, as indicated by Tables 1
and 3, decreasing the fragmentation, connectivity and landscape shape complexity of the building and
pavement or increasing the proximity of the building could decrease urban waterlogging risk.

Simultaneously, more than 50% of the total variance among urban waterlogging risk spots at
most grid and catchment scales remained unexplained. This could be due to other factors such as
drainage capacity, rainfall intensity and topography [17,23,77]. Thus, other factors such as drainage
pipe networks affecting urban waterlogging risk spots are also required for further analysis of urban
waterlogging control to determine a solution. By integrating the results of other literature, we found
that the causes of urban waterlogging have strong local characteristics. For instance, the impact
of topography and pipeline drainage on urban floods shows the contradiction caused by different
hydrological characteristics in different study areas. Wang et al. [78] considered that flatter, low-lying
topography characteristics could enlarge the risk of urban waterlogging, but Gaitan et al. [13] disagreed
with the conclusion. Zhao et al. [25] and Wu et al. [79] did not think increasing pipeline drainage was
helpful for mitigating the waterlogging risk, which was also supported by Wang et al. [14]. Hence,
further analysis on how applicable our research results are in other study areas needs to be completed.
An effective solution for the urban waterlogging problem should adjust targeted measures to local
conditions under the premise of quantifying the causes of urban waterlogging using reasonable
research methods.

5. Conclusions

In this research, we found that the influence of landscape patterns (i.e., composition and
configuration) of the impervious surface on urban waterlogging risk spots changed with spatial
scales and resolution for analysis and differed in its subcategories (building and pavement). The larger
the spatial scales and the finer the resolution, the more total variance of urban waterlogging spots
was explained by the landscape patterns of the impervious surface. The composition contributed
more than the configuration did for the total impervious surface at both grid and catchment scales,
while the configuration of the building at the catchment scale and the configuration of pavement
at both grid and catchment scales contributed more. Furthermore, the composition of the building
was more important than that of pavement, but its configuration mattered less. The study also
had some limitations. First, our findings were acquired based on the case study of Guangzhou
city, China, for which the applicability of the conclusions to other urban areas will need more
comparative studies in the future. Second, we only focused on the effects of the spatial pattern
of the impervious surface on urban waterlogging without taking other factors such as drainage
pipeline networks, precipitation difference and topography into account. Although it was useful for
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fast warning of possible urban waterlogging areas by simply identifying land use and cover types,
the possible problem areas might not really exist due to the optimal installation of drains. Thus,
to improve the accuracy of the waterlogging risk warning in the future, the drainage data need
more attention. Thirdly, spatial autocorrelation and heterogeneity existed for spatial data, which often
violated the assumptions of traditional statistical analyses (e.g., correlation analysis, partial redundancy
analysis). Because performing partial redundancy analysis and related statistical methods required
the multinormality of the data, variance homogeneity and the independence of variables and also
assumed the spatially-stationary relationship, due to data availability, we made efforts to solve
these problems (e.g., performing a normality test of the data, increasing the sampling distance to
reduce spatial auto-correlation) to some extent, but not all. In the future, the spatial autocorrelation
analysis and spatial regression such as geographically -weighted regression need to be conducted to
identify the spatial scales and explore the spatial variation of the relationships if the inundation data
of area and depth are available. Furthermore, a hydrological-hydraulics inundation model should
be established to explore the environmental factors on the depth, velocity and duration of urban
waterlogging inundation.
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Figure A1. The spatial distribution map of 24 selected urban waterlogging risk spots and their on-site photographs. 
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Figure A1. The spatial distribution map of 24 selected urban waterlogging risk spots and their on-site photographs.
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Table A1. The substrate materials of 24 selected urban waterlogging risk spots and the percentages of impervious surface and vegetation at their 100-m buffer radiuses.

Number
Urban Waterlogging Risk Spot 100-m Buffer Radiuses of Urban Waterlogging Risk Spots

Substrate Materials %Impervious %Vegetation Pervious

1 Cement 98.88 0.21 No
2 Cement 85.54 14.46 No
3 Cement 92.46 7.54 No
4 Soil 49.12 15.53 part
5 Cement 68.06 31.94 part
6 Cement 87.73 12.27 No
7 Cement 94.52 5.48 No
8 Asphalt 100 0 No
9 Cement 82.41 17.59 No
10 Asphalt 98.78 1.22 No
11 Asphalt 89.09 10.08 No
12 Asphalt 83.2 16.8 No
13 Asphalt 99.59 0.41 No
14 Soil 55.89 44.11 Part
15 Asphalt 77.97 18.26 No
16 Asphalt 86.75 13.25 No
17 Asphalt 85.09 0 No
18 Cement 95.19 4.81 No
19 Soil 66.89 33.11 Part
20 Asphalt 91.29 8.71 No
21 Asphalt 89.46 10.54 No
22 Asphalt 82.85 17.15 No
23 Asphalt 69.13 30.87 Part
24 Soil 68.22 31.78 Part
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Table A2. Stepwise regression models for the total number of urban waterlogging risk spots with spatial pattern metrics of the impervious surface. All coefficients are
significant at the 0.01 level.

Spatial
Resolution

1 km × 1 km 3 km × 3 km 5 km × 5 km Catchment

Regression Model R2 Regression Model R2 Regression Model R2 Regression Model R2

2 m Y = 0.285 × imp% + 1.562 0.059 Y = 0.274 × imp% + 5.060 0.320 Y = 6.600 × imp% + 9.731 0.428 Y = 1.259 × Area_imp-0.887 × LSI + 2.262 0.424

10 m Y = 0.285 × imp% + 1.561 0.058 Y = 2.729 × imp% + 5.060 0.321 Y = 6.610 × imp% + 9.731 0.429 Y = 0.934 × Area_imp + 2.244 0.257

30 m Y = 0.325 × imp% + 1.576 0.073 Y = 2.720 × imp% + 5.060 0.319 Y = 6.569 × imp% + 9.731 0.423 Y = 0.922 × Area_imp + 0.455 × imp% + 2.244 0.307

Table A3. Stepwise regression models for the total number of urban waterlogging risk spots with spatial pattern metrics of building and pavement. Model 2:
composition of building (i.e., %build/Area_build) + configuration of building; Model 3: composition of building + configuration of pavement; Model 4: composition
of pavement (%pave/Area_pave) + configuration of building and Model 5: composition of pavement + configuration of pavement. All coefficients are significant at
the 0.01 level. “-” indicates no metric selected for stepwise regression.

Model
1 km × 1 km 3 km × 3 km 5 km × 5 km Catchment

Regression Model R2 Regression Model R2 Regression Model R2 Regression Model R2

Model 2 Y = 0.306× %build + 1.562 0.075 Y = 3.056 × %build + 5.060 0.409 Y = 7.456 × ED + 9.731 0.557 Y = 0.884 × Area_build + 0.518 ×
ED + 2.261 0.352

Model 3 Y = 0.306× %build + 1.562 0.069 Y = 2.924 × %build + 1.075 ×
PD + 5.060 0.472 Y = 8.837 × %build + 5.344 ×

PD − 4.275 × ED + 9.731 0.689 Y = 0.965 × Area_build + 2.261 0.297

Model 4 Y = 0.578 × ED − 0.381 × LSI
+ 1.562 0.083 Y = 2.890 × ED + 1.504 ×AI

+ 5.060 0.403 Y = 7.456 × ED + 9.731 0.557 Y = 1.210 × LSI + 0.748 × AI + 2.304 0.279

Model 5 - - Y = 1.547 × LSI + 5.060 0.089 Y = 4.800 × LSI + 9.731 0.207 Y = 0.831 × LSI + 2.304 0.192
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