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Abstract: The development of new perennial crop species is gaining momentum as a promising
approach to change the fundamental nature of ecosystem processes in agriculture. The ecological
argument for perennial crops grown in polycultures is strong, but until recently, perennial herbaceous
grain crops have been absent from agricultural landscape. This is not because perennial herbaceous
species do not exist in nature—there are thousands of perennial grasses, legumes, and other broad
leaf plants. Rather, for a variety of reasons, early farmers focused on cultivating and domesticating
annuals, and the perennial herbs were largely ignored. Today, we have a tremendous opportunity to
explore another agricultural path. Building on contemporary knowledge of plant biology and genetics
that early farmers lacked, and using a rapidly expanding toolbox that includes sophisticated genomic
and analytical approaches, we can develop viable perennial grain crops. These crops can then
be used to assemble diverse agroecosystems that regenerate soils and capture other important
ecosystem functions.
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1. Introduction

Numerous papers have been published over the last decade describing predicted improvements
in soil carbon balance, nutrient retention, soil water uptake efficiency, soil microbiome functions, and
weed suppression, as annual crops that require soil disturbance and/or frequent exposure to maintain
are replaced by perennial crops that require minimal soil disturbance or periods of exposure [1–7].
Other papers have addressed questions of why humans originally domesticated annual grain crops and
what strategies make sense for domesticating new perennial grain crop species [8–11]. Relatively few
papers, however, have been published that provide current overviews of progress in breeding specific
perennial crops. The last significant progress report on this subject was a Proceedings of a Food and
Agriculture Organization (FAO)-sponsored meeting that took place in Rome in 2013 [12]. Every new
crop species is unique in where it is situated in the breeding pipeline, the nature of genetic challenges
it faces, the traits that require breeding attention, and the progress made in breeding improvements to
date. This Special Issue of Sustainability is dedicated to providing up-to-date reports on many works
in progress, what lessons have been learned, and how strategies to breed perennial grain crops have
been reinforced or modified based on experience using conventional breeding methods as well as new
molecular or cytogenetic tools.

Sustainability 2018, 10, 2192; doi:10.3390/su10072192 www.mdpi.com/journal/sustainability

http://www.mdpi.com/journal/sustainability
http://www.mdpi.com
https://orcid.org/0000-0001-8444-0190
http://www.mdpi.com/2071-1050/10/7/2192?type=check_update&version=1
http://dx.doi.org/10.3390/su10072192
http://www.mdpi.com/journal/sustainability


Sustainability 2018, 10, 2192 2 of 7

2. Background

There is good evidence that humans began consuming the seeds of numerous wild grasses over
23,000 years BP [13] and some evidence that our consumption of cereals began over 100,000 years
ago [14]. The relationship between humans and cereals gradually transitioned from facultative to
obligate with the domestication of annual grass species, including rice, wheat, barley, maize, millet,
and sorghum, in at least six centers of origin around the world 5–10,000 years BP [15]. In addition to
grass seeds, pulses or seed-crop legumes such as beans or lentils were also domesticated in the same
major centers of crop domestication [15,16]. With domestication, the symbiosis between humans and
annual cereal, pulse, and oilseed crops, or collectively grains, became spectacularly successful.

The question of why humans gradually shifted from a diet of hunted and foraged foods to
one based heavily on cultivated annual grains has been visited and re-visited by geographers,
anthropologists, archaeologists, geneticists, and agronomists [15,17,18]. Theories commonly weave
together multiple factors such as food shortages, climate change, resource degradation, grain storage,
and changing socio-economic structures associated with a more sedentary lifestyle. Yet importantly,
ecological sustainability is absent from the list of possible reasons why humans committed to becoming
farmers of annual grains. Indeed, the conversion of natural ecosystems characterized by diverse
perennial vegetation to agroecosystems that rely on frequent elimination of all vegetation to establish
annual grain species has committed us to a food procurement strategy that is decidedly precarious.
History is replete with examples of annual grain production resulting in extreme soil degradation
which became a primary driver of social collapse [19–22]. Furthermore, in spite of large investments
and sweeping campaigns to halt soil erosion and degradation over the last century, a 2015 FAO report
involving over 200 soil scientists from around the world concluded:

while there is cause for optimism in some regions, the overwhelming conclusion from the
regional assessments is that the majority of the world’s soil resources are in only fair, poor
or very poor condition. The most significant threats to soil function at the global scale are
soil erosion, loss of soil organic carbon and nutrient imbalance. The current outlook is for
this situation to worsen unless concerted actions are taken by individuals, the private sector,
governments and international organizations. [23]

Losing the soil resource through erosion as a consequence of attempting to grow enough annual
grains to satisfy humanity’s dietary demands poses a long-term existential threat to our species.
However, erosion is not the only ecosystem disservice that results from our conversion of high diversity
perennial ecosystems to low diversity annual agroecosystems [24]. The specific ecosystem disservices
listed in Figure 1 have all received piecemeal attention by the agricultural research community.
Many input and capital-intensive strategies for improvement in agriculture, such as nitrification
inhibitors, variable rate fertilizer application, and patented, genetically engineered herbicide tolerant
crops, have been advanced. While often effective at easing specific ecosystem disservices, these and
other solutions further commit farmers to a technological treadmill that directs wealth away from their
farms to the producers and marketers of machinery and inputs. An alternative approach to addressing
the ecosystem disservices listed in Figure 1 is to fundamentally alter the agricultural ecosystem itself.
By perennializing crop species, and increasing crop diversity at the field, farm, and regional scale,
there is good reason to expect many ecosystem services delivered by the natural ecosystems that
predated agriculture to be recovered (Figure 1).
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Figure 1. When natural ecosystems such as a prairie are converted to annual grain ecosystems, key 
services commonly degrade into disservices. The development of diverse perennial grain agriculture 
has the potential to reestablish many of the ecosystem services that were supported by the original 
natural ecosystem [24]. 

3. Breeding Perennial Grains 

There are two basic approaches currently employed to develop new perennial grain crops. The 
first is de novo or direct domestication, and the second is wide hybridization [25,26]. Virtually all of 
the annual grains that humans currently consume were developed through domestication. In brief, 
Neolithic peoples identified desirable wild plant species and subjected them to cycles of selection that 
favored “domestication” traits such as non-shattering (retaining seeds in seed heads until harvest), 
or uniform maturation of seed both on individual plants and across plant populations [9]. Once 
domestication traits were well established or “fixed” in populations, farmers were able to practice 
phenotypic selection to improve on seed yield and other desirable crop traits. With the advent of 
modern plant genetics, crop breeders still relied on phenotypic selection, but their work was 
informed by a new, complex understanding of genetic and environmental interactions. Today, 
several breeding programs are beginning to employ some degree of genomic selection that eliminates 
the need for phenotypic evaluation every selection cycle. 

The second approach to developing perennials is to cross existing high-yielding annual grains 
with related, usually wild, perennial species either in the same genus or tribe with the goal of 
introgressing the genes that confer perennialism into the annual species. Wide hybridization is 
attractive because, if successful, the new hybrid species can largely inherit highly developed traits 
such as yield and end-use quality from the already domesticated annual parent. Challenges arise, 
however, when the chromosome sets (genomes) or number of chromosome sets (ploidy level) in the 
annual and perennial parents do not match and/or do not recombine during meiosis (see, for 
example, papers by Cox et al. [27] and Hayes et al. [28] in this volume). 

In this special issue, reports on de novo domestication projects include intermediate wheatgrass 
(Thinopyrum intermedium), which produces a grain similar to wheat called Kernza® [29,30], silflower 
(Silphium integrifolium), a member of the sunflower family under development as an oilseed crop 
[31,32], and perennial barley (Hordeum spp.) [33]. The issue also includes a review focusing on species 
in the legume family under consideration for domestication as pulse crops [34]. Progress on 

Figure 1. When natural ecosystems such as a prairie are converted to annual grain ecosystems, key
services commonly degrade into disservices. The development of diverse perennial grain agriculture
has the potential to reestablish many of the ecosystem services that were supported by the original
natural ecosystem [24].

3. Breeding Perennial Grains

There are two basic approaches currently employed to develop new perennial grain crops.
The first is de novo or direct domestication, and the second is wide hybridization [25,26]. Virtually
all of the annual grains that humans currently consume were developed through domestication.
In brief, Neolithic peoples identified desirable wild plant species and subjected them to cycles of
selection that favored “domestication” traits such as non-shattering (retaining seeds in seed heads until
harvest), or uniform maturation of seed both on individual plants and across plant populations [9].
Once domestication traits were well established or “fixed” in populations, farmers were able to practice
phenotypic selection to improve on seed yield and other desirable crop traits. With the advent of
modern plant genetics, crop breeders still relied on phenotypic selection, but their work was informed
by a new, complex understanding of genetic and environmental interactions. Today, several breeding
programs are beginning to employ some degree of genomic selection that eliminates the need for
phenotypic evaluation every selection cycle.

The second approach to developing perennials is to cross existing high-yielding annual grains with
related, usually wild, perennial species either in the same genus or tribe with the goal of introgressing
the genes that confer perennialism into the annual species. Wide hybridization is attractive because,
if successful, the new hybrid species can largely inherit highly developed traits such as yield and
end-use quality from the already domesticated annual parent. Challenges arise, however, when
the chromosome sets (genomes) or number of chromosome sets (ploidy level) in the annual and
perennial parents do not match and/or do not recombine during meiosis (see, for example, papers by
Cox et al. [27] and Hayes et al. [28] in this volume).

In this special issue, reports on de novo domestication projects include intermediate wheatgrass
(Thinopyrum intermedium), which produces a grain similar to wheat called Kernza® [29,30], silflower
(Silphium integrifolium), a member of the sunflower family under development as an oilseed crop [31,32],
and perennial barley (Hordeum spp.) [33]. The issue also includes a review focusing on species in the
legume family under consideration for domestication as pulse crops [34]. Progress on developing
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perennial grains through wide hybridization is described in reports on sorghum (Sorghum bicolor ×
S. halepense) [27], wheat (Triticum spp. × Thinopyrum spp.) [28], rice (Oryza sativa × O. longistaminata) [35],
and buckwheat (Fagopyrum spp. × Fagopyrum spp.) [36]. All of these perennial crops under development,
whether products of hybridization or domestication strategies, rely on conventional plant breeding
techniques such as mass selection, pure line selection, pedigree, bulk population, single seed descent,
backcrossing, multiline, and composite approaches. In recent decades, many plant breeders and
geneticists, including those working on perennial grains, have taken advantage of new molecular
and cytogenetic techniques that have improved, and in some cases revolutionized conventional breeding
approaches (Table 1). Each perennial grain crop featured in this special issue reflects a unique strategy
involving particular conventional and molecular or cytogenetic methodologies.

Table 1. Conventional, molecular, and cytogenetic plant breeding techniques discussed in one or more
papers of this special issue on breeding perennial grain crops.

Technique Abbreviation Description

Embryo rescue A method of in vitro culture that helps facilitate the
development of plant embryos that may not survive otherwise,
such as those from wide-hybrid crosses.

Genome editing Using site-directed approaches to introduce DNA lesions, insert
foreign DNA sequences, or delete DNA segments at specific
locations in the genome.

Genome-wide
association studies

GWAS Studies that observe a set of genome-wide genetic variants or
markers to determine if any marker(s) are associated with a trait
of interest. These associations can be used in MAS.

Genomic selection GS Selection for quantitative traits using genomic estimated
breeding values based on genome-wide markers in a population.
GS reduces the frequency of phenotyping and increases annual
gains by reducing breeding cycle time.

Genomic in situ
hybridization

GISH A cytogenetic technique that allows scientists to radiolabel parts
of the genome within cells. It can be used to study meiosis,
perform comparative genomic studies, and identify
chromosomal inheritance in wide-hybrid crosses.

High-throughput
genotyping

HTPG Efficient methods for simultaneous DNA marker discovery and
genotyping in many samples.

Marker assisted
selection

MAS A marker-based method for selection of plants with the desired
allele(s) from the donor parent(s) at a major gene, generally for
qualitative traits.

Mutagenesis A random or targeted process to create heritable variation for a
trait of interest by inducing DNA lesions when sufficient
variation does not occur in natural populations.

Quantitative trait locus QTL A region of the genome that correlates with variation in a
phenotype. Usually the region is linked to or contains genes that
control the phenotype. Can be used in MAS.

Single nucleotide
polymorphism

SNP A variation at a single position (nucleotide) in a DNA sequence
among individuals that can be used as a genetic marker. It is the
most common type of genetic variation occurring throughout
the genome.

4. Expanding Global Effort

Work on perennial grain agriculture is taking place in more institutions around the world than
ever before (Figure 2). This work draws from the disciplines of agronomy, ecology, ethnobotany,
evolutionary biology, genetics, microbiology, plant breeding, plant pathology, physiology, sociology,
and others. As promising as this expansion is, we hope that this special issue of Sustainability will
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inspire more plant breeders and geneticists to initiate new perennial crop breeding programs. The level
of intra- and interspecific diversity needed to achieve the ecological intensification described above
is far greater than can be provided with the crops under development today. Opportunities exist to
develop more perennial crops through wide hybridization, as numerous annual grain or row crops
such as corn, cotton, oat, soybean, and chickpea have closely related wild perennial relatives [37].
A far greater number of domestication candidates exist in the wild, and considerable thought has
gone into strategic breeding approaches for this group [10]. In an effort to begin cataloging and
prioritizing candidates for de novo domestication, Miller, Ciotir, Applequist, and colleagues at Saint
Louis University (USA) in conjunction with the Missouri Botanical Garden and The Land Institute
have launched the “Global Inventory and Systematic Evaluation of Perennial Grain, Legume, and
Oilseed species for Pre-breeding and Domestication.” The database is under development and is
accessible through the Missouri Botanical Garden’s Tropicos Website [38]. This searchable database
includes names and specimen information for all known perennial herbaceous grasses (7636 species)
and perennial herbaceous legumes (6746 species). Ethnobotanical, toxicological, and trait data are
being compiled and entered into the database and species of interest are being grown out in “candidate”
gardens. This botanical foundation will help to facilitate the development of new “hardware” in the
form of perennial crops needed to achieve the level of ecological intensification that is possible, and
necessary, as the human population approaches eight billion. Decades will be required to create new,
viable crop species, even when employing the latest molecular and cytogenetic tools. However, the
return on investment could contribute substantially to assuring the sustainability of agriculture over
the next 10,000 years.
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Figure 2. Map showing home institutions of many of the research groups working on the development
of perennial grain agroecosystems.
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