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Abstract: We introduce and analyze a simple formal thought experiment designed to reflect a
qualitative decision dilemma humanity might currently face in view of anthropogenic climate change.
In this exercise, each generation can choose between two options, either setting humanity on a
pathway to certain high wellbeing after one generation of suffering, or leaving the next generation in
the same state as the current one with the same options, but facing a continuous risk of permanent
collapse. We analyze this abstract setup regarding the question of what the right choice would be both
in a rationality-based framework including optimal control, welfare economics, and game theory,
and by means of other approaches based on the notions of responsibility, safe operating spaces,
and sustainability paradigms. Across these different approaches, we confirm the intuition that a
focus on the long-term future makes the first option more attractive while a focus on equality across
generations favors the second. Despite this, we generally find a large diversity and disagreement of
assessments both between and within these different approaches, suggesting a strong dependence
on the choice of the normative framework used. This implies that policy measures selected to
achieve targets such as the United Nations Sustainable Development Goals can depend strongly on
the normative framework applied and specific care needs to be taken with regard to the choice of
such frameworks.

Keywords: decision dilemma; intergenerational welfare; time horizon; risk attitude; inequality
aversion; fairness; responsibility; sustainability paradigms

1. Introduction

The growing debate about concepts such as the Anthropocene [1], Planetary Boundaries [2–4],
and Safe and Just Operating Spaces for Humanity [5], and the evidence about climate change and
approaching tipping elements [6,7] shows that humanity and, in particular, the current generation has
the power to shape the planet in ways that influence the living conditions for many generations to come.
Many renowned scholars think that climate change mitigation by a rapid decarbonization of the global
social metabolism is the only way to avoid large-scale suffering for many generations, and some suggest
a “carbon law” by which global greenhouse gas emissions must be halved every decade from now [8]
to achieve United Nations Sustainable Development Goals within planetary boundaries. Others argue
that such a profound transformation of our economy would lead to unacceptable suffering at least in
some world regions as well, at least temporarily, and suggest that instead of focusing on mitigation,
the focus should be on economic development so that continued economic growth will enable future
generations to adapt to climate change. Still others advocate trying to avert some negative impacts
of climate change by large-scale technological interventions aiming at “climate engineering” [9,10].
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Since a later voluntary or involuntary phase-out of many climate engineering measures can have even
more disruptive effects than natural tipping elements [11], one should, of course, also be concerned
that a focus on climate engineering and, maybe to a somewhat lower degree, also a focus on adaptation
might increase humanity’s dependence on large-scale infrastructure and fragile technology to much
higher levels than we learned to deal with, posing a growing risk of not being able to manage these
systems forever.

While one might argue that there does not need to be a strict choice between either mitigation or
adaptation, the presence of tipping elements in both the natural Earth system and in social systems [12],
and the likelihood of nonlinear feedback loops between them [13], suggests that only significant
mitigation efforts will avoid natural tipping, and only significant socio-economic measures will cause
the “social” tipping into a decarbonized world economy that is no longer fundamentally based on the
combustion of fossil fuels. This means the current generation may face a mainly qualitative rather than
a quantitative choice: do or do not initiate a rapid decarbonization? Additionally, this choice might
take the form of a dilemma where we can either pursue our development and adaptation pathway and
put many generations to come at a persistent risk of technological or management failure, or get on a
transformation pathway that sacrifices part of the welfare of one or a few generations to enable all
later generations to prosper at much lower levels of risk.

While all this might seem exaggerated, we believe that as long as there is a non-negligible
possibility that, indeed, we face such a dilemma, it is worthwhile thinking about its implications,
in particular its ethical consequences for the current generation. The contribution we aim at making
in this article is, hence, not a descriptive one such as trying to assess policy options or other aspects
of humanity’s agency, as in integrated assessment modeling [14], or their biospherical impacts,
as in Earth system modeling, or the dynamics of the Anthropocene that arises from feedbacks
between biophysical, socio-metabolic, and socio-cultural processes, as in the emerging discipline
of “World-Earth modeling” [2–5,13–15]. Instead, we aim at making a normative contribution that
studies some ethical aspects of the described possible dilemma, independently of whether this dilemma
really currently exists. To initiate such an ethical debate and allow it to focus on what we think are
the most central aspects of the dilemma, we chose to use the method of thought experiments (TEs) for
this work, a well-established technique in philosophy, in particular in moral philosophy, that studies
real-world challenges through the analysis of often extremely simple and radically exaggerated
fictitious situations to identify core problems and test ethical principles and theories [16].

In Section 2, we introduce one such TE in two complementary ways, (i) as a formal abstraction
of the above-sketched possible dilemma for humanity; and (ii) as a verbal narrative in the style of a
parable. We justify the design of the thought experiment further by relating it to (i) a recent classification
of the state-space topology of sustainable management of dynamical systems with desirable states [17]
and (ii) a very low-dimensional conceptual model of long-term climate and economic development
designed to illustrate that classification [18]. In Section 3, we start discussing the ethical aspects of
the TE by analyzing it with the tools of rationality-based frameworks, in particular optimal control
theory, welfare economics and game theory. This is complemented in Section 4 by a short discussion
of alternative approaches based on the notions of responsibility, safe operating spaces, and different
sustainability paradigms. Section 5 concludes the paper.

2. A Thought Experiment

Before giving a verbal narrative, we describe our TE in more formal terms, using some simple
terminology of dynamical systems theory, control theory and welfare economics:

Assume there is a well-defined infinite sequence of generations of humanity, the current one being
numbered 0, future ones 1, 2, . . . , and past ones −1, −2, . . . . At each point in time, one generation
is “in charge” and can make choices that influence the “state of the world”. The possible states of
the world can be classified into just four possible overall states, abbreviated L, T, P, and S, and we
assume that this overall state changes only slowly, from generation to generation, due to the inherent
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dynamics of the world and humanity’s choices. We assume the overall state in generation k + 1,
denoted X(k + 1), only depends on the following three things: (i) on the immediately preceding state,
i.e., that in generation k, denoted X(k); (ii) in some states on the aggregate behavior of generation k,
denoted U(k) and called generation k’s “choice”; and (iii) in some states also on chance; all this in a
way that is the same for each generation (i.e., does not explicitly depend on the generation number k).
Being in state X(k) implies a certain overall welfare level for generation k, denoted W(k). We assume
the possible choices and their consequences depend on the state X(k) as follows:

• Up until generation 0 and including it, all generations have been in state X(k) = L, where welfare
is “high”, denoted W(k) = 1. When in state X(k) = L, generation k has two choices, A (which is
considered the “default” choice that all generations before 0 have made) and B.

# If generation k chooses option A, the next state is either L or T, depending somewhat
on chance. It will be again X(k + 1) = L with some (typically large) probability η > 0,
which is a time-independent constant, and will be X(k + 1) = T with probability π = 1
− η > 0.

# If they choose option B, the next state will be X(k + 1) = P for sure.

• In state X(k) = T, welfare is low, denoted W(k) = 0, and the state will never change again,
X(k’) = T for all k’ > k;

• In state X(k) = P, welfare is also “low”, W(k) = 0, but the next state will be X(k + 1) = S for
sure; and

• Finally, in state X(k) = S, welfare is again high, W(k) = 1, and the state will never change again,
X(k’) = S for all k’ > k.

We assume all this is known to generation 0 and all later generations.

Note that this TE has one free parameter, the probability η. Figure 1 shows this setup. Obviously,
one may be immediately tempted to make the TE more “realistic” by introducing additional aspects,
such as overlapping generations, a finer distinction between states, options, or welfare levels, more than
one “decision-maker”, more possible transitions, or even an explicit time dependency to account for
external factors. However, we boldly abstain from doing any of that at this point to keep the situation
as simple as possible, allowing us to focus only on those aspects present in the TE for our analysis.
Rather than justifying what we ignored, we will justify what we put into the TE, but only after having
given a verbal, parable-like version of the TE:

On an island very far away from any land lives a small tribe whose main food resource are the fruits of
a single ancient big tree despite which only grass grows on the island. Although the tree is so strong
that it would never die from natural causes, every year there is a rainy season with strong storms, and
someday one such storm might kill and blow away the tree. In fact, until just one generation ago, there
was a second such tree that was blown away during a storm. If the same happens to the remaining tree,
the tribe would have to live on grass forever, having no other food resource. Every generation so far
has passed down the knowledge of a rich but unpopulated land across the large sea that can be safely
reached if they build a large and strong boat from the tree’s trunk. Still, the tribe is so small and the
journey would be so hard that they would have to send all their people to be sure the journey succeeds.
Also, the passage would take so much time that a whole generation would have to live aboard and hope
to catch the odd fish for food, causing deep suffering, and would not be able to see the new land with
their own eyes, only knowing their descendants would live there happily and safely for all generations
to come. No generation has ever set off on this journey.

The main purpose of this narrative is not to add detail to the TE, but only to make it more accessible
by suggesting a possible alternative interpretation of the states and options in the experiment that
is simpler than the actual application to humanity and the Earth system that we motivated it with
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originally in the introduction. As any such narrative contains details that are not central to the problem
one wants to study, but which might distract the analysis, the existence of two alternative narratives
may also be used to check which aspects of them are actually crucial elements of the TE (namely those
occurring in both narratives) and which are not. While the following text may sometimes refer to
either narrative, our analysis will only depend on the formal specification.

Now why did we choose the specific formal specification above? The main justification is that
it is essentially the form the potential decision dilemma between adaptation/growth and mitigation
sketched in the introduction takes when one uses the recently developed theory of the state-space
(rather than geographic) topology of sustainable management (TSM, [17]) to analyze a conceptual model
of long-term climate and economic development [18].

TSM is a classification of the possible states of a dynamical system (such as the coupled system of
natural Earth and humans on it) which has both a default dynamics (which it will display without the
interference of an assumed “decision-maker” or “manager” such as a fictitious world government)
and a number of alternative, “managed” dynamics (which the decision-maker may bring about
by making certain “management” choices). The TSM classification starts with such a system and
a set of possible states considered “desirable”, and then classifies each possible system state with
regard to questions, such as “is this state desirable”, “will the state remain desirable by default/by
suitable management”, “can a desirable state be reached with/without leaving the desirable region”,
etc. This results in a number of state space regions that differ qualitatively w.r.t. the possibility of
sustainable management. One of the most important among these state space regions is what is called
a “lake” in TSM. In a “lake”, the decision-maker faces the dilemma of either (i) moving the system
into an ultimately desirable and secure region called a “shelter”, but having to cross an undesirable
region to do so; or (ii) using suitable management to avoid ever entering the undesirable region as
long as management is sustained, but knowing that the system will enter the undesirable region
when management is stopped, which leaves a permanent risk and makes the lake region insecure.
Rather than giving the mathematical details of TSM (see [17] for those), let us exemplify these notions
with a simple model of long-term climate and economic development, which was analyzed with
TSM in [18].

The “AYS” model is a very simple conceptual model of long-term global climate and economic
development, describing the deterministic development of just three aggregate continuous variables
in continuous time via the ordinary differential equations:

dA/dt = E − A/τA

dY/dt = (β − θ A) Y

dS/dt = R − S/τS

with the auxiliary quantities:

E = F/ϕ, F = G U, R = (1 − G) U, U = Y/ε, G = 1/(1 + (S/σ)ρ).

In this, A is the excess atmospheric carbon stock over preindustrial levels, naturally decaying
towards zero at rate τA but growing due to emissions E; Y is the gross world economic product,
growing at a basic rate β slowed by climate-related damages; θ is the sensitivity of this slowing to A;
S is the global knowledge stock for producing renewable energy, decaying at rate τS, but growing due
to learning-by-doing in proportion to produced renewable energy R; energy efficiency ε stays constant
so that total energy use, U, is proportional to Y; energy is supplied by either fossils, F, or renewables,
R, in proportions depending on relative price G; σ is the break-even level of S at which fossils and
renewables cost the same; ρ is a learning curve exponent; and, finally, emissions are proportional to
fossil combustion with combustion efficiency ϕ.
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In [18], several things are shown about this model system: (i) with plausible estimates of the
initial state and parameters, it will eventually both violate the climate planetary boundary and stay
at welfare levels below current welfare, converging to a fixed point with S = 0; (ii) The system can be
forced to neither violate the climate planetary boundary nor to decrease welfare below current levels
if humanity has the option to adjust the economic growth rate in real-time within some reasonable
levels, but will return to case (i) once this management is stopped; and (iii) if one does not wait too
long, it can also be forced to an alternative attractor where S and Y grow indefinitely if humanity can
reduce σ by subsidizing renewables or taxing fossils to a reasonable extent, and this management can
be phased-out some time after fossils have become uncompetitive, but this decarbonization transition
cannot avoid decreasing welfare below current levels for a small number of generations.

In terms of the TSM classification, the attractor where the variables S and Y grow indefinitely
lies in a “shelter” region where no management is necessary, and it corresponds to the TE’s state
“S”. The initial state turns out to be in a “lake” region and corresponds to the TE’s state “L”,
while the region one has to cross to reach the shelter from the lake is the state “P” (passage) in
the TE. The permanently-managed alternative attractor at which S = 0 corresponds to what TSM
calls a “backwater” from which the shelter can no longer be reached. The default attractor with thee
planetary boundary and welfare boundary violated is either in what TSM calls a “dark downstream”
region since one may still reach the backwater by management, or, if management options have broken
down forever, it is in a “trench” region where no escape is possible any longer. If no management is
used, the system will move from the lake to the dark downstream which becomes a trench when the
management option is removed. In designing our TE, we omitted the dark downstream and simplified
the situation so that the system directly goes to the trench (“T”) when management breaks down in “L”.
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Figure 1. Formal version of the thought experiment. A generation in the good state “L” can choose
path “B”, surely leading to the good state “S” via the bad state “P” within two generations, or path
“A”, probably keeping them in “L”, but possibly leading to the bad state “T”.

3. Analyses Using Rationality-Based Frameworks

We will now start to analyze the ethical aspects of the TE by applying a number of well-established
frameworks based on a common assumption of rationality, where we take a broad working definition
of rationality here that considers a decision-maker’s choice as rational if the decision-maker knows of
no alternative choice that gives her a strictly more-preferred prospect than the choice taken, in view of
her knowledge, beliefs, and capabilities.

Since we want to focus on what is the ethically right response to the dilemma rather than what
makes a politically feasible or implementable choice, we will first treat humanity as a whole as formally
just one single infinitely-lived decision-maker that perfectly knows the system as specified in the
formal version of the TE, can make a new choice at every generation, can employ randomization for
this if desired, can plan ahead, and has the overall goal of having high welfare in all generations.
The natural framework for this kind of problem is the language of optimal control theory. Since it will
turn out that optimal choices and plans (called “policies” in that language) will very much depend on
the evaluation of trajectories (sequences of states) in terms of desirability, we will use concepts such as
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time preferences, inequality aversion, and risk aversion from decision theory and welfare economics
to derive candidate intergenerational welfare functions to be used for this evaluation, and will discuss
their impact on the optimal policy. We will restrict our analysis to a consequentialist point of view
that takes into account only the actual and potential consequences of actions and their respective
probabilities, and leave the inclusion of non-consequentialist, e.g., procedural [19], preferences for
later work.

After that, we will refine the analysis by considering each generation a new decision-maker, so that
humanity can no longer plan its own future choices, but rather a generation can only recommend
and/or anticipate later generations’ choices. The natural framework for this kind of problem is the
language of game theory. While most of economic theory applies game theory to selfish players,
we will apply it instead to players with social preferences based on welfare measures since, in our TE,
a generation’s welfare is deliberately assumed to be independent of their own choice between A and B.

3.1. Optimal Control Framework with Different Intergenerational Welfare Functions

3.1.1. Terminology

A trajectory, X, is a sequence of states X(0), X(1), . . . in the set {L, T, P, S}, where X(t) specifies the
state generation t will be in. The only possible trajectories in our TE are

• “XcLT” = (L, . . . , L, T, T, . . . ), with c > 0 times L and then T forever (so that c is the time
of “collapse”);

• “XkLPS” = (L, . . . , L, P, S, S, . . . ), with k > 0 times L, then once P, then S forever; and
• “all-L” = (L, L, . . . ), which is possible, but has a probability of zero.

A reward sequence (RS, sometimes also called a payoff stream), denoted r, is a sequence r(0),
r(1), r(2), . . . in the set {0, 1}, where r(t) = 0 or 1 means generation t has low or high overall welfare,
respectively. Each trajectory determines an RS via r(t) = 1 if X(t) in {L, S} and r(t) = 0 otherwise. The only
possible RSs are, thus:

• “rc10” = (1, . . . , 1, 0, 0, . . . ) with c > 0 ones and then zeros forever;
• “rk101” = (1, . . . , 1, 0, 1, 1, . . . ) with k > 0 ones, then one zero, then ones forever; and
• “all-1” = (1, 1, . . . ), which is possible, but has a probability of zero.

A (randomized) policy (sometimes also called a strategy) from time 0 on, denoted as p, is just a
sequence of numbers p(0), p(1), p(2), . . . in the interval [0, 1], where p(t) specifies the probability with
which generation t will choose option A (staying in L) if they are in state L, i.e., if X(t) = L. In view of
the possible trajectories, we may, without loss of generality, assume that if p(t) = 0 for some t, all later
entries are irrelevant since state L will never occur after generation t. Thus, we consider only policies
of the form:

• infinite sequences (p(0), p(1), . . . ) with all p(t) > 0,
• finite sequences (p(0), p(1), . . . , p(k − 1), 0) with p(t) > 0 for all t < k.

The two most extreme (“polar”) policies are:

• “all-A” = (1, 1, . . . ),
• “directly-B” = (0),

and another interesting set of policies is:

• “Bk” = (1, 1, . . . , 1, 0) with k + 1 ones, where the case k = 0 is “directly-B” and k→ ∞ is
“all-A”,

all of which are deterministic. A policy p is time-consistent iff it is a Markov policy, i.e., if and
only if all its entries p(t) are equal, so the only time-consistent policies are “all-A”, “directly-B”,
and the policies:
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• “Ax” = (x, x, x, . . . ) with 0 < x < 1, where the case x→ 0 is “directly-B” and x→ 1 is “all-A”.

Given a policy p, the possible trajectories and RSs have these probabilities:

• P(XcLT|p) = P(rc10|p) = p(0) η p(1) η . . . p(c − 2) η p(c − 1) π
• P(XkLPS|p) = P(rk101|p) = p(0) η p(1) η . . . p(k − 2) η (1 − p(k − 1))
• P(all-L|p) = P(all-1|p) = 0

Thus, each policy p defines a probability distribution over RSs, called a reward sequence lottery
(RSL) here, denoted as RSL(p).

The only missing part of our control problem specification is now a function that numerically
evaluates RSLs, or some other information on what RSLs are preferred over which others, in a way
that allows the derivation of optimal policies. Let us assume we have specified a binary social preference
relation that decides for each pair of RSLs g, h which of the following four cases holds: (i) g is strictly
better than h, denoted as g > h; (ii) the other way around, h > g; (iii) they are equally desirable, g ~ h;
or (iv) they are incomparable, denoted as g|h. We use the abbreviation g ≥ h for g > h or g ~ h,
and g ≤ h for g < h or g ~ h. For example, we might put g > h iff V(g) > V(h) and g ~ h iff V(g) = V(h)
for some evaluation function V.

Let us assume the social preference relation has the “consistency” property that each non-empty
set C of RSLs contains some g such that h > g for no h in C. Then for each non-empty set C of policies,
we can call any policy p in C optimal under the constraint C (or C-optimal for short) iff RSL(q) > RSL(p)
for no q in C. In particular, if the preference relation encodes ethical desirability, C contains all policies
deemed ethically acceptable, and p is C-optimal, then generation 0 has a good ethical justification in
choosing option A with probability p(0) and option B with probability 1 − p(0).

We will now discuss several such preference relations and the resulting optimal policies.
A common way of assessing preferences over lotteries is by basing them on preferences over certain
outcomes, hence, we first consider whether each of two certain RSs, r and s, is preferable. A minimal
plausible preference relation is based only on the Pareto principle that r(t) ≥ s(t) for all t should imply
r ≥ s, and r(t) ≥ s(t) for all t but r(t) > s(t) for some t should imply r > s. In our case, the only strict
preferences would then be between the RSs “all-1”, “rk101”, “rc10”, and “rc’10” for c > c’, where we
would have “all-1” > “rk101” > “rc10” > “rc’10”. However, this does not suffice to make policy
decisions, e.g., when we just want to compare policies “directly-B” with “all-A”, we need to compare
RS “rk101” for k = 1 with a lottery over RSs of the form “rc10” for all possible values of c.

One possible criterion for preferring r over s is their degree of “sustainability”. The literature
contains several criteria by which the sustainability of an RS could be assessed (see [20] for a detailed
discussion). The maximin criterion (also known as the Rawlsian rule) focuses on the lowest welfare
level occurring in an RS, which in all our cases is 0, hence, this criterion does not help in distinguishing
options A and B. The satisfaction of basic needs criterion [21] asks from what time on welfare stays above
some minimal level; if we use 1 as that level, this criterion prefers RS (1, 0, 1, 1, . . . ) to all other RS that
can occur with positive probability in our TE, hence, it will recommend policy “directly-B”, since it
makes sure that generation 2 on welfare stays high. The overtaking and long-run average criteria [21]
consider all RSs “rk101” equivalent and strictly more sustainable than all RSs “rc10”, hence, they also
recommend “directly-B” since that is the only policy avoiding permanently low welfare for sure.
Other sustainability criteria are based on the idea of aggregating welfare over time, which we will
discuss next.

3.1.2. Aggregation of Welfare over Time

Let us now focus on the simple question whether the RS “rB” = (1, 0, 1, 1, . . . ) that results from
“directly-B” is preferable to the RS “rc10” = (1, 1, . . . , 1, 0, 0, . . . ) with c ones, which may result from
“all-A”? This may be answered quite differently. The easy way out is to deem them incomparable
since, for some time points t, rB(t) > rc10(t), while for other t, rc10(t) > rB(t), but this does not help.
A strong argument is that “rB” should be preferred since it has the larger number of generations with
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high welfare. Still, at least economists would object that real people’s evaluations of future prospects
are typically subject to discounting, so that a late occurrence of low welfare would be considered less
harmful than an early one. A very common approach in welfare economics is, therefore, to base the
preference over RSs on some quantitative evaluation v(r), called an intergenerational welfare function,
which in some way “aggregates” the welfare levels in r and can then also be used as a basis of an
evaluation function V(g) of RSLs, which further aggregates the evaluations of all possible RSs in view
of their probability. However, let us postpone the consideration of uncertainty for now and stick with
the two deterministic RSs “rB” and “rc10”.

The most commonly used form of discounting (since it can lead to time-consistent choices) is
exponential discounting, which would make us evaluate any RS r as:

v(r) = r(0) + δ r(1) + δ2 r(2) + δ3 r(3) + . . . ,

using powers of a discount factor 0 ≤ δ < 1 that encodes humanity’s “time preferences”. For the
above “rB” and “rc10”, this gives v(rB) = (1 − δ + δ2)/(1 − δ) and v(rc10) = (1 − δc)/(1 − δ). Thus,
with exponential discounting, “rB” > “rc10” iff 1 − δ + δ2 > 1 − δc or, equivalently, δc−1 + δ > 1,
i.e., the policy “directly-B” is preferable iff δ is large enough or c is small enough. Since 1/δ can be
interpreted as a kind of (fuzzy) evaluation time horizon, this means that “directly-B” will be preferable
iff the time horizon is large enough to “see” the expected ultimate transition to state T at time c under
the alternative extreme policy “all-A”. At what δ exactly the switch occurs depends on how we take
into account the uncertainty about the collapse time c, i.e., how we get from preferences over RSs
to preferences over RSLs, which will be discussed later. A variant of the above evaluation v due to
Chichilnisky [21] adds to v(r) some multiple of the long-term limit, limt→∞ r(t), which is 1 for “rB” and
0 for all “rc10”, thus making “directly-B” preferable also for smaller δ, depending on the weight given
to this limit.

Let us shortly consider the alternative policy “Bk” = (1, . . . , 1, 0) with k ones, where choosing B is
delayed by k periods, and “B1” equals “directly-B”. If k < c, this results in RS r(k + 1)101, which is
evaluated as (1− δk+1 + δk+2)/(1− δ), which grows strictly with growing k. Thus, if the collapse time c
was known, the best policy among the “Bk” would be the one with k = c− 1, i.e., initiating the transition
at the last possible moment right before the collapse, which is evaluated as (1 − δc + δc+1)/(1 − δ) >
(1 − δc)/(1 − δ), hence, it would be preferred to “all-A”. However, c is, of course, not known, but a
random variable, so we need to come back to this question when discussing uncertainty below.

An argument against exponential discounting is that even for values of δ close to 1,
late generations’ welfare would be considered too unimportant. Under the most common alternative
form of discounting, hyperbolic discounting, one would instead have the evaluation:

v(r) = r(0) + r(1)/(1 + κ) + r(2)/(1 + 2κ) + r(3)/(1 + 3κ) + . . .

with some positive constant κ. Hyperbolic discounting can easily be motivated by an intrinsic
suspicion that, due to factors unaccounted for, the expected late rewards may not actually be realized,
but that the probability of this happening is unknown and has to be modeled via a certain prior
distribution [22]. Under hyperbolic discounting, v(rB) is infinite while v(rc10) is finite independently
of k, so the policy “directly-B” would always be preferable to “all-A” no matter how uncertainty about
the actual c is accounted for.

A somewhat opposite alternative to hyperbolic discounting is what one could call “rectangular”
discounting: simply average the welfare of only a finite number, say H many, of the generations:

v(r) = (r(0) + . . . + r(H − 1))/H,

where H is the evaluation horizon. With this, v(rB) = (H − 1)/H and v(rc10) = min(c, H)/H,
so that v(rB) > v(rc10) iff H > c + 1. Thus, again, “directly-B” is preferable if the horizon is large enough.
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3.1.3. Social Preferences over Uncertain Prospects: Expected Probability of Regret

Let us now consider evaluations of RSLs rather than RSs, which requires us to take into account
the probabilities of all possible RSs that an RSL specifies.

If we already have a social preference relation “≥” on RSs, such as one of those discussed above,
then a very simple idea is to consider an RSL g” strictly preferable to another RSL g’ iff the probability
that a realization r”(g”) of the random process g” is strictly preferable to an independent realization
r’(g’) of the random process g’ is strictly larger than 1/2:

g” > g’ iff P(r”(g”) > r’(g’)) > 1/2.

The rationale for this is based in the idea of expected probability of regret. Assume policy p was
chosen, resulting in some realization r(RSL(p)), and someone asks whether not policy q should have
been taken instead and argues that this should be evaluated by asking how likely the realization
r’(RSL(q)) under the alternative policy would have been strictly preferable to the actual realization
r(RSL(p)). Then the probability of the latter, averaged over all possible realizations r(RSL(p)) of the
policy actually taken, should be not too large. This expected probability of regret is just P(r”(g”) > r’(g’))
for g’ = RSL(p) and g” = RSL(q). Since for the special case where g’ = g”, the value P(r”(g”) > r’(g’))
can be everything up to at most 1/2, the best we can hope for is that P(r”(RSL(q)) > r’(RSL(p))) ≤ 1/2 for
all q 6= p if we want to call p optimal.

In our example, the polar policy “directly-B” results in an RSL “gB” which gives 100% probability
to RS “rB”, the opposite polar policy “all-A” results in an RSL “gA” which gives a probability of
ηc−1π to RS “rc10”, and other policies result in RSLs with more complicated probability distributions.
e.g., with exponential discounting, rB > rc10 iff δc−1 + δ > 1, hence, “gB” > “gA” iff the sum of ηc−1π

over all c with δc−1 + δ > 1 is larger than 1/2. If c(δ) is the largest such c, which can be any value
between 1 (for δ→ 0) and infinity (for δ→ 1), that sum is 1 − ηc(δ), which can be any value between π
(for δ→ 0) and 1 (for δ→ 1). Similarly, with rectangular discounting, “rB” > “rc10” iff H > c + 1, hence,
“gB” > “gA” iff 1 − ηH−1 > 1/2. In both cases, if η < 1/2, “directly-B” is preferred to “all-A”, while for
η > 1/2, it depends on δ or H, respectively. In contrast, under hyperbolic discounting, “directly-B” is
always preferred to “all-A”.

What about the alternative policy “Bk” as compared to “all-A”? If c ≤ k, we get the same reward
sequence as in “all-A”, evaluated as (1 − δc)/(1 − δ). If c > k, we get an evaluation of (1 − δk+1 +
δk+2)/(1 − δ), which is larger than (1 − δc)/(1 − δ) iff δc−k−1 + δ > 1. Thus, RSL(Bk) > gA iff the sum of
ηc−1π over all c > k with δc−k−1 + δ > 1 is larger than 1/2. Since the largest such c is c(δ) + k, that sum is
ηk(1 − ηc(δ)), so whenever “Bk” is preferred to “all-A”, then so is “directly-B”. Let us also compare
“Bk” to “directly-B”. In all cases, “directly-B” gets (1 − δ + δ2)/(1 − δ), while “Bk” gets the larger
(1 − δk+1 + δk+2)/(1 − δ) if c > k, but only (1 − δc)/(1 − δ) if c ≤ k. The latter is < (1 − δ + δ2)/(1 − δ)
iff c ≤ c(δ). Thus, “directly-B” is strictly preferred to “Bk” iff 1 − ηmin(c(δ),k) > 1/2, i.e., iff both c(δ)
and k are larger than log(1/2)/log(η), which is at least fulfilled when η < 1/2. Conversely, “Bk” is
strictly preferred to “directly-B” iff either c(δ) or k is smaller than log(1/2)/log(η). In particular, if social
preferences were based on the expected probability of regret, delaying the choice for B by at least
one generation would be strictly preferred to choosing B directly whenever η > 1/2, while at the same
time, delaying it forever would be considered strictly worse at least if the time horizon is long enough.
Basing decisions on this maxim would, thus, lead to time-inconsistent choices: in every generation,
it would seem optimal to delay the choice B by the same positive number of generations, but not
forever, so no generation would actually make that choice.

Before considering a less problematic way of accounting for uncertainty, let us shortly discuss a
way of deriving preferences over RSs rather than RSLs that is formally similar to the above. In that
case the rationale would not be in terms of regret but in terms of Rawls’ veil of ignorance. Given two
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RSs r’ and r”, would one rather want to be born into a randomly selected generation in situation r’ or
into a randomly selected generation in situation r”? i.e., let us put:

r” > r’ iff P(r”(t”) > r’(t’)) > 1/2,

where t”, t’ are drawn independently from the same distribution, e.g., the uniform one on the
first H generations or a geometric one with parameter δ. Then rB(t”) > rc10(t’) iff rB(t”) = 1 and
rc10(t’) = 0, i.e., iff t” 6= 1 and t’ > c. Under the uniform distribution over H generations, the latter
has a probability of (H − 1)(H − c)/H2 if H ≥ c, which can be any value between 0 (for H = c) and
1 (for very large H), hence, whether “rB” > “rc10” depends on H again. Similarly, rB(t”) < rc10(t’) iff
rB(t”) = 0 and rc10(t’) = 1. This has probability min(c,H)/H2, which is 1 for H = 1 and approaches
0 for very large H, hence, whether “rB” < “rc10” depends on H as well. However, this version of
preferences over RS leaves a large possibility for undecidedness, “rB”|“rc10”, where neither “rB”
> “rc10” nor “rc10” > “rB”. This is the case when both (H − 1)(H − c)/H2 and min(c,H)/H2 are at
most 1/2, i.e., when max[(H − 1)(H − c), min(c,H)] ≤ H2/2, which is the case when H ≥ 2 and H2

− 2(c + 1)H + 2c ≤ 0, i.e., when 2 ≤ H ≤ c + 1 + (c2 + 1)1/2. A similar result holds for the geometric
distribution with parameter δ. Thus, while the probability of regret idea can lead to time-inconsistent
choices, the formally similar veil of ignorance idea may not be able to differentiate enough between
choices. Another problematic property of our veil of ignorance-based preferences is that they can lead
to preference cycles. e.g., assume H = 3 and compare the RSs r = (0, 1, 2), r’ = (2, 0, 1), and r” = (1, 2, 0).
Then it would occur that r > r’ > r” > r, so there would be no optimal choice among the three.

3.1.4. Evaluation of Uncertain Prospects: Prospect Theory and Expected Utility Theory

We saw that the above preference relations based on regret and the veil of ignorance,
while intuitively appealing, are, however, unsatisfactory from a theoretical point of view, since they can
lead to time-inconsistent choices and preference cycles, i.e., they may fail to produce clear assessments
of optimality. The far more common way of dealing with uncertainty is, therefore, based on numerical
evaluations instead of binary preferences. A general idea, motivated by a similar theory regarding
individual, rather than social, preferences, called prospect theory [23], is to evaluate an RSL g by a linear
combination of some function of the evaluations of all possible RSs r with coefficients that depend on
their probabilities:

V(g) = ∑r w(P(r|g)) f(v(r)).

In the simplest version, corresponding to the special case of expected utility theory, both the
probability weighting function w and the evaluation transformation function f are simply the identity,
w(p) = p and f(v) = v, so that V(g) = ∑r P(r|g) v(r) = Eg v(r), the expected evaluation of the RSs resulting
from RSL g. If combined with a v(r) based on exponential discounting, this gives the following
evaluations of our polar policies:

V(RSL(directly-B)) = v(rB) = (1 − δ + δ2)/(1 − δ)

and:
V(RSL(all-A)) = Eall-A v(rc10) = ∑c>0 η

c−1π(1 − δc)/(1 − δ) = 1/(1 − δη).

Hence, “directly-B” is preferred to “all-A” iff (1 − δ + δ2)(1 − ηδ) − 1 + δ > 0. Again, this is the
case for δ > δcrit(η) with δcrit(0) = 0 and δcrit(1) = 1. The result for rectangular discounting is similar,
while for hyperbolic discounting “directly-B” is always preferred to “all-A”, and all of this as expected
from the considerations above.

In prospect theory, the transformation function f can be used to encode certain forms of risk
attitudes. For example, we could incorporate a certain form of risk aversion against uncertain social
welfare sequences by using a strictly concave function f, such as f(v) = v1−a with 0 < a < 1 (isoelastic
case) or f(v) = −exp(−av) with a > 0 (constant absolute risk aversion) (welfare economists might
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be confused a little by our discussion of risk aversion since they are typically applying the concept
in the context of consumption, income or wealth of individuals at certain points in time, in which
context one can account for risk aversion already in the specification of individual consumers’ utility
function, e.g., by making utility a concave function of individual consumption, income, or wealth.
Here we are, however, interested in a different aspect of risk aversion, where we want to compare
uncertain streams of societal welfare rather than uncertain consumption bundles of individuals. Thus,
even if our assessment of the welfare of each specific generation in each specific realization of the
uncertainty about the collapse time c already accounts for risk aversion in individual consumers
in that generation, we still need to incorporate the possible additional risk aversion in the “ethical
social planner”). This basically leads to a preference for small variance in v. One can see numerically
that in both cases increasing the degree of risk aversion, a, lowers δcrit(η), not significantly so in the
isoelastic case but significantly in the constant absolute risk aversion case, hence, risk aversion favors
“directly-B”. In particular, the constant absolute risk aversion case with a → ∞ is equivalent to a
“worst-case” analysis that always favors “directly-B”. Conversely, one can encode risk-seeking by
using f(v) = v1+a with a > 0.

Under expected utility theory, the delayed policy “Bk” has:

(1 − δ) × V(RSL(Bk)) = ηk(1 − δk+1 + δk+2) + ∑c=1 . . . k η
c−1π(1 − δc),

which is either strictly decreasing or strictly increasing in k. Since “directly-B” and “all-A”
corresponds to the limits k → 0 and k → ∞, “Bk” is never optimal but always worse than either
“directly-B” or “all-A”. The same holds with risk-averse specifications of f. Under isoelastic risk-seeking
with f(v) = v1+a, however, we have:

(1 − δ) × V(RSL(Bk)) = ηk(1 − δk+1 + δk+2)1+a + ∑c=1 . . . k η
c−1π(1 − δc)1+a,

which may have a global maximum for a strictly positive and finite value of k, so that delaying may
seem preferable. e.g., with δ = 0.8, η = 0.95, and a = 1/2, V(RSL(Bk)) is maximal for k = 6, i.e., one would
want to choose six times A before choosing B, again a time-inconsistent recommendation.

As long as the probability weighting function w is simply the identity, there is always a
deterministic optimal policy. While other choices for w could potentially lead to non-deterministic
optimal policies, they can be used to encode certain forms of risk attitudes that cannot be encoded
via f. e.g., one can introduce some degree of optimism or pessimism by over- or underweighing the
probability of the unlikely cases where c is large. For example, if we put w(p) = p1−b with 0 ≤ b < 1,
then increasing the degree of optimism b, one can move δcrit(η) arbitrarily close towards 1, which is
not surprising. We will however not discuss this form of probability reweighting further but will use a
different way of representing “caution” below. Since that form is motivated by its formal similarity to a
certain form of inequality aversion, we will discuss the latter first now before returning to risk attitudes.

3.1.5. Inequality Aversion: A Gini-Sen Intergenerational Welfare Function

While discounting treats different generations’ welfare differently, it only does so based on
time lags, and all the above evaluations still only depend on some form of (weighted) time-average
welfare and are blind to welfare inequality as long as these time-averages are the same. However,
one may argue that an RS with less inequality between generations, such as (1, 1, 1, . . . ), should be
strictly preferable to one with the same average but more inequality, such as (2, 0, 2, 0, 2, 0, . . . ).
Welfare economics has come up with a number of different ways to make welfare functions sensitive
to inequality, and although most of them were initially developed to deal with inequality between
individuals of a society at a given point in time (which we might call “intragenerational” inequality
here), we can use the same ideas to deal with inequality between welfare levels of different generations
(“intergenerational” inequality). Since our basic welfare measure is not quantitative but qualitative
since it only distinguishes “low” from “high” welfare, inequality metrics based on numerical
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transformations, such as the Atkinson-Theil-Foster family of indices, are not applicable in our context,
but the Gini-Sen welfare function [24], which only requires an ordinal welfare scale, is. The idea is that
the value of a specific allocation of welfare to all generations is the expected value of the smaller of the
two welfare values of two randomly-drawn generations. If the time horizon is finite, H > 0, this leads
to the following evaluation of an RS r:

V2(r) = (∑t=0 . . . H−1 ∑t’=0 . . . H−1 min[r(t), r(t’)])/H2.

It is straightforward to generalize the idea from drawing two to drawing any integer number
a > 0 of generations, leading to a sequence of welfare measures Va(r) that get more and more inequality
averse as a is increased from 1 (no inequality aversion, “utilitarian” case) to infinity (complete inequality
aversion), where the limit for a→ ∞ is the egalitarian welfare function:

V1(r) = [r(0) + . . . + r(H − 1)]/H

Va(r) = (∑t1=0 . . . H−1 . . . ∑ta=0 . . . H−1 min[r(t1), . . . , r(ta)])/Ha

V∞(r) = min[r(0), . . . , r(H − 1)]

Note that I = 1 − V2(r)/V1(r) is the Gini index of inequality and the formula V2(r) = V1(r) (1 − I)
is often used as the definition of the Gini-Sen welfare function.

Our RSs “rc10” then gets Va(rc10) = min(c/H, 1)a, while “rk101” gets Va(rk101) = [(H − 1)/H]a if
k < H and Va(rk101) = 1 if k ≥ H. Together with expected utility theory for evaluating the risk about c,
this makes:

Va(all-A) = ηH + ∑c=1 . . . H η
c−1π(c/H)a

and Va(directly-B) = [(H− 1)/H]a. Numerical evaluation shows that even for large H, “all-A” may still
be preferred due to the possibility that collapse will not happen before H and all generations will have
the same welfare, but this is only the case for extremely large values of a. If we use exponential instead
of rectangular discounting and compare the policies “directly-B”, “Bk”, and “all-A”, we may again get
a time-inconsistent recommendation to choose B after a finite number of generations. e.g., Figure 2a
shows V(Bk) vs. k for the case η = 0.985, δ = 0.9, a = 2, where the optimal delay would appear to be
five generations. If we restrict our optimization to the time-consistent policies “Ax”, the optimal x
in that case would be ≈0.83, i.e., each generation would choose A with about 83% probability and B
with about 17% probability, as shown in Figure 2b. Still, note that the absolute evaluations vary only
slightly in this example.
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Let us see what effect a formally similar idea has in the context of risk aversion.

3.1.6. Caution: Gini-Sen Applied to Alternative Realizations

What happens if instead of drawing a ≥ 1 many generations t1, . . . , ta at random, we draw a
≥ 1 many realizations r1, . . . , ra of an RSL g at random and use the expected minimum of all the
RS-evaluations V(ri) as a “cautious” evaluation of the RSL g?

Va(g) = ∑r1 . . . ∑ra g(r1) × . . . × g(ra) ×min[v(r1), . . . , v(ra)].

For a = 1, this is just the expected utility evaluation of g, while for a→ ∞, it gives a “worst-case”
evaluation. For actual numerical evaluation, the following equivalent formula is more useful (assuming
that all v(r) ≥ 0):

Va(g) =
∫

x≥0 Pg(v(r) ≥ x)a dx,

where Pg(v(r) ≥ x) is the probability that v(r) ≥ x if r is a realization of g. In that form, a can
be any real number ≥ 1 and it turns out that the evaluation is a special case of cumulative prospect
theory [23], with the cumulative probability weighting function w(p) = pa. Focusing on “all-A” vs.
“directly-B” again, we get Va(all-A) = (1 − ηaH)/(1 − ηa)H and Va(directly-B) = (H − 1)/H, hence,
“all-A” is preferred iff (1 − ηaH)/(H − 1) > 1 − ηa, i.e., iff H and a are small enough and η is small
enough. In particular, regardless of H and η, for a→ ∞ we always get a preference for “directly-B”
as in the constant absolute risk aversion. This is because with the Gini-Sen-inspired specification of
caution, the degree of risk aversion effectively acts as an exponent to the survival probability η, i.e.,
increasing risk aversion has the same effect as increasing collapse probability, which is an intuitively
appealing property.

3.1.7. Fairness as Inequality Aversion on Uncertain Prospects

Consider the RSs r1 = (1, 0, 1) and r2 = (1, 1, 0), and the RSL g that results in r1 or r2 with equal
probability 1/2. If we apply inequality aversion on the RS level as above, say with a = 2, we get
V(r1) = V(r2) = V(g) = 4/9. Still, g can be considered more fair than both r1 and r2 since under g,
the expected rewards are (1, 1/2, 1/2) rather than (1, 0, 1) or (1, 1, 0), so no generation is doomed to
zero reward but all have a fair chance of getting a positive reward. It is, therefore, natural to consider
applying “inequality aversion” on the RSL level to encode fairness, by putting:

Va(g) = (∑t1=0 . . . H−1 . . . ∑ta=0 . . . H−1 min[V(g, t1), . . . , V(g, ta)])/Ha,

where V(g, t) is some evaluation of the uncertain reward of generation t resulting from g,
e.g., the expected reward or some form of risk-averse evaluation. The interpretation is that Va(g) is the
expected minimum of how two randomly drawn generations within the time horizon evaluate their
uncertain rewards under g. Using exponential discounting instead, the formula becomes:

Va(g) = (1 − δ)a ∑t1=0 . . . H−1 . . . ∑ta=0 . . . H−1 δ
t1+...+ta min[V(g, t1), . . . , V(g, ta)].

If we use the expected reward for V(g, t) and evaluate the time-consistent policies “Ax” with
this Va(g), the result looks similar to Figure 2b, i.e., the optimal time-consistent policy is again
non-deterministic. A full optimization of Va(g) over the space of all possible probabilistic policies
shows that the overall optimal policy regarding Va(g) is not much different from the time-consistent
one, it prescribes choosing A with probabilities between 79% and 100% in different generations for the
setting of Figure 2.
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3.1.8. Combining Inequality and Risk Aversion with Fairness

How could one consistently combine all the discussed aspects into one welfare function? Since a
Gini-Sen-like technique of using minima can be used for each of them, it seems natural to base a
combined welfare function on that technique as well. Let us assume we want to evaluate the four
simple RSLs g1, . . . , g4 listed in Table 1 in a way that makes V(g1) > V(g2) because the latter is more
risky, V(g2) > V(g3) because the latter has more inequality, and V(g3) > V(g4) because the latter is less
fair. Then we can achieve this by applying the Gini-Sen technique several times to define welfare
functions V0 . . . V6 that represent more and more of our aspects as follows:

• Simple averaging: V0(g) = Er Et r(t) where Er f(r) is the expectation of f(r) w.r.t. the lottery g
and Et f(t) is the expectation of f(t) w.r.t. some chosen discounting weights;

• Gini-Sen welfare of degree a = 3: V1(g) = Er Et1 Et2 Et3 min{r(t1), r(t2), r(t3)};
• Overall risk-averse welfare: V2(g) = Er1 Er2 min{Et r1(t), Et r2(t)};
• Fairness-seeking welfare of degree a = 3: V3(g) = Et1 Et2 Et3 min{Er r(t1), Er r(t2), Er r(t3)};
• Inequality- and overall risk-averse welf.: V4(g) = Er1 Er2 min{v4(r1), v4(r2)} with v4(r) = Et1

Et2 Et3 min{r(t1), r(t2), r(t3)};
• Inequality and overall risk index: I4(g) = 1 − V4(g)/V0(g);
• Generational risk averse and fair welfare: V5(g) = Et1 Et2 Et3 min{V5(g, t1), V5(g, t2), V5(g, t3)}

with V5(g, t) = Er1 Er2 min{r1(t), r2(t)};
• Generational risk and fairness index: I5(g) = 1 − V5(g)/V0(g); and
• All effects combined: V6(g) = V4(g)V5(g)/V0(g) = V0(g)[1 − I4(g)][1 − I5(g)]

The resulting evaluations for g1 . . . g4 can be seen in Table 1. We chose a higher degree of
inequality-aversion (a = 3) than the degree of risk-aversion (a = 2) so that V6(g2) > V6(g3) as desired.
Applied to our thought experiment, V6 can result in properly probabilistic and time-inconsistent
policy recommendations, as shown in Figure 3 for two example choices of η and discounting schemes.
An alternative way of combining inequality and risk aversion into one welfare function would be to
use the concept of recursive utility [25], which is, however, beyond the scope of this article.
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Figure 3. (Left) Evaluation V6 for the case of η = 0.68, rectangular discounting with very short horizon
3 and choosing A for sure in generation 1, by probability of chosing A in generation 0, showing an
optimal probability of approximately 82%. (Right) Optimal policy for the first 20 generations according
to V6 for the case of η = 0.97 and exponential discounting with δ = 0.9.
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Table 1. Comparison of the effects of inequality aversion, overall and generational risk aversion,
and fairness on the evaluation of four simple reward sequence lotteries (RSLs). All effects are
implemented in the Gini-Sen style (see main text for details), inequality aversion with a larger degree
of a = 3, risk aversion and fairness with a lower degree of a = 2, which is reflected in the preference for
the coin toss between the “no-inequality” reward sequences (0, 0) and (1, 1) over the coin toss between
the “equal average” reward sequences (0, 1) and (1, 0).

RSL V0: No
Effects

V1: Only
Inequality
Aversion

V2: Only
Overall Risk

Aversion

V3: Only
Fair-ness

V4: Inequality
and Overall

Risk Aversion

V5: Generational
Risk Aversion
and Fairness

V6: All
Effects

Combined

g1: (0.5, 0.5)
for sure

0.5 0.5 0.5 0.5 0.5 0.5 0.5

g2: coin toss
between (0, 0)

and (1, 1)
0.5 0.5 0.25 0.5 0.25 0.25 0.125

g3: coin toss
between (0, 1)

and (1, 0)
0.5 0.25 0.5 0.5 0.125 0.25 0.0625

g4: (0, 1) for sure 0.5 0.25 0.5 0.25 0.125 0.125 0.03125

Summarizing the results of our analysis in the optimal control framework that treats humanity
as a single infinitely-lived decision-maker, we see that there is no clear recommendation to either
choose A or B at time 0 since depending on the degrees and forms of time preferences/time horizon
and risk/inequality/fairness attitudes, either one of the policies “all-A” or “directly-B” may appear
optimal, or it may even appear optimal to deterministically delay the choice for B by a fixed number of
generations or choose A by a time-varying probability, leading to time-inconsistent recommendations.
At least we were able to formally confirm quite robustly the overall intuition that risk aversion
and long time horizons are arguments in favor of B while risk seeking and short time horizons are
arguments in favor of A. Only the effect of inequality aversion might be surprising, since it can lead
to either recommending a time-inconsistent policy of delay (if we restrict ourselves to deterministic
policies) or a probabilistic policy of choosing A or B with some probabilities (if we restrict ourselves to
time-consistent policies). In the next subsection, we will see what difference it makes that no generation
can be sure about the choices of future generations.

3.2. Game-Theoretical Framework

While the above analysis took the perspective of humanity as a single, infinitely lived “agent” that
can plan ahead its long-term behavior, we now take the viewpoint of the single generations who care
about intergenerational welfare, but cannot prescribe policies for future generations and have to treat
them as separate “players” with potentially different preferences instead. For the analysis, we will
employ game-theory as the standard tool for such multi-agent decision problems. Each generation, t,
is treated as a player who, if they find themselves in state L, has to choose a potentially randomized
strategy, p(t), which is, as before, the probability that they choose option A. Since each generation
is still assumed to care about future welfare, the optimal choice of p(t) depends on what generation
t believes future generations will do if in L. As usual in game theory, we encode these beliefs by
subjective probabilities, denoting by q(t’, t) the believed probability by generation t’ that generation
t > t’ will choose A when still in L.

Let us abbreviate generation t’ by Gt’ and the set of generations t > t’ by G>t’ and focus on
generation t’ = 0 at first. Let us assume that V = V4, V5, or V6 with exponential discounting encodes
their social preferences over RSLs. Given G0′s beliefs about G>0′s behavior, q(0, t) for all t > 0, we then
need to find that x in [0, 1] which maximizes V(RSL(px,q)), where px,q is the resulting policy px,q

= (x, q(0, 1), q(0, 2), . . . ). If G0 believes G1 will choose B for sure (i.e., q = (0, . . . ) = “directly-B”)
and chooses strategy x, the resulting RSL(px,q) produces the reward sequence r1 = (1, 0, 0, . . . ) with
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probability xπ, r2 = (1, 0, 1, 1, . . . ) with probability 1 − x, and r3 = (1, 1, 0, 1, 1, . . . ) with probability
xη. Hence:

V4(RSL(px,q)) =
x2 [(1 − (1 − δ)δ2)3 η2 − (1 − δ)3η2 + 2(1 − δ)3η − 2(1 − (1 − δ)δ)3η − (1 − δ) + (1 − (1 − δ)δ)3]
+ 2x (−(1 − δ)3η + (1 − (1 − δ)δ)3η + (1 − δ)3 − (1 − (1 − δ)δ)3] + (1 − (1 − δ)δ)3.

Since the coefficient in front of x2 is positive, V4 is maximal for either x = 0, where it is (1 − δ + δ2)3,
or for x = 1, where it is (δ3 − δ2 + 1)3η2 + (δ − 1)3(η2 − 1), which is always smaller, so w.r.t. V4, x = 0
(choosing B for sure) is optimal under the above beliefs. For V5, we have V5(RSL(px,q), t) = 1 for t = 0,
(xη)2 for t = 1, (1 − x)2 for t = 2, and (1 − xπ)2 for t > 2. If x < 1/(1 + η), we have (xη)2 < (1 − x)2 <
(1 − xπ)2 < 1, while for x > 1/(1 + η), we have (1 − x)2 < (xη)2 < (1 − xπ)2 < 1. For x ≤ 1/(1 + η),
V5(RSL(px,q)) is again quadratic in x with a positive x2 coefficient with value 1 + (1 − δ)3 − (1 − δ2)3

at x = 0 and, again, a smaller value at x = 1/(1 + η). Additionally, for x ≥ 1/(1 + η), V5(RSL(px,q)) is
quadratic in x with positive x2 coefficient and a value of:

1 − δ(3 − 3δ + δ2 − η2[1 − δ + δ2][3 − δ(1 − δ + δ2)(3 − δ + δ2 − δ3)])

for x = 1, which is larger than the value for x = 0 if η is large enough and/or δ small enough. A similar
thing holds for the combined welfare measure V6, as shown in Figure 4, blue line, for the case η = 0.95
and δ = 0.805, where G0 will choose A if they believe G1 will choose B, resulting in an evaluation
V6 ≈ 0.43. The orange line in the same plot shows V6(RSL(px,q)) for the case in which G0 believes
that G1 will choose A and G2 will choose B if they are still in L, which corresponds to the beliefs
q = (1, 0, . . . ). Interestingly, in that case, it is optimal for G0 to choose A, resulting in an evaluation
V6 ≈ 0.42. Since the dynamics and rewards do not explicitly depend on time, the same logic applies to
all later generations, i.e., for that setting of η and δ and any t ≥ 0, it is optimal for Gt to choose A when
they believe Gt+1 will choose B and optimal to choose B when they believe Gt+1 will choose A and Gt+2

will choose B.
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Now assume that all generations have preferences encoded by welfare function V6 and believe
that all generations Gt with even t will choose A and all generations Gt with odd t will choose B.
Then it is optimal for all generations to do just that. In other words, these assumed common beliefs
form a strategic equilibrium (more precisely, a subgame-perfect Nash equilibrium) for that setting of
η and δ. However, under the very same set of parameters and preferences, the alternative common
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belief that all even generations will choose B and all odd ones A also forms such an equilibrium.
Another equilibrium consists of believing that all generations choose A with probability ≈83.7% which
all generations evaluate as only V6 ≈ 0.40, which is less than in the other two equilibria. The existence
of more than one strategic equilibrium is usually taken as an indication that the actual behavior is
very difficult to predict even when assuming complete rationality. In our case, this means G0 cannot
plausibly defend any particular belief about G>0

′s policy on the grounds of G>0′s rationality since G>0

might follow at least either of the three identified equilibria (or still others). In other words, for many
values of η and δ a game-theoretic analysis based on subgame-perfect Nash equilibrium might not
help G0 in deciding between A and B. A common way around this is to consider “stronger” forms of
equilibrium to reduce the number of plausible beliefs, but this complex approach is beyond the scope
of this article. An alternative and actually older approach [26] is to use a different basic equilibrium
concept than Nash equilibrium, not assuming players have beliefs about other players policies encoded
as subjective probabilities, but rather assuming players apply a worst-case analysis. In that analysis,
each player would maximize the minimum evaluation that could result from any policy of the others.
For choosing B, this evaluation is simply v(1, 0, 1, 1, . . . ), while, for choosing A, the evaluation can
become quite complex. Instead of following this line here, we will use a similar idea when discussing
the concept of responsibility in the next section, where we will discuss other criteria than rationality
and social preferences.

4. Solutions Based on Other Ethical Principles and Sustainability Paradigms

4.1. Responsibility

Rather than asking what combinations of uncertain welfare levels we should prefer for future
generations, one can also ask what responsibility we have regarding future welfare. We will sketch
here a certain simple theory of responsibility designed to be applicable to problems involving multiple
agents, uncertainty, and potential ethically-undesired outcomes (EUOs), as in our TE. We distinguish
two major types of responsibility, forward- and backward-looking responsibility, the latter having two
subtypes, factual and counterfactual responsibility. While forward-looking responsibility is about
still-existing possibilities, an agent or group of agents has to reduce the probability of future EUOs
(“responsibility to”), backward-looking responsibility (“responsibility for”) is about past possibilities
that would have reduced the probability of an EUO that actually occurred (factual responsibility,
e.g., Nagel’s unlucky drunken driver [27]) or could have occurred (counterfactual responsibility,
e.g., Nagel’s lucky drunken driver [27]). In all three types, the degree of responsibility is measured in
terms of differences of probabilities of EUOs. Rather than giving a formal definition, it will suffice to
discuss the details of this theory at the hand of several choices for what constitutes an EUO in our TE.

Let us start by considering that an EUO is simply a low welfare in generation 1. Then the degree of
forward-looking respectively of G0 is the absolute difference between the probability of low welfare in
generation 1 when choosing A rather than B, which equals η. In other words, G0 would have a degree
of η responsibility to choose A in order to avoid the EUO that G1 gets low welfare. If they choose
B instead, they will have a degree of factual backward-looking responsibility for G1

′s low welfare
equaling again η since this is the amount by which they could have reduced the probability of the
EUO. If they behave “responsibly” by choosing A, G1

′s welfare might also be low (with probability π),
but G0 would still not have backward-looking responsibility since they could not have reduced
that probability.

If the EUO was simply a low welfare in G2 rather than G1, the assessment of G0
′s responsibility

must consider the possible actions of G1 in addition to those of G0. If G0 chooses B, the probability of
the EUO is zero, while if they choose A, it depends on G1

′s choice. If G1 would choose B, the EUO has
probability 1 so that G0

′s choice would make a difference of 1, while if G1 would choose A, the EUO
has probability 1 − η2 < 1 and G0

′s choice would make a difference of only 1 − η2 < 1. In both cases,
however, they have considerable forward-looking responsibility to choose B since by that they can
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reduce the probability of the EUO significantly. If choosing B, no backward-looking respectively
accrues. If G0 and G1 both choose A and the collapse occurs at time 2, G1 has no factual responsibility
since they could not have reduced that probability, but G0 has factual responsibility of degree 1 − η2.
If G0 chooses A and G1 B, G1

′s factual responsibility is η as seen above, but G0
′s is even larger, since in

view of G1
′s actual choice, G0 could have reduced the probability from one to zero by choosing B

instead. Thus, G0 has factual responsibility of 1. It might seem counterintuitive at first that the sum of
the factual responsibilities of the two agents regarding that single outcome would be larger than 100%,
but our theory is actually explicitly designed to produce this result in order to show that responsibility
cannot simply be divided. Otherwise, each individual in a large group of bystanders at a fight in
public could claim to have almost no responsibility to intervene (diffusion of responsibility). Finally,
if both G0 and G1 choose B and no collapse happens, G0 still has counterfactual responsibility since the
collapse could have happened and G0 could have reduced that probability by 1 − η2. This distinction
between factual and counterfactual responsibility would also allow a discussion of Nagel’s concept of
moral luck in consequences [27] and responses to it, such as [28] but we will not go there here.

If the EUO is low welfare in G3, it becomes more complicated. By choosing B, G0 can avoid the
EUO for sure, but when choosing A they might hope G1 will choose B and the EUO will be avoided
for sure as well, in which case they might claim to have a rather low responsibility to choose B which
amounts only to π, the probability that G1 will have no chance of choosing B due to immediate collapse.
Common sense, however, shows that while wishful thinking regarding the actions of others might
affect one’s own psychological assessment of responsibilities, it cannot be the basis for an ethical
observer’s assessment of responsibility. Otherwise, even in a group of just two bystanders, neither one
would be ethically obliged to intervene since both could hope the other does. Here we even take the
opposite view and argue that G0

′s degree of forward-looking responsibility should equal the largest
possible amount by which they might be able to reduce the probability of the EUO, maximized over all
possible behaviors of the other agents. This means that rather than being optimistic about G1

′s action,
they need to be pessimistic about both G1

′s and G2
′s behavior. The worst that can happen regarding

the welfare of G3 when G0 chooses A is that G1 would choose A and G2, B. In that case, the EUO has
probability 1, so G0 would still be fully responsible (degree 1) to choose B in order to avoid the EUO.

Now what definition of EUO should we actually adopt in our TE? Two candidates seem natural,
either a low welfare in any generation should already constitute an EUO (in which case it cannot be
avoided by either A or B), or only an infinite number of low welfare generations, i.e., an eventual
collapse into state T, should constitute an EUO. In the latter case, each generation in L has 100%
forward-looking responsibility to choose B, and if they choose A instead, they will end up having
100% factual responsibility for the eventual collapse, regardless of the choices of later generations.
Summarizing, we argue that a theory of responsibility that avoids the diffusion of responsibility
and wishful thinking will deem B the responsible action in our TE since it avoids the worst for sure,
even though this makes G0 responsible for G1

′s suffering.

4.2. Safe Operating Space for Humanity

In the following we continue our analyses of the ethical aspects of the TE from the perspective of
the safe operating space (SOS) for humanity [2]. The SOS is located within planetary boundaries (PBs)
“with respect to the Earth system” which “are associated with the planet’s biophysical subsystems
and or processes” [2]. The SOS is a fairly new concept for environmental governance, encapsulating
several established concepts, such as the limits to growth [29,30], safe minimum standards [31–33],
the precautionary principle [34], and the tolerable windows concept [35,36]. We let our analysis guide
by the three “main” articles around the planetary boundaries and the SOS concepts [2–4], which have,
at the time of this writing, together well over ten thousand citations, so that a comprehensive review
of the SOS debate is beyond the possibilities of this article. We will, therefore, incorporate other papers
only selectively.
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One main difference to the approaches covered in the previous sections is the level of mathematical
formalization. While we do acknowledge that some attempts of mathematical formalization of a SOS
decision paradigm have been made [37], the original and most of the subsequent works do not provide
a mathematical operationalization.

First of all we assess whether our TE is a suitable model within which the SOS concept can
be applied at all. Rockström et al. [3] acknowledges that “anthropogenic pressures on the Earth
System have reached a scale where abrupt global environmental change can no longer be excluded”,
which “can lead to the unexpected crossing of thresholds that drive the Earth System, or significant
sub-systems, abruptly into states deleterious or even catastrophic to human well-being”. Therefore,
the authors “propose a new approach to global sustainability in which we define planetary boundaries
within which we expect that humanity can operate safely.” These lines resemble very well the situation
in our TE where the decision-maker faces either a transition from L to T or from L to S.

However, the authors of the three papers in question do not mention any unfavorable P-like
states on the way from L to S. Rockström et al. [2] states that “the evidence so far suggests that,
as long as the thresholds are not crossed, humanity has the freedom to pursue long-term social and
economic development.“ Emphasizing the long-term aspect, the last quote at least does not exclude
the possibility of unfavorable interim states P on the way to safe, long-term “shelter” states S.

Nevertheless, opposing to the view that the SOS can be applied to the decision problem in our TE,
the planetary boundaries’ “precautionary approach is based on the maintenance of a Holocene-like
state of the ES [Earth System]” [4]. This is emphasized because the “thresholds in key Earth System
processes exist irrespective of peoples’ preferences, values or compromises based on political and
socioeconomic feasibility, such as expectations of technological breakthroughs and fluctuations in
economic growth.” [3]. One could argue that a mere transition from state L to S has to be interpreted
as “destabilizing” [4]. However, this view disregards that our TE does not tell anything about the
Holocene-likeness of the states L, T, P, and S. One may very well interpret states L, P, and S as
Holocene-like. Further, as stated above, the ultimate justification for the planetary boundaries is to
avoid Earth system states “catastrophic to human well-being” [3]. It is the only precautionary principle
used by the PB approach that suggests staying within Holocene-like state.

Another opposition to the view that the SOS can be applied to the decision problem in our TE
may result from the fact that “the planetary boundaries approach as of yet focuses on boundary
definitions only and not as a design tool of compatible action strategies” [3]. The “PB framework as
currently construed provides no guidance as to how [ . . . ] the maintenance of a Holocene-like state
[ . . . ] may be achieved [ . . . ] and it cannot readily be used to make choices between pathways for
piecemeal maneuvering within the SOS or more radical shifts of global governance” [4]. We make two
observations from these quotes: First, the PB framework may not be used to guide how Holocene-like
states shall be maintained, but it can surely be used as a guiding principle that Holocene-like states
shall be maintained. Second, these quotes suggest that the authors assume that we are still currently
in a Holocene-like SOS, since they do not explicitly account for re-entering it. However, one of the
key messages of all three papers is that humanity has already crossed several of the nine planetary
boundaries. One could conclude that humanity has, therefore, left the SOS.

The ultimate question regarding our TE is which states of our TE correspond to the SOS.
Interpreting the T state as the catastrophic state that is to be avoided, four options seem plausible to
constitute the SOS: (i) S; (ii) P and S; (iii) L and S; (iv) L, P, and S. State S is clearly part of the SOS.
As mentioned above, the three papers avoid discussing P-like states. Therefore, both possibilities must
be considered: either P-like states belong to the SOS or they do not. Regarding whether state L belongs
to the SOS, [2] states: “Determining a safe distance [from the thresholds] involves normative judgments
of how societies choose to deal with risk and uncertainty”. This clearly reflects the circumstance that
real-world environmental governance always has to account for risks and uncertainties. However,
also in our TE we can associate the “risk” with the probability π of transitioning to state T under action
A. Thus, if our decision-maker judges the risk π to be acceptable, L belongs to the SOS.
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What are the consequences of assuming the SOS is composed of either of the sets (i)–(iv)?
(i) If only S belongs to the SOS, one should choose action B, take the suffering of the next generation
into account and finally end up in the SOS. There “humanity [can] pursue long-term social and
economic development“ [2]; (ii) If P, but not L, belongs to the SOS, the decision is still to take action B
since that moves them even faster into the SOS; (iii) If L, but not P, belong to the SOS and we interpret
the transition L→ P→ S as a “radical shift [ . . . ] of global governance” [4], the SOS concept “cannot
[ . . . ] be used to make choices between pathways” [4], i.e., would be of no help here. Denoting that
transition as “radical” can be justified since it temporarily leaves the SOS; Finally, (iv) assuming all
of L, P, and S belong to the Holocene-like SOS, the SOS concept still “cannot readily be used to make
choices between pathways for piecemeal maneuvering within the safe operating space” [4].

Overall, we conclude that whether or not the initial state L belongs to the SOS is essential for
whether the SOS concept can be used to guide decisions in our TE. If L does not belong to the SOS,
the decision problem is solved by taking action B. Otherwise the concept explicitly states that it cannot
give guidance facing the trade-off highlighted in our TE.

4.3. Sustainability Paradigms à la Schellnhuber

Schellnhuber [38,39] proposes a set of five sustainability paradigms as idealizations of decision
principles for governing the co-evolutionary dynamics of human societies and the environment
as a part of a broader control-theoretical framework for Earth system analysis (also referred to
as geocybernetics). The framework is introduced for deterministic systems and does not explicitly
accommodate for probabilistic dynamics in the original publications, although it can be generalized
to that case (as will be necessary in some of the interpretations of the sustainability paradigms for
the TE given below). It also assumes that each co-state of the system under study consists of societal
and environmental dimensions. In the context of our TE, the societal dimension corresponds to the
welfare associated to a state. Since the TE does not explicitly specify evaluations of the environmental
dimension, we assume here that it is mainly in line with the societal dimension, i.e., that it is “good”
in states L and S and “bad” in state T. Regarding state P, we will discuss both possibilities below.
The precise nature of this assignment does not impact most of the conclusions drawn below. In the
following, we discuss the implications of the sustainability paradigms of standardization, optimization,
pessimization, equitization, and stabilization introduced in [38] for our TE and relate them to the principles
evaluated above.

4.3.1. Standardization

When adhering to the standardization paradigm, decisions on actions follow prescribed
“environment and development” standards based on upper or lower limits on various system variables
or aggregated indicators. The standardization paradigm includes governance frameworks such as
the tolerable windows approach [36], climate guardrails and planetary boundaries [2,3] (see also
Section 4.2). Following a pure standardization paradigm may lead to problematic and unintended
outcomes, since system dynamics are not explicitly taken into account.

Several examples for concrete flavors of the standardization paradigm are of interest in analyzing
the TE. In the case of eco-centrism, only environmental standards are taken into account (requiring
a “good” environmental state for all time). If the environment is assumed to be in a good condition
in state P, then clearly following this eco-centric paradigm implies choosing action B. However,
if state P is interpreted as bad for the environment, then the eco-centric paradigm seems to imply
choosing A to conserve the local environment at least with probability η rather than degrading it for
certain, temporarily. In the case of a tolerable environment and development window, both societal and
environmental dimensions are taken into account (requiring a good environmental state and a high
societal welfare for all time). This variant of the standardization paradigm does not allow reaching a
decision on which action to choose, because both actions A and B violate the standards at some point.
A third example for a standardization paradigm is the maintenance of living standards: for all times a
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certain level of minimum wealth should be maintained (living standard may be measured by more
complex aggregated indicators in higher-dimensional models). A short-sighted society would choose
action A following this paradigm since the standard is fulfilled with probability η per generation.
Adopting a second-best interpretation requiring the standard to be met only after some time, a more
farsighted society would choose action B, meeting the standard when reaching a state with certainty S
in generation 2.

4.3.2. Optimization

The optimization paradigm is based on “wanting the best” [38] and selects actions accordingly to
maximize a given utility function. It is, hence, closely related to the rational choice framework and
its implications for the TE discussed in Section 3. Optimization can be performed under constraints
given by standards, resulting in a combination of the optimization and standardization paradigms.
As seen already in Section 3, adopting the optimization paradigm carries a risk related to the
considerable uncertainty on whether future generations will actually be willing or able to follow
the previously-determined optimal management sequence.

4.3.3. Pessimization

The pessimization paradigm is based on the principle of “avoiding the worst” and is,
hence, also referred to as an “Anti-Murphy strategy of sustainable development” [38]. It is a
resilience-centered paradigm that calls for excluding management sequences that could allow for
disastrous mismanagement by future generations. An example for a specific pessimization paradigm
is the minimax strategy that dictates to minimize the maximum possible damage caused by a
management sequence. The rationale is, hence, to hedge the damage that can be done by the
management choices of future generations. With respect to the TE, this calls for choosing action
B to avoid the worst outcome: to likely get trapped in the degraded state T forever caused by future
generations repeatedly choosing action A.

4.3.4. Equitization

The equitization paradigm is centered around avoiding inequalities of various kinds, be it
geographical or temporal. Focusing on the second aspect of inter-generational equity here, it describes
a quest for just allocation of choices in time to keep the space of management options open for
future generations. Extending upon the Brundtland definition of sustainable development focusing
on being able to meet the needs (welfare) of the current and future generations, the equitization
paradigm demands the “equality of environment and development options for successive global
generations” [38]. Since open and fairly distributed option spaces are key for allowing future
generations to adapt and transform to deal with previously unknown and unforeseeable perturbations
and challenges, the equitization paradigm is closely related to principles from resilience thinking.
If we interpret the choice between A and B in our TE as a kind of “development option” in the sense
of Schellnhuber, then the equitization paradigm seems to call for choosing A, since this preserves
options for the next generation with at least probability η. For option B, the generation in P and future
generations in S would have no options left after all. It is interesting to note that in our deliberately
simple and fully-known system described in the TE, following the equitization paradigm would,
therefore, keep the system in the risky state L and would not allow navigating to the desirable state
S. On the other hand, if we rather interpret “development options” as an aspect of high welfare,
clearly state S provides more options than T, so we would be back to the question of whether one
should sacrifice the options of one generation for the options of all later generations.

4.3.5. Stabilization

The stabilization paradigm describes the goal of steering the system towards a preselected state
or set of states that is considered sustainable. For example, it encapsulates the underlying intentions
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of the United Nations Sustainable Development Goals [40], and other political agreements of that
type, to inform and steer governance for sustainable development. In the TE, the stabilization clearly
paradigm demands to choose action B, since only then the desirable state S can be reached where high
wealth can be sustained for all time.

5. Discussion

When designing the thought experiment discussed in this article, the authors originally had the
intuition that most schools of thought would provide a relatively clear answer to the seemingly simple
question of whether the hypothetical generation finding themselves in situation L should choose
option A or B. Indeed, many individuals we discussed it with seemed to have a strong immediate
gut feeling as to what one “should” do in that situation. For example, when one of the authors asked
two practicing Buddhists, who have discussed the Buddhist worldview with each other for years,
about their opinion, both immediately announced the Buddhist position on this would be perfectly
clear. For the formally slightly similar trolley problem, a survey among professional philosophers
showed that only 24% of respondents would not take a position on that problem [41].

However, as it turns out in light of the above analyses, we could not have been more mistaken.
When asked to explain, the two Buddhists mentioned above argued very convincingly from their
respective interpretation of Buddhism, one for action A, but the other for action B. We had similar
experiences with people adhering to the schools of thought we chose to discuss in this article. As the
above analysis shows, neither the optimal control framework, welfare economics, game theory,
the concept of a safe operating space, or many of the discussed sustainability paradigms give a
really clear and unambiguous answer to the question, at least not without having to choose parameters
such as the right time horizon, level of inequality aversion, risk attitude, preference for fairness, etc.
In some cases, the ambiguity also seems to be due to difficulties in matching the terminology and basic
concepts of a framework for evaluation to the situation described in the TE. Even seemingly clear
concepts such as “options”, “inequality”, “risk”, etc. become complicated to apply and assess when
they are entangled in the way they are in our TE.

Overall, our impression is that much of the difficulties have to do with the strong presence of
probabilistic uncertainties and their strong correlations over time caused by the extreme form of
lock-in effects in our TE. Once choosing action B or once collapsing into state T, there is no turning
back, and some of our analysis depends on this extreme assumption. While the assumption might be
criticized as unrealistic, there is no denying that, also in the real world, choices such as a transition to a
decarbonized economy or events such as the GHG-emissions-induced tipping of a climatic tipping
element will have very long-lasting effects which, for the sake of an evaluation, might just as well be
assumed to be effectively irreversible. Still, future work on this and similar thought experiments should
also assess whether certain modifications, such as (i) the introduction of a small probability of being
able to return to state L from either T or S; (ii) exogenous or endogenous changes in the definition of
“welfare” over time; or (iii) status effects, such as anticipated posterior perception (“making history”),
to name only a few, would make a qualitative difference.

The presence of strong uncertainties is less debatable than that of irreversible lock-ins, thus, it is
somewhat surprising that when trying to apply modern concepts, such as some of the sustainability
paradigms discussed in Section 4, it seems that they are not really made for choice situations where
consequences involve high and long-lasting uncertainties, unclear causal relationships, and the possible
necessity of temporary reductions in welfare. In particular, regarding the latter aspect, our impression
is that discussing intermediate suffering is somewhat unpopular in the sustainability discourse.
Since potential trade-offs between intermediate suffering and long-term sustained welfare might exist
not only in our TE, but also in the real world, this calls for a debate among scholars and policy-makers
of how to handle this trade-off.

Still, we argue that a few patterns of evaluation emerged quite clearly across the different schools
of thought. Most prominently, but least surprisingly, a focus on the farther future and the long-term



Sustainability 2018, 10, 1947 23 of 25

evolution clearly makes option B more attractive than A. Second, a strong preference for equality across
generations, whether expressed via a large coefficient of inequality aversion in a rationality-based
framework, or by choosing to follow the equitization paradigm, seems to make option A more
attractive overall since it distributes welfare, options, and risks more evenly over time. Readers who
perceive these results as rather unsurprising will hopefully consider them a kind of sanity check for our
setup. In addition to these intuitive results, there were also a few surprises, including the rather easy
occurrence of time-inconsistencies or probabilistic elements in optimal policies even in the single-agent
interpretation, caused by inequality aversion, or the occurrence of alternating recommendations to
choose A or B in consecutive generations in the multi-agent interpretation. The most interesting result
of our study, however, is probably the overall insight that even such a simple and seemingly clear
setup as the TE presented here can generate such a diverse and complex set of assessments even within
a single well-established framework, such as the welfare-function-based one. While the flexibility of
the welfare function approach due to its many possible specifications and continuous parameters may
be considered its main weakness, we believe there still remains to be found a convincing basic ethical
principle that would make a clearer recommendation and can be hoped to be accepted as overriding
all other approaches.

We, therefore, close with a few suggestions as to which additional approaches and which
modifications of the TE might be promising. Adding a clearer quantitative distinction between
the welfare levels in states L, T, P, and S might resolve certain ties in the welfare framework, but might
also distract from the basic qualitative problem by focusing too much on quantities. If one would
identify option A as the “default”, or rather “passive” choice, and B as more “active”, one could apply
concepts such as the Doctrine of the Double Effect [42], which have been used to study the trolley
problem and similar dilemmas. This, and similar additional details in the description of the TE might
also allow an assessment in terms of religious traditions and other moral codes.
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