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Abstract: Tibet has an average altitude of 4900 m, a complex terrain, and unique climatic conditions.
The technologies used to survey this country’s local architectural heritage must be portable, efficient,
and versatile. Low-cost Unmanned Aerial Vehicles (UAVs) and Structure from Motion (SfM)
algorithms can help satisfy these demands. Recent studies employing nadir images from low-cost
UAVs and SfM algorithms have reported positive metric results (with centimeter-level accuracy)
when modeling 2D objects (e.g., land, roofs, and facades). In Tibet, however, forming a complete
3D model of architectural heritage is highly preferable and doing so requires a camera network that
can create nadir and oblique images with various baselines. This study compared the accuracies of
surveying a Tibetan stupa using the UAV-SfM method compared with Ground Control Points (GCP)
and Terrestrial Laser Scanning (TLS). The results indicated that the UAV-derived model is accurate
enough for most surveying purposes (RMSE = 2.05 cm; 1/2000 of the stupa’s dimension). The accuracy
and completeness of the 3D model allowed Historic Building Information Modeling (HBIM) and
structural deformation analysis to also be undertaken. In addition, the stupa was integrated with
geographic data (terrain and infrastructure) for visualization, management, and evaluation purposes
at a larger scale. Considering the low cost, portability, and completeness offered by UAV and SfM,
this tool offers promise for surveying Tibet’s architectural heritage.
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1. Introduction

1.1. Surveying Tibetan Architectural Heritage

A major constraint to local heritage conservation in Tibet has long been the lack of reliable surveys
of the area’s architectural heritage. Located on the Qinghai–Tibet Plateau, Tibet is the highest region on
Earth with a complex terrain at an average altitude of 4900 m that extends over one-eighth of China’s
land territory (Figure 1). Tibet’s unique geography created great difficulties for European explorers in
the first half of the twentieth century [1,2], as well as for Chinese researchers even after 2006 when
the Qinghai–Tibet Railway was completed [3,4]. It takes 40 and 46 h, respectively, to travel by railway
from Beijing and Shanghai (two centers of Chinese scientific research) to Lhasa, the capital of Tibet.
To travel from Lhasa to Ngari, the western-most prefecture in Tibet, it requires another two days by
road. Once fieldwork has begun, surveyors face challenges including lack of oxygen, strong sunshine,
and unstable weather. These harsh natural conditions necessitate the use of appropriate effective
survey technologies.
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Since the 1990s, optical measurement technologies such as terrestrial laser scanning (TLS) have been
widely used in high-definition surveys of architectural heritage [5,6]. Thanks to TLS, millimeter-level
accuracy and resolution as well as three-dimensional geometry have helped researchers re-examine
the errors and omissions introduced in previous surveys by the limitations associated with manual
measurements. New insights into Chinese architectural history and heritage conservation were
generated by such improved survey results [7,8]. From a domestic geographical perspective, TLS has
been used mainly on the North China Plain (i.e., Beijing, Tianjin, and Shanxi), an area that has been
a research focus since the pioneering work of first-generation Chinese architectural historians in the
1930s [9].

However, these surveying technologies cannot easily be transferred for use in Tibet [10].
In addition to its harsh natural conditions, Tibet’s architectural typology ranges from monasteries
to castles and stupas, which are quite different from the wooden temples on the North China Plain.
Many local architectural heritage sites cover large areas and are closely related to the neighboring
environment (e.g., terrain, water, and vegetation). TLS cannot be used effectively in Tibet for the
following reasons: (1) scanners are generally too bulky to carry, especially considering altitude sickness;
(2) taking field measurements is time-consuming and millimeter-level accuracy is not necessary in
many cases; (3) TLS coverage is limited in distance and angle, resulting in incomplete data acquisition;
and (4) the TLS’s internal camera does not have sufficient color depth to document the chromatic scales
of the paintings on the facades that are quite common in Tibet. For these reasons, in addition to using
TLS (for high-definition surveys) and manual measurements (for preliminary surveys), surveys of
Tibet’s architectural heritage must have access to a portable and efficient method that provides wide
coverage without suffering a large decline in accuracy.

1.2. UAV-SfM Method for Architectural Heritage Surveys

The integration of low-cost unmanned aerial vehicles (UAVs) and structure from motion (SfM)
algorithms facilitates the documentation of architectural heritage by providing greater flexibility
and more extensive coverage [11–13]. Although a UAV system embedded with multiple cameras
is more efficient in acquiring images, it is also much more expensive, and cannot be used in most
countries without permission [14]. Low-cost UAVs (~10,000 RMB) make low-altitude image acquisition
affordable and manageable for users with limited budgets, and SfM algorithms developed by the
computer vision community automate the process of image-based modeling [15–18]. The combined
use of UAVs and SfMs enables the 3D modeling of large-scale and complex architectural heritage sites
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using image collections acquired at low cost and with high flexibility. Recent studies assessing the
accuracy of the UAV-SfM method for architectural heritage surveying have discussed the following
three factors: camera calibration, camera network, and Ground Control Points (GCPs) with known
geographic locations.

1. Camera calibration is a prerequisite for metric 3D reconstruction based on imagery. The camera’s
interior parameters (e.g., principal points, principal distance, and radial lens distortion) are recovered
during the process [19]. Depending on the research objectives, photogrammetry communities and
computer vision communities have different approaches to camera calibration [20]. To achieve
greater accuracy, the photogrammetry community prefers to conduct an independent calibration
procedure prior to orienting the image. Coded targets are generally used to facilitate the manual
or semi-automated detection of targets. The computer vision community employs simultaneous
camera calibration and image orientation for automated applications. This procedure is known as
self-calibration [21,22]. Coded targets are not required for self-calibration, since a feature-based
camera calibration is conducted with the same images used to model the object. Feature-based
camera calibration is preferred in architectural heritage surveying, because it speeds up the
process of making field measurements and avoids having to place targets in inaccessible areas.
Factors that are favorable to the accuracy of feature-based calibration include a convergent
camera network with a large baseline-to-depth (B/D) ratio, image scale variations, and abundant
detective features on survey objects [23].

2. The camera network refers to the geometric relationships of the objects being surveyed and
the image block. It exerts a decisive influence on the accuracy of feature-based calibration.
The use of nadir images for 2D objects (e.g., roofs or facades) to plan a camera network is
quite straightforward [24–26], because only a few factors such as image overlaps and ground
sample distances (GSDs) should be considered. It becomes much more complex in the case
of 3D objects that require a convergent camera network with oblique images [27]. Issues such
as lens tilting, image scale, and illumination transitions may influence the metric quality [28].
Until now, most UAV-SfM-based surveying for architectural heritage has employed only nadir
images. Roofs and facades are photographed and modeled separately. This approach is not
practical for architectural heritage surveying in Tibet, given the complexity of objects and the
required field efficiency. An all-in-one camera network that can produce a complete 3D model is
the most common requirement.

3. In aerial image-based surveying, external constraints such as Global Navigation Satellite
Systems/Inertial Navigation Systems (GNSS/INS) data and GCPs are used to geo-reference
3D results and minimize possible camera network deformation during bundle adjustment [29].
The Global Positioning Systems (GPSs) embedded in low-cost UAVs are not currently reliable.
GCPs are widely employed for greater accuracy and can be measured using a total station
(an electronic/optical instrument used in modern surveying) on either manually arranged targets
or natural features on the object being surveyed. Ideally, a total station can measure the target
with an accuracy of about 1.5 mm, but instrument performance, distance to target, and human
error may lead to different results. As reported by [30], a large number of precise and evenly
distributed GCPs enhance the accuracy of UAV-SfM-based surveying.

Due to the required field efficiency and harsh conditions associated with surveying Tibetan
architectural heritage, this paper uses a carefully designed convergent camera network with
feature-based camera calibrations and abundant GCPs to ensure metric accuracy. This article assesses
both the reliability of the UAV-SfM method for surveying architectural heritage and its viability as an
affordable, portable, and flexible alternative to the use of TLS in Tibet.
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2. Materials and Methods

2.1. Architectural Study Site

The architectural site used for this study was the Auspicious Multi-Door Stupa at Palcho
Monastery (Figure 2) in Gyantse, Tibet. This monastery was built from AD 1418 to 1436. The Auspicious
Multi-Door Stupa has nine floors, each floor with many chapels featuring magnificent wall paintings.
The viability of TLS for surveying the Auspicious Multi-Door Stupa is quite limited. Due to the
stupa’s shape, all of its exterior floors and most of its walls are outside the range of terrestrial scanning
capabilities. In contrast, UAVs permit a no-dead-angle coverage of the structure.
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Figure 2. Photograph of the Auspicious Multi-Door Stupa (image by authors).

2.2. UAV System and Image Acquisition

The UAV used was a DJI Phantom 4 quadcopter drone equipped with a camera (Table 1). Its 35 mm
equivalent lens represents a remarkable improvement over previous versions, as the wide-angle lenses
commonly used in low-cost UAVs capture images with severe radial distortions that reduce the metric
quality of SfM reconstructions. The rotary wings allow takeoffs and landings in limited spaces and
it can be operated by a single person. The battery permits a maximum flight time of 28 min in
low-altitude areas, but because of the thinner atmosphere in Tibet, the maximum flight time drops to
15–20 min.

Table 1. Unmanned Aerial Vehicle (UAV) and camera specifications.

Parameter Value

Weight 1380 g
Flight time (max) 28 min

Sensor size 6.16 × 4.62 mm
Resolution 4000 × 3000 pixels

Field of view 94◦

Focal length 35 mm
Aperture f/2.8

The most important task is acquiring images, since camera calibration and 3D reconstruction
rely on the same set of images. The all-in-one camera network should satisfy feature-based camera
calibrations, benefit metric accuracy, and guarantee sufficient image overlap. Several rules guide image
acquisition: (1) the 3 × 3 rule of photogrammetry according to which every required surface should
be covered by at least 3 images to guarantee completeness [31]; and (2) a larger baseline-to-depth
(B/D) ratio to achieve greater metric accuracy. A convergent camera network with high image
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overlap was designed according to these rules (Figure 3). As the sunlight in Tibet is variable but
intense, all images were taken during an overcast period to avoid the negative effects of changing
illumination, including greater contrast between surface highlights and shadows as well as increased
sensor noise. Although it is possible to remedy such deficiencies through an image pre-processing
workflow consisting of color balancing, image denoising, and color-to-gray conversion [32], it is still
worth ensuring consistent illumination conditions if an hours-long wait is an option.Sustainability 2018, 10, x FOR PEER REVIEW  5 of 14 
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The Phantom 4 drone allows autonomous flight following a planned route, but this was
impractical due to the precision of onboard GNSSs and constant changes to the orientation of the lens.
Thus, six flights were undertaken in manual mode, at the cost of incurring discrepancies between
the actual camera network and an ideal camera network. To correct this problem, 365 images were
captured; after removing redundant and blurred images, only 317 were used for modeling. Because of
the camera’s small sensor size, distances between image capture positions and objects must be small
to obtain a favorable Ground Sampling Distance (GSD). These distances range from 10 to 20 m with
corresponding GSDs ranging from 4.4 to 8.8 cm.

2.3. Reference Measurements

This study used terrestrial surveying with a total station and TLS to evaluate the metric accuracy
of the UAV-SfM method.

2.3.1. Measurement of GCPs

A measurement control network was established to obtain a GCP on each side of the Auspicious
Multi-Door Stupa (Figure 4). Fifty-five evenly distributed GCPs were measured with a total station.
Natural features (such as the corners of paintings) on the stupa were used, as they are more permanent
than print markers for potential future measurements for purposes of comparison.

2.3.2. Laser Scanning

The metric accuracy of a UAV-derived model was compared to a ground truth model generated
using TLS. The field measurements were carried out from 11 stations using high/medium resolution
via a Leica ScanStation C10 and an external camera (Canon 60D). According to the manufacturer,
the accuracy at this range is 4–6 mm. Use of the external camera dramatically decreased the required
field time, but each station still required 10–15 min. The time required to complete the entire scanning
process was about 6 h, mostly consisting of carrying the laser scanner and setting up pre-scan stations
on the undulating terrain around the stupa.
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2.4. Data Processing

Automated image-based modeling was performed using commercial Agisoft PhotoScan software.
The automated procedures consisted of recovering image positions and the generation of sparse
points and dense points, the generation of mesh, texture mapping, and the generation of Digital
Elevation Models (DEMs). The 55 GCPs measured with total stations were manually assigned to the
corresponding locations on the textured model. The geometric relationships between recovered image
blocks and the 3D model were optimized using the GCPs’ coordinates. This procedure is known as
Bundle Adjustment [33,34].

A watertight mesh surface was generated from the TLS-derived point cloud via the Screened
Poisson algorithm [35], which ensured that the distance between the UAV-derived model and the
TLS-derived model was computed through a points–mesh comparison instead of a points–points
comparison. The points–mesh comparison guaranteed that the computed distance was the shortest
distance between the two models that was not affected by the density of points.

3. Results

The accuracy of the UAV-derived model was assessed by comparing its results with those of the
GCPs and TLS-derived model. After the SfM Bundle Adjustment was completed, an average deviation
between the 55 GCPs and their corresponding points on the UAV-derived point cloud model was
generated using the following equation:

RMSE =

√
∑n

i=1(Xobs,i − Xmodel,i)
2

n
(1)

where RMSE is the Root-Mean-Square Error, Xmodel,i is the ideal coordinates of a targeted point
measured with a total station, Xobs,i is the actual coordinates of a targeted point in the UAV-derived
model, and n is the number of GCPs. After the UAV-SfM method was applied to the stupa, the reported
RMSE was 2.05 cm/1.615 pixels. This equates to 1/2500 the length (50 m) of the stupa. This level of
accuracy is comparable to that of the TLS-derived model given the error-prone process of registering
the multiple-station point cloud data.
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The UAV-derived model and the TLS-derived model were compared to conduct a more detailed
evaluation. The closest distance to the TLS-derived mesh surface was computed and translated into
scalar colors (green: zero; red and blue: maximum distance from zero) for each of the points in the
UAV-derived point cloud. It is intuitively obvious that the UAV-derived model is very similar to the
TLS-derived model (Figure 5). Most of the points in the UAV-derived model are green, indicating that
their differences to the TLS-derived model are within ±1 cm. The large planar surfaces such as walls
tend to be represented more accurately than brackets and moldings, because the UAV-derived model
fails to represent most stupa components with sharp transitions. When vertical sections were extracted
from the TLS-derived model and the UAV-derived model, it became evident that sharp transitions in
the former had been replaced by filleted corners on the latter (Figure 6).Sustainability 2018, 10, x FOR PEER REVIEW  7 of 14 

 

Figure 5. Discrepancy between the UAV-derived model with GCPs and the Terrestrial Laser Scanning 

(TLS)-derived model. 

 

Figure 6. Comparison of extracted sections between the UAV-derived model and the TLS-derived model. 

The use of GCPs is favorable to the SfM’s metric quality. Different usages of the GCPs with the 

same image set and SfM thresholds led to different levels of accuracy and completeness (Figures 5 

and 7). The GCPs improve the accuracy of image orientations and, consequently, the generation of 

dense point clouds. The contribution of GCPs in terms of accuracy is quantitatively illustrated by 

deviations to the TLS-derived model (Figure 8). In the model that used GCPs, 27% of the points are 

within ±1 cm, 67% of the points are within ±3 cm, and 92% of the points are within ±5 cm, while the 

relative rates in the model that did not use GCPs were 21%, 59%, and 89%. 

Figure 5. Discrepancy between the UAV-derived model with GCPs and the Terrestrial Laser Scanning
(TLS)-derived model.

Sustainability 2018, 10, x FOR PEER REVIEW  7 of 14 

 

Figure 5. Discrepancy between the UAV-derived model with GCPs and the Terrestrial Laser Scanning 

(TLS)-derived model. 

 

Figure 6. Comparison of extracted sections between the UAV-derived model and the TLS-derived model. 

The use of GCPs is favorable to the SfM’s metric quality. Different usages of the GCPs with the 

same image set and SfM thresholds led to different levels of accuracy and completeness (Figures 5 

and 7). The GCPs improve the accuracy of image orientations and, consequently, the generation of 

dense point clouds. The contribution of GCPs in terms of accuracy is quantitatively illustrated by 

deviations to the TLS-derived model (Figure 8). In the model that used GCPs, 27% of the points are 

within ±1 cm, 67% of the points are within ±3 cm, and 92% of the points are within ±5 cm, while the 

relative rates in the model that did not use GCPs were 21%, 59%, and 89%. 

Figure 6. Comparison of extracted sections between the UAV-derived model and the TLS-derived model.

The use of GCPs is favorable to the SfM’s metric quality. Different usages of the GCPs with the
same image set and SfM thresholds led to different levels of accuracy and completeness (Figures 5
and 7). The GCPs improve the accuracy of image orientations and, consequently, the generation of
dense point clouds. The contribution of GCPs in terms of accuracy is quantitatively illustrated by
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deviations to the TLS-derived model (Figure 8). In the model that used GCPs, 27% of the points are
within ±1 cm, 67% of the points are within ±3 cm, and 92% of the points are within ±5 cm, while the
relative rates in the model that did not use GCPs were 21%, 59%, and 89%.Sustainability 2018, 10, x FOR PEER REVIEW  8 of 14 
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Figure 8. Plots of the cumulative discrepancy distributions of the UAV-derived model (with GCPs and
without GCPs) compared to the TLS-derived model.

The distribution of GCPs on the stupa also affects accuracy. Images of the upper parts of the stupa
tend to be less accurate than those of the lower parts (Figure 5). Since a constant GSD was employed
during image acquisition, the reason for these differences may be the absence of GCPs on the upper
parts because of the lack of natural features. Another possibility is that the metal surfaces on the upper
parts are smoother and more textureless than the coarse walls toward the bottom, creating problems
for feature detection and feature correspondence in SfM reconstructions.

The results can be summarized as follows:

1. This method can be used to achieve sufficient accuracy (1/2500) for most architectural heritage
surveying purposes.
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2. The combined use of UAV and a total station can be an effective alternative to TLS when low-cost,
portable, and fast on-field measurements are required (Table 2). Since the UAV-derived model
fails to represent details on the stupa’s moldings, TLS is still necessary when extremely high
accuracy and resolution are required.

3. To guarantee accuracy and completeness, GCPs are necessary for UAV-SfM. A sufficient number
of GCPs should be evenly distributed in 3D spaces.

Table 2. Comparative specifications and results of the UAV-Structure from Motion (SfM) method
and TLS.

TLS UAV-SfM

Device Leica C10 ScanStation DJI Phantom 4
Cost 800,000 RMB 12,000 RMB

Weight ca. 40 kg ca. 2 kg
Accuracy 6 mm one station; centimeter-level globally RMSE = 2.05 cm

Completeness ca. 40% >95%
Field efficiency 6 h 3 h

4. Discussion

The convenience of the UAV-SfM’s data acquisition method offers excellent opportunities to
represent and analyze Tibetan architectural heritage. Despite the absence of an interior model, having a
complete exterior model of the stupa can nonetheless facilitate further applications.

Historic Building Information Modeling (HBIM) is a state-of-the-art application of raw point cloud
architectural heritage data [36]. In contrast to conventional Computer-Aided Design (CAD) software,
which represents data measurements in a collection of 2D drawings and 3D models, HBIM allows
sustainable object-level data enrichment ranging from geometry to material and structure [37]. Once the
gaps between the unsegmented point clouds and semantic-based modeling are bridged, an HBIM
database that combines geometric complexity with semantic information will be of great value for
data consumers (e.g., architects, architectural historians, and engineers). One of the main challenges of
current HBIM methods is the loss of geometric accuracy during its translation into parametric BIM
objects [38]. A mesh surface can accurately represent the irregular shapes of architectural heritage and
their as-built conditions, but it is rarely manageable in a BIM environment. As most BIM software today
is oriented for new design, a reasonable methodology recently proposed by [39] is based on hybrid
modeling solutions: distinguishing the Level of Accuracy (LoA), Level of Detail (LoD), and Level of
Knowledge (LK) with reference to existing technical standards and features of studied architectural
heritage and then using suitable modeling techniques (e.g., 2D mapping, Loft, using a non-uniform
rational B-spline format as a medium) to achieve the aims.

In this study, different modeling methods were employed depending on the required LoA and
LoD, the geometry of the objects, and the expected degree of automation. For instance, a wall can
be modeled simply by tracing the footprints of the point cloud and extruding them along the Z axis;
the cone on top of the stupa is generated by revolving a profile along a path. Both the profile and the
path are extracted from the point cloud with as-built geometry (Figure 9). In both approaches, accurate
geometric shapes are integrated with semantic data ranging from a 2D graphic and 3D appearance
to physical information (e.g., density, shear modulus, and yield strength) and thermal information
(e.g., thermal conductivity, permeability, and reflectivity). The unknown wall thickness is defined as a
parameter allowing potential input once it has been obtained. As the data ranging from material to
decay are enriched, these models also facilitate further elaborations such as finite element structural
analyses and energy simulations. In general, although the progression from point cloud to HBIM is still
challenging, the UAV-SfM method offers a promising workflow at low cost and with high flexibility,
both of which are of prime concern for architectural heritage surveying in Tibet.
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The structural deformation of architectural heritage should be closely monitored. This task is
conventionally conducted with point-to-point comparisons, in which coordinates of the relevant
points are occasionally measured with a total station or a Differential GNSS to check for deformation.
However, the results are affected by the distribution and sampling rates of the points. Point clouds
provide an innovative method for monitoring structural deformation globally by comparing the data
with a user-defined reference surface. As shown in previous surveys of the Auspicious Multi-Door
Stupa and our practice [40], TLS coverage is quite limited. The settling patterns of each floor are
outside the range of TLS. Carrying the scanner to each floor is impractical due to the much greater
labor intensity required (at least 12 stations on each floor) and potential inaccuracies that could occur
during the registration process. As shown above, UAVs permit a no-dead-corner coverage of the stupa
and consequently generate a complete 3D model with centimeter-level accuracy (RMSE = 2.05 cm).
This approach offers great convenience for the analysis of floor settling. In this case, the analysis
workflow consisted of three steps: (1) segmenting the point cloud by floor; (2) defining reference
planes for each segment (Figure 10a); and (3) calculating the closest points between segments and
reference planes (in CloudCompare). Obvious settling was observed in the west of the first floor
(Figure 10b). The degree of surface settling was found to be quite severe: the distance between the
lowest points and the highest points on the same floor was almost 60 cm. This is probably due to
the absence of measurement controls during the process of manually consolidating the floors, since
local people sometimes volunteer to complete such tasks because doing so is considered a Buddhist
virtue (Figure 10c). Further structural analysis and technological interventions are required in such
cases. In order to evaluate the damage after an earthquake or monitor the deformation caused by
inappropriate consolidation work, a new UAV-derived model can be quickly obtained using the
presented method and compared with an existing model to generate intuitive 2D diagrams, 3D models,
and 4D navigation, informing quantitative conclusions by filtering point clouds within certain ranges
of scalar field values.

In recent years, free-access remote sensing data along with Geographical Information Systems
(GISs) have been applied to cultural heritage management at a regional scale with increasing frequency.
The remote sensing data available today include multi-spectral satellite imagery, DEMs, and shared
research results from the remote sensing community (such as weather records, social statistics,
and natural hazards). These data facilitate macroscopic management and an analysis of the natural
hazards confronting Tibetan architectural heritage. In terms of study area and richness of captured
data, this approach is an important supplement to terrestrial surveys. However, the gap between these
two methods has yet to be filled.

Free remote sensing data today are usually of medium resolution, for example, a pixel equalling
30 m per side. This resolution is of limited use when a single piece of architecture, instead of a
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region, is to be studied. The proposed SfM-UAV method provides a data acquisition method that
falls between a terrestrial survey and remote sensing in terms of resolution, coverage, efficiency,
and labor intensity. The generated orthoimage and DEM have up to centimeter-level resolution
within square-kilometer-level coverage, and, as shown in this paper, the 3D model can achieve a
sufficiently high level of completeness and accuracy. Consequently, it provides a digital representation
of architecture and the surrounding environment with different LoD options, but also serves as a
bridge between remotely sensed data and terrestrially surveyed data. For example, once a 3D model
(point cloud, mesh, and the Industry Foundation Classes (IFC)-format model) of the Multi-Door
Stupa has been obtained, it could be integrated with the geospatial terrain, streets, and water data
automatically retrieved from Autodesk InfraWorks’ existing repositories (Figure 11), which include
OpenStreetMap’s buildings, highways, and railways, or orthophotos from BingMaps and DEM
(e.g., United States Geological Survey (USGS) or Aster datasets) [41,42]. Terrestrially surveyed results
such as CAD drawings, SketchUp models, and point clouds can also be georeferenced with the existing
data. Although this commercial software is originally intended for designing infrastructure, it is
currently an ideal platform for combining semantic data with geospatial data, both of which are
important for surveying Tibetan architectural heritage.
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undertaken by local people.
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Tibet is one of the few places globally where the original natural environment around an
architectural heritage site has not been highly altered by urban development. Thus, valuable
information regarding architectural, archeological, and historical geography is embedded among
the spatial relationships between buildings, terrain, water, and vegetation. The impact of new
infrastructure on local architectural heritage (e.g., changes in sightlines, local climate, or construction
vibrations) should be evaluated at a larger scale than a single building. Users of a geo-database
are provided with an intuitive and friendly interface that allows 3D navigation and parametric
modifications to the infrastructure. A complete database could be created by defining footprints,
setting elevation patterns, and semi-automatically modeling the neighboring buildings that are not
yet included in the database. A complete 3D terrain model with architecture provides source data for
heritage management, and could also be used for travel guides and game development.

5. Conclusions

In conclusion, this paper evaluates the accuracy of the UAV-SfM method for surveying a Tibetan
stupa and illustrates how the results could be elaborated in a next-step analysis and used for
management purposes. Future development should include solving the problem of the missing
interior model, potentially using a hand-held mobile laser scanning (MLS) system. According to [43],
the accuracy and resolution (at the centimeter level) of this approach supports efficient and robust data
acquisition given varying light conditions and visitor presence. Once the two models (UAV-derived and
MLS-derived) are finely registered, the complete stupa model will open doors to further elaborations
such as section drawing (with known thicknesses of walls and floors) and finding the center of
gravity for structural analysis purposes. Another promising application of the method presented
is the integration of the resulting bird’s-eye-view orthophotograph of architectural heritage with
satellite imagery available in GISs. Changes to architectural heritage over time caused by natural or
human factors over a wider range (e.g., mountains, rivers, and vegetation) could be detected and
analyzed. Documenting these changes is very significant for Tibetan architectural heritage, where the
relationship between individual architectural works and the neighboring geographical environment
has been maintained for hundreds of years.
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