
sustainability

Article

Bayesian Approach for Estimating the Probability of
Cartel Penalization under the Leniency Program

Jihyun Park 1 ID , Juhyun Lee 1 and Suneung Ahn 2,*
1 Department of Industrial and Management Engineering, Hanyang University, Seoul 04763, Korea;

pjh3226@hanyang.ac.kr (J.P.); ljh812@hanyang.ac.kr (J.L.)
2 Department of Industrial and Management Engineering, Hanyang University ERICA, Ansan 15588, Korea
* Correspondence: sunahn@hanyang.ac.kr; Tel.: +82-031-400-5267

Received: 30 April 2018; Accepted: 8 June 2018; Published: 10 June 2018
����������
�������

Abstract: Cartels cause tremendous damage to the market economy and disadvantage consumers by
creating higher prices and lower-quality goods; moreover, they are difficult to detect. We need to
prevent them through scientific analysis, which includes the determination of an indicator to explain
antitrust enforcement. In particular, the probability of cartel penalization is a useful indicator for
evaluating competition enforcement. This study estimates the probability of cartel penalization using
a Bayesian approach. In the empirical study, the probability of cartel penalization is estimated by a
Bayesian approach from the cartel data of the Department of Justice in the United States between
1970 and 2009. The probability of cartel penalization is seen as sensitive to changes in competition
law, and the results have implications for market efficiency and the antitrust authority’s efforts
against cartel formation and demise. The result of policy simulation shows the effectiveness of the
leniency program. Antitrust enforcement is evaluated from the estimation results, and can therefore
be improved.
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1. Introduction

Cartels cause tremendous damage to perfect competition markets and consumers by effectually
applying upward pressure on prices and downward pressure on quality; moreover, cartels are difficult
to detect because of their tacit nature. In this way, cartels mitigate against perfect competition under
which consumers are offered the best goods and services at the lowest possible prices. Antitrust
authorities have continuously sought to maintain a free-market system against cartels, but with only
partial and limited success.

In previous research, the probability of cartel detection was a key indicator for measuring the
effectiveness of antitrust policies. Detection is the state in which unobserved cartels are caught by the
antitrust authority. After introducing a leniency program as a new antitrust policy, both the number
of cartel investigations and the probability of cartel detection increase. The higher the probability of
cartel detection, the greater the expected penalties, and therefore, the likelihood of cartel formation
will decrease. On this principle, it is possible to measure the deterrence effect according to the change
in antitrust policy. This study uses the probability of cartel penalization as a key indicator.

The Markov transition process and the birth and death process model were widely used. Bryant
and Eckard [1] constructed the birth and death process model to empirically analyze cartel data
provided by the United States (US) Department of Justice, and estimated the probability of cartel
detection in the US in 1961–1988 as between 13–17%. Using the same method, Combe et al. [2]
estimated European Commission (EC) cartel detection probabilities of 12.9–13.2% for 1969–2007. When
the birth and death model has two states of competition and collusion, the lifetimes and inter-arrival
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times between the births of cartels were independent and had exponential distributions with means of
λ−1 and θ−1. The number of cartels at a particular time tfollows a Poisson distribution with a mean of
θT = (θ/λ)

{
1− e−λT}2. Both Bryant and Eckard [1] and Combe et al. [2] assumed that every cartel

would eventually be caught and prosecuted. However, this assumption is not realistic, because some
cases are not penalized, despite having been detected.

Further, Bryant and Eckard [1] and Combe et al. [2] do not take account of the unobservable
cartel population. J. E. Harrington and Chang [3] sought to estimate the unobservable population by
developing the birth and death model from that noted above. They concluded that cartel duration
could be a good indicator of whether new competition law had a significant cartel-dissolution effect.
Using Harrington and Chang [3]’s model, Zhou [4] analyzed the EC cartel data for 1985–2012, and
concluded that the EU’s new leniency program in 2002 had the effect of deterring cartels.

In the research of Bryant and Eckard [1], Combe et al. [2], Harrington and Chang [3], and Zhou [4],
the probability of cartel detection—as derived from cartel duration—entailed the determination of the
time-average probability from continuous variables. On the other hand, there is research indicating
that the probability of cartel detection represents the ensemble-average probability obtained from
discrete variables such as caseloads. The time-average probability is the average of a stochastic process
that is obtained by selecting a sample path randomly, and taking the average of a period in a particular
state on that sample path over the observation period. The ensemble-average probability is that mean
of a quantity at time t that is estimated by the average of the ensemble of possible states of total sample
paths in stochastic process theory [5,6].

Miller [7] formulated a cartel behavior model using the Markov process, and used the number
of cartel cases as discrete variables. The model assumed that the cartel transition process is in a
non-absorbing and first-order Markov chain in contrast with previous Markov models, and showed
the change of the number of cartel detections before and after a leniency program. He concluded that
the introduction of this leniency program in 1993 increased the detection and deterrence capabilities
of competition enforcement. The previous research above [1–4,7] used Markov process models; this
research had two notable points.

First, the duration of cartels and inter-arrival times between cartels follow exponential
distributions. Verifying this assumption requires a hypothesis testing of the null hypothesis that “the
distribution is exponential”. The cumulative distribution function F̂(x) of durations and inter-arrival
times is given by:

F̂(x) =
number o f observations ≤ x
total number o f observations

Under the exponential distribution, log
(
1− F̂(x)

)
should be approximately linear in x. The result

of these previous works indicates that the cartels’ duration and inter-arrival times between cartels
follow the exponential distribution; therefore, models can be applied to the Markov process [7].

Second, this research assumed that the cartel process was stationary for adopting the Markov
process, and that the values could be analyzed when the cartel process attained a steady state; this is also
unrealistic. In the research of Bryant and Eckard [1] and Combe et al. [2], the probability is the resultant
value when it reaches a steady state. This kind of probability is called a time-independent probability.
Otherwise, the form of estimators needs to be a time-dependent rather than time-independent, because
the purpose of estimating the probability of cartel detection is evaluating the effects of various
competition policies [8]. Thus, Hinloopen [8]’s research was an theoretical literature review for
analyzing a subgame of collusion.

A new mathematical methodology has emerged recently in the form of a non-Markov process.
Ormosi [9] estimated the annual probability of cartel detection by employing capture–recapture
methods based on EC information in the period between 1981–2001. The methods of Ormosi [9],
which are frequently used in ecology, reflect that transition parameters are not steady state, and
that detection and survival rates are time-independent. However, there are two unreasonable
assumptions. First, capture–recapture methods assume that temporary migrations between the two
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states (compete–collude) do not exist; thus, they are regarded as robust design methods. The antitrust
policy tends to vary broadly according to governmental power or social issues. Second, Ormosi [9]
deduced a result from moving average methods, specifically in the moving average of three or five
years. If the probability is used on the basis of a single year, the accuracy of the probability may
decrease due to data insufficiency. The industry reacts immediately to changes in competition law;
therefore, the probability needs to be estimated for the smallest unit of time.

This paper seeks to estimate the probability of cartel penalization using a Bayesian approach
and evaluate the impact of the leniency program as an antitrust policy. This study uses the conjugate
family of the beta-binomial in that the cartel occurs in binomial events. The posterior mean of the beta
distribution is the probability of cartel penalization in a year. This shows the trend of the probability
of cartel penalization, and can then improve the antitrust policy using the measured impact of the
leniency program. In this light, the present research makes three contributions.

First, this paper estimates the probability of cartel penalization for analyzing cartels in contrast
to the probability of cartel detection as treated in previous research. The probability of cartel
detection means the probability that unobserved cartels will be investigated, prosecuted, and penalized.
However, the probability of cartel penalization means the penalized likelihood of investigated cartels
through sufficient investigation. This is used as an indicator with which to evaluate the impact of the
leniency program and the capability of antitrust authorities.

Second, the methodology of this paper makes up for the weak points of previous probability
estimation methods. Previous methods have many unrealistic assumptions such as the analyzed cases
being eventually caught/detected cases, the time-average probability, etc. We can improve on these
assumptions by estimating the time-dependent ensemble-average probability based on the discrete
data of caseloads, which is more practical than the time-average probability for the sensitive estimation
of probability.

Third, this study shows that the Bayesian approach could play a practical role in modeling and
analyzing the cartel situation. Although the Markov process model, which was commonly used in
previous research, is an essential consideration “in steady-state probability”, it is difficult to assume
“in steady-state probability”, because cartel cases continuously vary over time. The probability of
cartel penalization estimated using the Bayesian approach does not need to consider “steady-state
probability”. The Bayesian approach for estimating probability can contain significant uncertainty,
but has good predictive performance in itself [10]. The bias between the estimation probability and
the actual value could be solved from the update procedure of the Bayesian approach. Therefore, we
present reliable results using the non-informative prior and conjugate prior distribution when prior
information is insufficient.

The paper is organized as follows: Section 2 defines the penalization probability and Bayesian
probabilistic model; Section 3 presents an empirical study based on US cartel data; and Section 4
draws conclusions.

2. Bayesian Probabilistic Model

When faced with suspected cartel cases, a competition authority carries out an initial investigation
to determine whether there are sufficient grounds to prosecute. Prosecuted cartels are penalized
in the form of fines through a trial. Eventually, the three states of cartel cases are investigation,
prosecution, and penalization [11]. The estimated probability of this study is based on investigation
and penalization states. The probability of cartel penalization (ρt) is described as the proportion of the
numbers of penalized cases to investigated cases for year t (t = 1, 2, · · ·).

The estimation of the penalization probability using the Bayesian approach involves two
assumptions. First, the unit of case is an industry. Accordingly, the research of Bryant and Eckard [1]
and Miller [7] is based on the analysis unit of the industry. Bos and Harrington [12] argued that
firm-based analysis is more realistic; nonetheless, this study was analyzed based on the analysis unit
of industry for easy analysis. In practice, cartels can participate in all firms of an industry. Second,
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a cartel only arises as one event during a year. Every cartel is transferred to the competition as a result
of punishment by the authorities. This is called the “Grim trigger strategy” [13,14]. Thereafter, if some
player deviates from the cartel, the game cannot be colluded indefinitely.

This study constructed a Bayesian probabilistic model to estimate the probability of cartel
penalization. The probability of cartel penalization is the posterior mean calculated from the posterior
distribution. Inferring a posterior distribution requires determining the proper prior distribution.
A Bayesian probabilistic model is comprised of a prior distribution to induce a posterior distribution,
hyperparameters, and a likelihood function. A Bayesian sequential analysis of the dynamic Bayesian
model can be used to reflect the latest trends of time-series data [15,16].

Two things should be considered to induce a posterior distribution from a prior distribution:
the likelihood function and the parameters in the prior distribution, which are known as
hyperparameters [17]. The natural conjugate priors are generally recommended in the Bayesian
approach, because its functional form is similar to the likelihood distribution [18,19]. Therefore, we
have to obtain the appropriate likelihood function to adopt the notion of natural conjugacy. Consider
the following notations for the Bayesian probabilistic model.

ρt: The probability of cartel penalization cases in year t
nt: The number of cartel investigation cases by the competition authority in year t
kt: The number of cartel penalization cases by the competition authority in year t

When the investigated industry participating in a cartel is n, Figure 1 shows a binomial tree to
demonstrate the process of cartel formation and demise in year t.
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Figure 1. Estimating the probability of cartel penalization through a binomial tree.

In Figure 1, M1, M2, · · · , Mn is the industry of investigated cartels in year t. Arrows in the path
show whether the investigated cartels were finally penalized. When a route contains an arrow pointing
to the right, this cartel will be finally penalized; otherwise, it is not penalized. For example, the industry
M2 is in the left direction; this means that industry M2 will be not finally penalized as the probability
ρt. This study wants to infer the probability of industry n + 1 penalization in path G; this probability is
estimating the likelihood function based on the data from industry 1 to n, and the prior distribution
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while inferring a posterior distribution from the Bayesian approach [13]. The expectation of a posterior
distribution indicates the probability of cartel penalization.

2.1. Likelihood Function and Prior Distribution

The variable nt is the number of cartel cases investigated in year t, and each case follows the
Bernoulli process with an independent and identical distribution. Therefore, the Bernoulli random
variable Xi with one case shown is given by:

Xi =

{
1 if penalizing with probability ρt

0 if non− penalizing with probability 1− ρt,

where i is the number of cartel firm (i = 1, · · ·, nt) and 0 < ρt < 1. The probability mass function of
the random variable, which is known as the Bernoulli probability, is given by:

f (xi|ρ t) = ρt
xi (1− ρt)

1−xi . (1)

Once the number of cases nt is investigated, and kt is penalized in year t, the joint probability
mass function of cartel cases is given by:

L(ρt|x1, · · ·, xnt ) = f (x1, · · ·, xnt |ρ t) =
nt
∏
i=1

f (xi|ρ t)

=
nt
∏
i=1

ρt
xi (1− ρt)

1−xi

= ρt∑ xi (1− ρt)
nt−∑ xi

= ρt
kt(1− ρt)

nt−kt .

(2)

The probability of cartel penalization has a value between 0 and 1. In Equation (2), f (ρt) is a
binomial form as the prior distribution, because there are only two final states of a cartel: whether
it has been penalized or not. Thus, we use the beta distribution as a prior distribution based on the
natural conjugacy [17,20]. The prior distribution f (ρt) is the beta distribution with hyperparameters α

and β; thus, the probability density function is given by:

f (ρt) =
Γ(α + β)

Γ(α)Γ(β)
· ρα−1

t · (1− ρt)
β−1, (3)

where α > 0 and β > 0 are the hyperparameters. The function Γ(·) is a gamma function, which is
defined as:

Γ(α) =
∫ ∞

0
e−xxα−1dx. (4)

Note that when α is a positive integer, Γ(α) = (α− 1)!.

2.2. Bayesian Estimation

In the Bayesian approach, the posterior distribution is given by:

f (ρt|x1, · · ·, xnt ) =
f (x1, · · ·, xnt , ρt)

f (x1, · · ·, xnt)
. (5)

The joint probability distribution f (x1, · · ·, xnt , ρt) in Equation (5), which reflects the multiplicative
laws of probability in Equations (2) and (3), is:

f (x1, · · ·, xnt , ρt) = f (x1, · · ·, xnt |ρt ) · f (ρt)

= Γ(α+β)
Γ(α)Γ(β)

· ρkt+α−1
t · (1− ρt)

nt−kt+β−1.
(6)
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The marginal probability distribution f (x1, · · ·, xnt), which is calculated by the law of total
probability, is given by:

f (x1, · · ·, xnt) =
∫ 1

0 f (x1, · · ·, xnt , ρt)dρt

=
∫ 1

0
Γ(α+β)

Γ(α)Γ(β)
· ρkt+α−1

t · (1− ρt)
nt−kt+β−1dρt

= Γ(α+β)
Γ(α)Γ(β)

·
∫ 1

0 ρkt+α−1
t · (1− ρt)

nt−kt+β−1dρt,

(7)

where
∫ 1

0 ρkt+α−1
t · (1− ρt)

nt−kt+β−1dρt =
Γ(α+kt)·Γ(nt−kt+β)

Γ(α+β+nt)
.

Suppose that the initial probability (ρt) is 0.5 meaning whether the investigated or the non-
investigated case for eliminating the dependence on the prior information. The hyperparameters α

and β are 1 as a non-informative prior. Therefore, the posterior distribution is a beta distribution with
the parameters α + kt and β + nt − kt. The posterior distribution of Equation (5) is represented by:

f (ρt|x1, · · ·, xnt ) =
f (x1,···,xnt ,ρt)

f (x1,···,xnt)

=
Γ(α+β)

Γ(α)Γ(β)
·ρkt+α−1

t ·(1−ρt)
nt−kt+β−1

Γ(α+β)
Γ(α)Γ(β)

· Γ(α+kt)·Γ(nt−kt+β)
Γ(α+β+nt)

= Γ(α+β+nt)
Γ(α+kt)Γ(β+nt−kt)

· ρkt+α−1
t · (1− ρt)

nt−kt+β−1.

(8)

The posterior mean E[ρt|x1, · · ·, xnt ] from Equation (8) is:

E[ρt|x1, · · ·, xnt ] =
∫ 1

0 ρt · f (ρt|x1, · · ·, xnt ) dρt

=
∫ 1

0 ρt
Γ(α+β+nt)

Γ(α+kt)Γ(β+nt−kt)
· ρkt+α−1

t · (1− ρt)
nt−kt+β−1dρt

= Γ(α+β+nt)
Γ(α+kt)Γ(β+nt−kt)

·
∫ 1

0 ρ
(kt+α+1)−1
t · (1− ρt)

(nt−kt+β)−1dρt

= Γ(α+β+nt)
Γ(α+kt)Γ(β+nt−kt)

· Γ(α+kt+1)·Γ(nt−kt+β)
Γ(α+β+nt+1)

= α+kt
α+β+nt

.

(9)

3. Empirical Study

3.1. Data

This study uses data from the Workload statistics published by the Antitrust Division of the
Department of Justice (DOJ) for the period between 1970–2009 [21]. The information is shown in
Table 1. It contains the annual statistics of penalized cases and investigated cases by the criminal
enforcement and civil enforcement of district courts, with respect to the laws of Sherman §1-Restraint
of Trade, Sherman §2-Monopoly, and Clayton §7-Mergers. The antitrust division prosecutes in the form
of criminal enforcement cases if the cartels, which are known as “hardcore cartels,” are determined
by preliminary examination to have an especially injurious impact on the industry; otherwise, it
prosecutes in the form of civil enforcement cases. This study does not consider the appellate cases and
the cases of contemporary criminal–civil enforcement at the same time, due to a few of applicable cases.

Table 1. Statistic of cartel data by the Department of Justice (DOJ) between 1970 and 2009.

Years 1970–1979 1980–1989 1990–1999 2000–2009

Number of investigation cases 4155 2505 3145 1881
Total penalization cases 544 859 780 535

(Civil cases) 351 210 161 129
(Criminal cases) 193 649 619 406

Total fines ($thousand) 47,712 187,548 1,612,993 4,222,407
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3.2. Time-Series Analysis

Prior to the model application, a time-series analysis was implemented to eliminate spurious
relations. This study, alternatively, employed the augmented Dickey–Fuller (ADF) unit root test to
confirm the stability of the time-series data (details are provided in Appendix A).

If the result shows that the time-series data is unstable, the difference stationary process is needed.
The representative method for stabilizing time-series data is order difference or log order difference.
However, using order difference, it is possible that the meaning of original data will be lost, leading to
different conclusions in the economy [22]. Economic variables such as price, currency, and stock index
cannot be used to verify the stability of time-series data, because they are commonly non-stationary
data [23].

3.3. Results

The empirical study, using the model defined in Section 2, drew an annual beta distribution for
the probability of cartel penalization. The results are summarized in Table 2, and Figure 2 illustrates
the distribution for every year.

Figure 2 shows that the probability distributions tend to increase over time. Beta distributions
converge on a specific range with Bayesian updating [17]. Indeed, the result shows the convergence
of the present distribution on the specific range at around 0.22. We were able to calculate the
posterior mean by Equation (9). Figure 3, accordingly, illustrates the annual expected probability of
cartel penalization.

Table 2. The probability of cartel penalization through Bayesian sequential analysis.

Years (t) Investigation
Cases (nt)

Penalization
Cases (kt)

Prior α Prior β Posterior α Posterior β
The Expected Probability
of Cartel Penalization (æt)

1970 (1) 473 53 1 1 54 421
1971 (2) 593 51 54 421 105 963 0.11368
1972 (3) 465 53 105 963 158 1375 0.09831
1973 (4) 538 61 158 1375 219 1852 0.10307
1974 (5) 338 57 219 1852 276 2133 0.10575
1975 (6) 381 29 276 2133 305 2485 0.11457
1976 (7) 374 64 305 2485 369 2795 0.10932
1977 (8) 484 46 369 2795 415 3233 0.11662
1978 (9) 290 68 415 3233 483 3455 0.11376

1979 (10) 407 62 483 3455 545 3800 0.12265
1980 (11) 377 89 545 3800 634 4088 0.12543
1981 (12) 255 93 634 4088 727 4250 0.13427
1982 (13) 262 109 727 4250 836 4403 0.14607
1983 (14) 245 99 836 4403 935 4549 0.15957
1984 (15) 257 80 935 4549 1015 4726 0.17050
1985 (16) 254 77 1015 4726 1092 4903 0.17680
1986 (17) 307 98 1092 4903 1190 5112 0.18215
1987 (18) 270 27 1190 5112 1217 5355 0.18883
1988 (19) 216 55 1217 5355 1272 5516 0.18518
1989 (20) 220 132 1272 5516 1404 5604 0.18739
1990 (21) 178 77 1404 5604 1481 5705 0.20034
1991 (22) 178 81 1481 5705 1562 5802 0.20610
1992 (23) 176 113 1562 5802 1675 5865 0.21211
1993 (24) 224 84 1675 5865 1759 6005 0.22215
1994 (25) 269 58 1759 6005 1817 6216 0.22656
1995 (26) 249 86 1817 6216 1903 6379 0.22619
1996 (27) 436 59 1903 6379 1962 6756 0.22978
1997 (28) 454 64 1962 6756 2026 7146 0.22505
1998 (29) 408 89 2026 7146 2115 7465 0.22089
1999 (30) 373 69 2115 7465 2184 7769 0.22077
2000 (31) 261 64 2184 7769 2248 7966 0.21943
2001 (32) 225 61 2248 7966 2309 8130 0.22009
2002 (33) 192 50 2309 8130 2359 8272 0.22119
2003 (34) 218 43 2359 8272 2402 8447 0.22190
2004 (35) 171 46 2402 8447 2448 8572 0.22140
2005 (36) 217 42 2448 8572 2490 8747 0.22214
2006 (37) 204 48 2490 8747 2538 8903 0.22159
2007 (38) 186 40 2538 8903 2578 9049 0.22183
2008 (39) 172 58 2578 9049 2636 9163 0.22173
2009 (40) 164 83 2636 9163 2719 9244 0.22341
2010 (41) 0.22728

Source: Workload Statistics, Department of Justice in the United States (US).
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In the late 19th century, the United States was confronted with a very significant change:
large-scale manufacturing interests emerged, in great numbers, and enjoyed excessive economic
power. In response, the Interstate Commerce Act in 1887 began a shift towards federal rather than
state regulation of big business. This was followed by the Sherman Antitrust Act in 1890, which is the
basis of US competition laws. Later, the Clayton Antitrust Act in 1914 was enacted to prohibit price
discrimination, corporate mergers, and interlocking directorates.

We can now show how the change of probability of cartel penalization impacted upon the antitrust
laws in the analysis periods. The Antitrust Penalty and Procedure Act in 1974, which was known as the
Tunney Act, required that prospective mergers and acquisitions obtain approval from the DOJ. In 1976,
the Hart–Scott–Rodino Antitrust Improvements Act was passed, and in 1978, the leniency program
was instituted. At this notable time, the probability of cartel penalization was increasing. At the peak
of cartel penalization probability, in 1994, the DOJ reformed the leniency program. The reformed
version of the program included an additional amnesty for those who cooperate with investigations.
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Figure 3 indicates that the probability after 1994 has been steady and stable. The reform of competition
laws clearly had an impact on the industry.

3.4. Model Comparison

Chang and Harrington [24] constructed a Markov process model to consider the stochastic
formation and demise of cartels. By numerical analysis, they estimated the impact of the leniency
program on the steady-state rate. Figure 4, in the form of the analysis results, plots the change in the
rate of penalized cartels according to the proportion of prosecuted cases.
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Figure 4. Effects of the proportions of penalized cartels according to the probability of prosecuted cases.

The proportion of probable prosecution cases, as reflects the 1970–2009 Workload statistics, was
about 20~40%. In this value, the rate of penalized cartels is estimated about 5~10%.

The estimated probability of cartel penalization of this study and Bryant and Eckard [1]’s results
are similar in their proportion of penalization to investigation. However, the present approach is
the ensemble-average probability using discrete data, whereas that of Bryant and Eckard [1] is the
time-average probability using continuous data. Cartel analysis is more commensurate with discrete
data than with continuous data, because the form of Workload statistics data, as announced annually
by the DOJ, is discrete. With our similar definition of probability, we could draw a box plot in the
overlapped analysis period 1962–1988.

Figure 5 shows that the Bayesian probabilistic model estimates 0.114 for the top 25th percentile,
and 0.1737 for the top 75th percentile, which are statistically significant. These are close to Bryant and
Eckard [1]’s estimates, which fell between 0.128 and 0.174.Sustainability 2018, 10, x FOR PEER REVIEW  10 of 15 
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3.5. Impact of Leniency Program

This study utilized a policy simulation to analyze the impact of competition policies [25,26].
In policy evaluation research, the impact of policy implementation is indicated as value-added.
In other words, the impact is described as the difference of outcomes between implementing the policy
and otherwise. The leniency program has been deemed an effective antitrust policy for detecting
and deterring cartels in many countries. In general, the leniency program provides partial or total
exemption for penalty to a cartel member who voluntarily reports information or agreements that
prove helpful to the antitrust authorities. Under the leniency program, a firm or individual in a cartel
is bound to first confess involvement for avoiding conviction or fines. The optimal policy is found by
evaluating the impact of the leniency program. It is given by:

BX1992 − AX1992

AX1992
× 100 . (10)

The impact of the leniency program (%) is the difference between the penalization probability
under both it and non-leniency. The leniency program was originally launched in 1978 in the US, and
was reformed in 1993. In Equation (10), BX1992 is the 1992 penalization probability estimated on the
basis of the leniency program’s implementation in 1978, and AX1992 is the penalization probability in
1992 estimated on the basis of the leniency program’s non-implementation. The estimated probability
BX1992was calculated as 0.21211 by the Bayesian probabilistic model, and AX1992 was calculated as
0.1328 by the ordinary least squares estimation method of regression. The impact of the leniency
program by the policy simulation, finally, is 65.39%. This can be seen in Figure 6.
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There has been much research that has analyzed the effectiveness and efficiency of the leniency
program (i.e., Miller [7], Chang and Harrington [24], and Brenner [27]). The result of this study is
similar to those of the research of Chang and Harrington [24] and Miller [7], which is based on US data;
the implication was that the leniency program is a very effective policy. Chang and Harrington [24]
argue that the occurrence of cartels decreased by about 70%, and the deterrence capability of the
antitrust authority increased by about 60% after introducing the leniency program. Miller [7], through
Poisson regression analysis, estimated the impact of the leniency program every half year using US
data for the years 1985 to 2005. In the results, the detection capability increased by about 60%, and the
deterrence capability improved by about 40%.
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4. Conclusions

This study attempted to estimate the probability of cartel penalization using a Bayesian approach.
Bryant and Eckard [1], Combe et al. [2], Harrington and Chang [3], and Zhou [4] estimated the
probability of cartel detection in the form of the time-average probability from continuous data.
However, the probability of cartel penalization of this study was estimated in the form of the
ensemble-average probability from Workload statistics. Bryant and Eckard [1], Combe et al. [2],
Harrington and Chang [3], Zhou [4], and Miller [7] all assumed that the duration of cartels and the
inter-arrival times between cartels follow exponential distributions, and that the stochastic process
for cartel cases is stationary. However, we built a Bayesian probabilistic model, as it did not need to
consider a stationary process. This study made two assumptions: an industry-based analysis, and the
grim trigger strategy. On the basis of the 1970–2009 Workload statistics from the US Department of
Justice, the determined probability of cartel penalization reflected a sensitive response according to the
change of antitrust policy. The result of the policy simulation of the impact of the leniency program
was about 65%. The results are similar with the results of Chang and Harrington [24] and Miller [7],
and similar to that of Bryant and Eckard [1]; indeed, the common finding among all of the studies,
including the current study, was that the leniency program is a very effective policy.

This study evaluated the impact of antitrust policy and, therefrom estimated the probability of
cartel penalization. From the antitrust authority standpoint, it provides an improved optimal policy,
and from the corporate standpoint, it provides more effective decision-making. Certainly, the present
paper has several limitations. First, further studies on realistic situations in specific countries and
industries are needed. New antitrust policies recently have been introduced, such as for example,
Amnesty Plus, punitive damage, class action, and consent order. These were also considered in
further study.
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Appendix A

An ADF unit root test of maximum time lag 10 based on the Schwarz information criterion is
performed using E-Views software. The regression of the time series for the test is

yt = δyt−1 + ut, (A1)

where ut is the white noise error term, following the normal distribution of mean 0 and variance σ2.
The case of δ = 1 in Equation (A1) indicates that the model has a unit root with a random

walk. Time lags usually account for one-third of the total time series [22]. Accordingly, in the ADF
unit root test, the time series is 30, and so the maximum time lag is 10. In any ADF unit root test,
the procedure is important [28,29]. Such procedures are the model including the constant and time
trend (yt = β0 + β1t + δyt−1 + ut), the model including the constant (yt = β1t + δyt−1 + ut), and the
model including nothing (yt = δyt−1 + ut).

There are information criteria for ADF unit root tests: the AIC (Akaike information criterion),
and the above-noted SIC (Schwarz information criterion). SIC, which supplements the AIC with the
Bayesian view, is mainly used in empirical analysis, and is also known as the Bayesian information
criterion [30].

AIC = e2k/n RSS
n

, SIC = nk/n RSS
n

, (A2)
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where k is the number of regressors, n is the number of observations and RSS (residual sum of squares)
is the sum of square error between the data. The null hypothesis for the ADF unit root test is “including
a unit root (δ = 1).” Initially, the present study used the ADF unit root test with the model including
the constant and time trend based on the detection cases data. The results are provided in Table A1.

Table A1. ADF unit root test with the model including constant and time trend based on the detection
cases data.

t-Statistic Prob.

Augmented Dickey-Fuller test statistic −2.981691 0.1501
Test critical values: 1% level −4.211868

5% level −3.529758
10% level −3.196411

Variable Coefficient Std. Error t-Statistic Prob.
Detection cases (−1) −0.391532 0.131312 −2.981691 0.0051

Constant 156.6549 60.87809 2.573255 0.0143
@TREND (1970) −2.307219 1.308371 −1.763428 0.0863

Table A1 shows that the p-value of the ADF test statistic, 0.1501, is greater than the significance
level (0.05). This means that the null hypothesis cannot be rejected (the detection cases data has a unit
root). Testing of the constant and time trend can show variable Constant and @TREND in the below of
Table A2. The p-value of the constant is about 0.0143, smaller than the significance level (0.05). That is,
the null hypothesis “no constant (β0 = 0)” can be rejected. The p-value of the trend is 0.0863, again
greater than the significance level (0.05). That is, the null hypothesis “no time trend (β1 = 0)” also
cannot be rejected. The time series data on the detection cases includes the unit root as well as the.
Because of the lack of any time trend, we progress to the next step, which is the ADF unit root test
with the model including only the constant. The results of this test are summarized in Table A2.

Table A2. ADF unit root test with the model including constant based on the detection cases data.

t-Statistic Prob.

Augmented Dickey-Fuller test statistic −2.343469 0.1641
Test critical values: 1% level −3.610453

5% level −2.938987
10% level −2.607932

Variable Coefficient Std. Error t-Statistic Prob.
Detection cases (−1) −0.245224 0.104641 −2.343469 0.0246

Constant 66.25393 33.75776 1.962628 0.0572

Table A2 shows that the p-value of the ADF test statistic is 0.1641, greater than the significance
level (0.05). This result means that the data has a unit root. The p-value for constant is 0.0572, again
greater than significance level (0.05). That is, the null hypothesis (β0 = 0) cannot be rejected. The time
series data on the detection cases includes the unit root. Because of no constant, we progress to the
final step, which is the ADF unit root test with the model including nothing. The results of the ADF
root test are summarized in Table A3.
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Table A3. ADF unit root test with the model including nothing based on the detection cases data.

t-Statistic Prob.

Augmented Dickey-Fuller test statistic −1.396253 0.1487
Test critical values: 1% level −2.625606

5% level −1.949609
10% level −1.611593

Variable Coefficient Std. Error t-Statistic Prob.
Detection cases (−1) −0.052658 0.037714 −1.396253 0.1707

R-squared 0.038594 Mean dependent var −7.923077
Adjusted R-squared 0.038594 S.D. dependent var 77.49139

S.E. of regression 75.98132 Akaike info criterion 11.52416
Sum squared resid 219380.1 Schwarz criterion 11.56681

Log likelihood −223.7211 Hannan-Quinn criter. 11.53946
Durbin-Watson stat 2.689882

Table A3 shows that the Durbin-Watson statistic is 2.689882 where k = 1 and n = 30.
The significance level (0.05) of these variables sets up as dL = 1.352, dU = 1.489. The null hypothesis
“serially uncorrelated” can be rejected, because DW statistics (d) is included between 4− dL and 4.
The data on detection cases presents an eventually negative correlation. p-value of the ADF test
statistic is 0.1487, greater than the significance level (0.05). This result means that the data has a unit
root. In conclusion, the time series data on the detection cases includes the unit root and does not
include constant and time trend. In the sequence analysis, we also use an ADF unit root test with the
model including the constant and time trend based on the penalization cases data. The results are
summarized in Table A4.

Table A4. ADF unit root test with the model including constant and time trend based on the
penalization cases data.

t-Statistic Prob.

Augmented Dickey-Fuller test statistic −2.189536 0.4808
Test critical values: 1% level −4.234972

5% level −3.540328
10% level −3.202445

Variable Coefficient Std. Error t-Statistic Prob.
Penalization cases (−1) −0.472117 0.215624 −2.189536 0.0365

D (Penalization cases (−1)) −0.158801 0.238570 −0.665637 0.5107
D (Penalization cases (−2)) −0.242738 0.210821 −1.151395 0.2587
D (Penalization cases (−3)) 0.243527 0.182994 1.330796 0.1933

Constant 38.11916 18.03466 2.113660 0.0430
@TREND (1970) −0.233903 0.352704 −0.663171 0.5123

Table A4 shows that the p-value of the ADF test statistic, 0.4808, which is very much greater than
the significance level (0.05). This means that the null hypothesis cannot be rejected (the penalization
cases data has a unit root). The p-value of the constant is about 0.0043, smaller than the significance
level (0.05). The p-value of the trend is 0.5123, greater than the significance level (0.05). The time
series data on the penalization cases includes the unit root as well as the constant with the model
including the constant and time trend. Because of the lack of any time trend, we progress to the next
step, which is the ADF unit root test with the model including only the constant. The results of this
test are summarized in Table A5.
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Table A5. ADF unit root test with the model including constant based on the penalization cases data.

t-Statistic Prob.

Augmented Dickey-Fuller test statistic −2.131969 0.2339
Test critical values: 1% level −3.626784

5% level −2.945842
10% level -2.611531

Variable Coefficient Std. Error t-Statistic Prob.
Penalization cases (−1) −0.450100 0.211119 −2.131969 0.0410

D (Penalization cases (−1)) −0.154786 0.236329 −0.654959 0.5173
D (Penalization cases (−2)) −0.229258 0.207934 −1.102552 0.2787
D (Penalization cases (−3)) 0.260693 0.179510 1.452247 0.1565

Constant 31.58062 14.96390 2.110454 0.0430
R-squared 0.474430 Mean dependent var 0.611111

Adjusted R-squared 0.406615 S.D. dependent var 27.22633
S.E. of regression 20.97285 Akaike info criterion 9.052581

Sum squared resid 13635.67 Schwarz criterion 9.272514
Log likelihood −157.9465 Hannan-Quinn criter. 9.129343

F-statistic 6.995902 Durbin-Watson 2.098929
Prob (F-statistic) 0.000391

Table A5 shows that the Durbin-Watson statistic is 2.098929 where k = 1 and n = 30.
The significance level (0.05) of these variables sets up as dL = 1.352, dU = 1.489. The null hypothesis
“serially uncorrelated” cannot be rejected, because DW statistics (d) is included between dU and 4− dU .
The data on penalization cases eventually resulted in no correlation. It shows that the p-value of the
ADF test statistic is 0.2339 greater than the significance level (0.05). This result means that the data
has a unit root. The p-value for constant is 0.043, greater than the significance level (0.05). That is,
null hypothesis (β0 = 0) can be rejected. Therefore, we finish the steps. The time series data about
penalization cases includes unit root and constant.
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