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Abstract: This paper proposes a new non-radial biennial Luenberger energy and environmental
performance index (EEPI) to measure the energy and environmental performance (EEP) change
in various Chinese cities. The sources of EEP change, in terms of technical efficiency change and
technological change, are examined by Luenberger EEPI. The contributions from specific undesirable
outputs and energy inputs to the EEP change are identified by means of the non-radial efficiency
measure. The proposed approach is applied to evaluate the EEP of the industrial sector in 283 cities
in China over 2010–2014. Factors influencing the emission abatement potential are investigated
by employing geographically weighted regression (GWR) model. We find that (1) changes in EEP
can be attributed to technological progress but that technological progress slows down across the
study period; (2) the soot emission performance experiences a downtrend among four specific
sub-performances (i.e., energy, wastewater, SO2 and soot performances) in line with the truth that
severe haze happened frequently in China; (3) the best performers begin to move from the coastal
to inland cities with the less resource consumption and higher ecological quality; (4) cities with the
strongest positive effect in regards to pollution intensity on emission abatement potential are located
in the areas around the Bohai Gulf, where air pollution is particularly severe.

Keywords: data envelopment analysis; biennial Luenberger index; geographically weighted
regression; EEP

1. Introduction

With globalization, China has accelerated melting into the world economy after entering World
Trade Organization (WTO) and has become a world factory in international division with rapid
economic growth. However, this growth is mainly driven by development within the energy-intensive
industrial sector [1]. According to the British Peroleum (BP) Statistical Review of World Energy 2017 [2],
China is currently the world’s largest energy consumer at 23% of the total global consumption and 27%
of the demand growth of global energy consumption in 2016. However, China has paid a high price
to the environment for such rapid advancement. Uncontrolled fossil fuel combustion has released
harmful substances in various forms and led to all kinds of pollutions [3], e.g., water contamination,
acid rain, and haze (smog). Large loads of waste gases have been emitted into the atmosphere to create
a severe decline in air quality.

China has suffered from a severe haze over many of its cities comprised of fine particulate matter
less than 2.5 micrometers in diameter (PM2.5), especially in winter months, since 2013 [4,5]. In 2016, only
84 Chinese cities had standard air quality—this amounts to merely 24.9% among the 338 monitored
cities at or above the prefecture level (Report on the State of China’s Environment in 2016 [6]).
Pollution severely affects Chinese citizens’ daily living conditions and, ultimately, threatens their
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health. Epidemiological studies have revealed a strong association between exposure to fine particulate
matter and mortality [7,8]. Many environmental laws and regulations have been enacted to combat
this, including China’s State Council’s Action Plan for Air Pollution Prevention and Control (One could
refer to http://www.gov.cn/zwgk/2013-09/12/content_2486773.htm for more details.) targeting air
quality in September 2013. One goal of the Action Plan is to reduce the average concentration of fine
particulate matter by 25% in the Beijing-Tianjin-Hebei region by 2017 against the 2012 level (80 µg/m3).
Measuring energy efficiency and environmental efficiency can provide quantitative information for
energy and environmental policy analysis and decision-making. Cities are not only places of high
energy consumption, but also form the main sources of various pollutants. Cities, to this effect, are the
main area for controlling pollutant emissions. It is essential for administrators to understand the
energy and environmental performance (EEP) of their cities to formulate scientific, strategic goals for
energy conservation and emission reduction.

In recent years, the data envelopment analysis (DEA) linear programming method has become a
popular approach to measuring energy and environmental efficiency to reduce energy consumption
and control emissions. DEA was proposed by Farrell [9] and developed by Charnes, et al. [10]
to automatically generate appropriate production functions to combine multiple inputs and multiple
outputs. The principle of DEA is to enable data to “speak for itself” rather than require excessive
artificial parametric assumptions for functions [11]. With this approach, we only need to collect
the values of variables for inputs and outputs to establish production frontiers without priori
assumptions for functional forms. The automatically generated production frontiers make it possible
to measure the distance from an observed decision-making unit (DMU) to projected production
frontier, which determined by the efficient DMUs and with which the distance is defined as inefficiency
measurement. Therefore, this advantage provides a simple way to measure the inefficiency of DMUs
(i.e., ones which are under the production frontier) through measuring its distance to the referred
production frontier. Many previous researchers have studied energy efficiency; Hu and Wang [12],
for example, first established the total factor energy efficiency (TFEE) concept by using DEA.
Song, et al. [13] used a bootstrap-DEA approach to find that China’s energy efficiency has maintained a
slow upward trend from 1992 to 2010. Özkara and Atak [14], and later Feng and Wang [15], measured
total-factor energy efficiency and energy savings potential in Turkey’s manufacturing industry and
China’s provincial industrial sectors, respectively. Zhou, et al. [16] proposed an output-specific
energy efficiency estimating method. These researchers concentrated on static analysis without
dynamic comparison. Honma and Hu [17] investigated the dynamic changes in energy efficiency by
introducing a Malmquist productivity index (MPI). Other researchers, such as Wang and Zhou [18],
Chang and Hu [19], and Zhang, et al. [20] have made dynamic analyses of energy efficiency as well.

Beside above energy efficiency evaluation models, researchers focused on securing as many
desirable outputs as possible while minimizing the undesirable outputs which are inevitably
produced by industrial production. Färe, et al. [21] first proposed the concept of environmental
DEA technology to incorporate undesirable outputs into efficiency evaluation frameworks.
Kuosmanen and Kortelainen [11] applied DEA to aggregate multiple undesirable outputs and
emphasized the trade-off between economic production and environmental protection in regards to
the impact of undesirable outputs on the economy. Kortelainen [22] extended the static framework
to a dynamic environmental performance analysis by using MPI; they decomposed the changes
in environmental performance into two components: relative environmental efficiency change and
relative environmental technological change.

Many previous researchers have used the radial DEA approach to measure environmental
performance, where different undesirable outputs are adjusted by the same proportion. However,
radial efficiency measures overestimate technical efficiency due to the existence of nonzero slacks.
A series of non-radial DEA models have been developed to resolve this limitation. For example,
Zhou, et al. [23] employed a non-radial DEA approach to measure the environmental performance
of OECD countries. Zhang and Choi [24] explored total-factor carbon emission performance
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in China’s fossil fuel power plants using a metafrontier non-radial MPI. Rashidi and Saen [25]
calculated the pure eco-efficiency of OECD countries by a non-radial DEA model based on green
indicators. Sueyoshi and Goto [26] applied a non-radial DEA environmental assessment to evaluate
the performance of coal-fired power plants in the northeast United States. Xie, et al. [27] computed
environmental efficiency based on a directional distance function with the radial and non-radial slacks
of outputs.

There are two major approaches to estimating productivity or efficiency changes: the Malmquist
productivity index and Luenberger productivity index. Some researchers assert that the Malmquist
productivity index overestimates productivity changes compared to the Luenberger [28,29]. Further,
the Luenberger productivity index is a difference-based index, so it is well applicable to measuring
differences in EEP. Recent researchers have adapted the Luenberger productivity index to study
dynamic changes in productivity or efficiency. For instance, Mahlberg and Sahoo [30] applied
non-radial decompositions of the Luenberger productivity index to analyze the eco-productivity
performance behavior in 22 OECD countries. Based on a Luenberger environmental index,
Azad and Ancev [31] measured the relative environmental efficiency of agricultural water use to reveal
substantial variations across different regions. Wang [32] applied the Luenberger index to explore
changes in energy and environmental productivity at the provincial level. Our research team developed
a non-radial Luenberger productivity index to resolve the limitation of radial measurement [33,34].
Non-radial efficiency measures can help us identify specific effects and contributions of energy factor
and specific undesirable outputs, while radial efficiency measures do not reflect the impact of emission
structures on efficiency changes.

The aforementioned studies focused on single aspects of energy efficiency or environmental
performance rather than integrated EEP measurements. A few researchers have investigated the
integrated EEP by new DEA models. Wang, et al. [35], for example, used DEA window analysis to
find that EEP is highest in the eastern area of China compared to other regions. Zhou and Wang [36]
explored the energy and CO2 emission performance for over 100 countries by using a new directional
distance function (DDF). Zhou, et al. [37], Vlontzos, et al. [38], Meng, et al. [39], Geng, et al. [40],
Wang and Zhao [41], and Perez, et al. [42] measured integrated EEP in their respective studies.
The researchers mentioned above have tended to focus on the regional or national level and lack of
research down to the city level, though cities play an important role in environmental governance.
Cities are responsible for 75–80% of global greenhouse emissions [43,44]. Only a few researchers,
e.g., Li, et al. [45], Yuan, et al. [46], Wang, et al. [47], Zhou, et al. [48], and Guo, et al. [49] have explored
environmental performance at the city level.

In the present study, we extended the existing research in two main aspects. In terms of
methodology, we proposed an additive DEA model combined with a slack-based measure and
non-radial directional distance function as first developed by Färe and Grosskopf [50]. The Luenberger
productivity index with an additive structure is used to measure changes in productivity (which differs
from the Malmquist index with multiplicative structure). We established a biennial Luenberger index
extended from biennial Malmquist index proposed by Pastor, et al. [51] to avoid infeasible solution of
DEA. In terms of indicator selection, we properly account for multi-undesirable outputs and compare
these sub-performances. We also use the natural breaks method [52] to identify break points by picking
the class breaks which maintain the greatest similarity in one class but maximize the difference among
different classes. Geographical location has a marked effect on the emission abatement potential, so we
alter the traditional regression to geographically weighted regression (GWR) to allow our estimated
coefficients of influencing factors to vary by location.

The current our study is different from that of Picazotadeo, et al. [53], which focused on
ecological-economic performance based on the Pressure Generating Technology (PGT) rather
than environmental production technology. The current our study also differs from that of
Wang and Wei [33], which explored the energy and environmental productivity change at the
provincial-level by using Luenberger index and decomposed the energy and environmental
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productivity into four sub-indicators: Luenberger pure efficiency change, scale efficiency change, pure
change in technology and change in returns to scale of technology. They analyzed energy input-specific
and environmental productivity change without taking the undesirable output-specific performance
into consideration. The current our study also differs from that of Zhou, Wang, Su, Zhou and Yao [48],
which studied the change of industrial energy conservation and emission reduction according to
the Malmquist index and only considered one undesirable output (CO2). The three aforementioned
research teams may not avoid infeasible solution of DEA when dealing with inter-temporal data.
Our study first attempted to analyze undesirable outputs and energy inputs performances at the city
level in China with a biennial Luenberger index to avoid infeasibility. The remainder of this paper is
organized as follows. Section 2 presents the non-radial DEA model, decomposition method, and GWR
estimation. Section 3 explains our data sources and presents our results with discussion. Section 4
summarizes our main conclusions and makes policy recommendations based on empirical results.

2. Methodology

2.1. Biennial Energy and Environmental Production Technology

Consider a production process with the vectors of non-energy inputs (x), such as labor and
capital input, and the vectors of energy inputs (e) to produce the vectors of desirable outputs (y)
and undesirable outputs (b). The corresponding production set, called the energy and environmental
production technology set, is:

T = {(x, e, y, b) : (x, e) can produce (y, b)} (1)

In the energy and environmental production technology set T, inputs and desirable outputs
are assumed to be strongly disposable. T satisfies two additional assumptions proposed by Färe,
Grosskopf, Lovell and Pasurka [21] to model a production technology that includes both desirable and
undesirable outputs.

(1) Weak disposability assumption: If (x, e, y, b) ∈ T and 0 ≤ θ ≤ 1, then (x, e, θy, θb) ∈ T. It means
that we can not reduce undesirable outputs alone while keeping the desirable outputs constant.
In practice, it is feasible to reduce the desirable outputs and undesirable outputs at the same time;
undesirable outputs can be abated at the cost of a decrease in desirable output.

(2) Null-jointness assumption: If (x, e, y, b) ∈ T and b = 0, then y = 0. Production must cease
entirely in order to fully eliminate undesirable outputs.

It is unlikely to find a concrete production function which depicts the energy and environmental
production technology set T. Here, we use nonparametric DEA technology to approximately represent
T with piecewise linear combinations of the observed data. On the assumption of constant returns to
scale (CRS), the energy and environmental production technology T can be estimated as follows:

T̂ = {(x, e, y, b) :
K
∑

k=1
λkxmk ≤ xmo, m = 1, 2, · · · , M;

K
∑

k=1
λkeqk ≤ eqo , q = 1, 2, · · · , Q

K
∑

k=1
λkynk ≥ yno, n = 1, 2, · · · , N;

K
∑

k=1
λkbjk = bjo, j = 1, 2, · · · , J

λk ≥ 0, k = 1, 2, · · · , K}

(2)

where λk is the intensity variable that ensures the technology set T is bounded and closed. The first
three inequality constraints indicate the strong disposability on inputs and desirable outputs
(strong disposability means that increasing input will not decrease the output). To ensure technology
set T satisfies the weak disposability and null-jointness assumptions, the equality constraint is imposed
on undesirable outputs.

Technology is generally stable in the short run, so we neglect technological changes from period
“t” to “t + 1”, and combine technology set Tt and Tt + 1 together as TB = Tt ∪ Tt + 1, namely,
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biennial energy and environmental technology, which represents the comprehensive technology
shared by periods “t” and “t + 1”. In order to estimate TB, we use observations from periods “t” and
“t + 1” to construct the biennial energy and environmental DEA technology T̂B as-formed by following
linear constraints:

T̂B = {(x, e, y, b) :
K
∑

k=1
λt+1

k xt+1
mk +

K
∑

k=1
λt

kxt
mk ≤ xmo m = 1, 2, · · · , M

K
∑

k=1
λt+1

k et+1
qk +

K
∑

k=1
λt

ket
qk ≤ eqo q = 1, 2, · · · , Q

K
∑

k=1
λt+1

k yt+1
nk +

K
∑

k=1
λt

kyt
nk ≥ yno n = 1, 2, · · · , N

K
∑

k=1
λt+1

k bt+1
jk +

K
∑

k=1
λt

kbt
jk = bjo j = 1, 2, · · · , J

λt
k ≥ 0; λt+1

k ≥ 0; k = 1, 2, · · · , K

(3)

Model (3) can avoid infeasible solutions to the DEA model when dealing with cross-period data.
Based on T̂B, we propose a biennial Luenberger productivity index derived from the concept of the
biennial Malmquist productivity index [51].

2.2. Biennial Luenberger Energy and Environmental Performance Index

The Luenberger productivity index deduced by directional distance function (DDF) was first
proposed by Chambers, et al. [54]. The DDF allowing the simultaneous evaluation of input contractions
and output expansions can be defined as:

→
D
[
x, e, y, b; g =

(
−gx,−ge,gy,−gb

)]
= sup

[
β
∣∣(x−βgx, e−βge, y+βgy, b−βgb

)
∈ T

]
(4)

where g =
(
−gx,−ge, gy,−gb

)
is the directional vector.

Based on the Luenberger productivity index, the EEP change can be decomposed into energy
and environmental technical efficiency change (catch-up effect) and energy and environmental
technological change (frontier-shift effect). For the biennial periods “t” and “t + 1”, we first select
technology in the period “t” as the benchmark and then examine the EEP change by the difference in
DDFs from periods “t” to “t + 1” referred to technology set Tt. Energy and environmental performance
index (EEPI) used to measure the EEP change is defined as follows:

EEPIt,t+1(xt, et, yt, bt, xt+1, et+1, yt+1, bt+1; g
)
=
→
D

t(
xt, et, yt, bt; g

)
−
→
D

t(
xt+1, et+1, yt+1, bt+1; g

)
(5)

Similarly, EEPI can be defined with regard to the technology of the period “t + 1”:

EEPIt,t+1(xt, et, yt, bt, xt+1, et+1, yt+1, bt+1; g
)
=
→
D

t+1(
xt, et, yt, bt, g

)
−
→
D

t+1(
xt+1, et+1, yt+1, bt+1; g

)
(6)

We compute the simple arithmetic mean of Equations (5) and (6) to eliminate the bias derived
from arbitrary period selection:

EEPIt,t+1(xt, et, yt, bt, xt+1, et+1, yt+1, bt+1; g
)

= 1
2


[→

D
t(

xt, et, yt, bt; g
)
−
→
D

t(
xt+1, et+1, yt+1, bt+1; g

)]
+

[→
D

t+1(
xt, et, yt, bt, g

)
−
→
D

t+1(
xt+1, et+1, yt+1, bt+1, g

)]}


(7)

The energy and environmental technical efficiency is defined by the differences in DDFs from
period “t” to “t + 1” with respect to their own technologies; this reveals the change in distances of



Sustainability 2018, 10, 2303 6 of 28

one observation in two periods “t” and “t + 1” to the corresponding frontier of technologies “t” and
“t + 1” respectively.

e f f cht,t+1[xt, et, yt, bt, xt+1, et+1, yt+1, bt+1; g
]
=
→
D

t(
xt, et, yt, bt; g

)
−
→
D

t+1(
xt+1, et+1, yt+1, bt+1; g

)
(8)

The energy and environmental technological change can be measured by comparing the distance
from one observed data point in the period “t” to the frontier of technology set of periods “t” and
“t + 1” respectively, which measures the distance between two technologies “t” and “t + 1”.

techcht,t+1(xt, et, yt, bt, xt+1, et+1, yt+1, bt+1; g) =
→
D

t+1
(xt, et, yt, bt; g)−

→
D

t
(xt, et, yt, bt; g) (9)

Similar to Equation (9), the energy and environmental technological change can be defined
by comparing one observed data point in the period “t + 1” to the technology of period “t” and
“t + 1”respectively:

techcht,t+1(xt, et, yt, bt, xt+1, et+1, yt+1, bt+1; g) =
→
D

t+1
(xt+1, et+1, yt+1, bt+1; g)−

→
D

t
(xt+1, et+1, yt+1, bt+1; g) (10)

We also compute the simple arithmetic mean of Equations (9) and (10) to eliminate the bias of
period selection:

techcht,t+1(xt, et, yt, bt, xt+1, et+1, yt+1, bt+1; g
)

= 1
2


[→

D
t+1(

xt, et, yt, bt; g
)
−
→
D

t(
xt, et, yt, bt; g

)]
+

[→
D

t+1(
xt+1, et+1, yt+1, bt+1; g

)
−
→
D

t(
xt+1, et+1, yt+1, bt+1; g

)]


(11)

Equations (7), (8) and (11) can be combined into a comprehensive equation which reflects the
additive structure of the Luenberger productivity index:

EEPIt,t+1 = e f f cht,t+1 + techcht,t+1 (12)

Per the definition of
→
D

t
or
→
D

t+1
, the biennial DDF based on TB instead of T is:

→
D

B[
x, e, y, b; g =

(
−gx,−ge,gy,−gb

)]
= sup

[
β
∣∣∣(x−βgx, e−βge, y+βgy, b−βgb

)
∈ TB

]
(13)

Similar to the definition of above Luenberger productivity index, the biennial Luenberger
productivity index has two components:

EEPIB
t,t+1(xt, et, yt, bt, xt+1, et+1, yt+1, bt+1; g

)
=
→
D

B(
xt, et, yt, bt; g

)
−
→
D

B(
xt+1, et+1, yt+1, bt+1; g

)
(14)

e f f chchB
t,t+1(xt, et, yt, bt, xt+1, et+1, yt+1, bt+1; g

)
=
→
D

t(
xt, et, yt, bt; g

)
−
→
D

t+1(
xt+1, et+1, yt+1, bt+1; g

)
(15)

techcht,t+1
B

(
xt, et, yt, bt, xt+1, et+1, yt+1, bt+1; g

)
=

[→
D

B(
xt, et, yt, bt; g

)
−
→
D

t(
xt, et, yt, bt; g

)]
−
[→

D
B(

xt+1, et+1, yt+1, bt+1; g
)
−
→
D

t+1(
xt+1, et+1, yt+1, bt+1; g

)] (16)

EEPIt,t+1
B = e f f cht,t+1

B + techcht,t+1
B (17)
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2.3. Energy and Environmental Performance Measurement with Non-Radial DEA Model

Based on the definitions of DDFs (Equations (4) and (13)) and estimated technology sets of T̂ and
T̂B (Models (2) and (3)), the radial DDFs can be estimated by the following DEA models:

→̂
D

t

[x, e, y, b; g = (−x,−e, y,−b)] = maxβ
K
∑

k=1
λt

kxt
mk ≤ (1− β)xmo m = 1, 2, · · · , M

K
∑

k=1
λt

ket
qk ≤ (1− β)eqo q = 1, 2, · · · , Q

K
∑

k=1
λt

kyt
nk ≥ (1 + β)yno n = 1, 2, · · · , N

K
∑

k=1
λt

kbt
jk = (1− β)bjo j = 1, 2, · · · , J

λt
k ≥ 0; k = 1, 2, · · · , K

(18)

→̂
D

B

[x, e, y, b; g = (−x,−e, y,−b)] = maxβ
K
∑

k=1
λt+1

k xt+1
mk +

K
∑

k=1
λt

kxt
mk ≤ (1− β)xmo m = 1, 2, · · · , M

K
∑

k=1
λt+1

k et+1
qk +

K
∑

k=1
λt

ket
qk ≤ (1− β)eqo q = 1, 2, · · · , Q

K
∑

k=1
λt+1

k yt+1
nk +

K
∑

k=1
λt

kyt
nk ≥ (1 + β)yno n = 1, 2, · · · , N

K
∑

k=1
λt+1

k bt+1
jk +

K
∑

k=1
λt

kbt
jk = (1− β) bjo j = 1, 2, · · · , J

λt
k ≥ 0; λt+1

k ≥ 0; k = 1, 2, · · · , K

(19)

Traditional and biennial DDFs can be computed by Models (18) and (19), respectively. β denotes
the slack ratio (adjustment rate) or “inefficiency score”. If β = 0, then the corresponding DMU is
considered to be efficient and with no improvement potential. β > 0 indicates that the corresponding
DMU is inefficient and has not yet achieved the relative optimization. Models (18) and (19) are
regarded as radial DDFs with the same adjustment rate.

The radial DDF gives the same contraction (expansion) to all the inputs (outputs) and thus
may have weak technical efficiency. Increasing desirable outputs and decreasing inputs and
undesirable outputs can be further achieved under the current technical conditions, i.e., the radial DDF
overestimates the efficiency. The non-radial DDF can further identify potential in increasing inputs
and decreasing outputs, so we use a non-radial DDF model to measure EEP here. Mathematically,
traditional and biennial radial DDFs can be improved by the following DEA models:

→̂
D

t

[x, e, y, b; g = (−x,−e, y,−b)]

= max 1
4 (

1
M

M
∑

m=1
βm + 1

Q

Q
∑

q=1
βq +

1
N

N
∑

n=1
βn+

1
J

J
∑

j=1
β j)

K
∑

k=1
λt

kxt
mk ≤ (1− βm)xmo m = 1, 2, · · · , M

K
∑

k=1
λt

ket
qk ≤ (1− βq) eqo q = 1, 2, · · · , Q

K
∑

k=1
λt

kyt
nk ≥ (1 + βn)yno n = 1, 2, · · · , N

K
∑

k=1
λt

kbt
jk = (1− β j)bjo j = 1, 2, · · · , J

λt
k ≥ 0; k = 1, 2, · · · , K

(20)
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→̂
D

B

[x, e, y, b; g = (−x,−e, y,−b)]

= max 1
4 (

1
M

M
∑

m=1
βm + 1

Q

Q
∑

q=1
βq +

1
N

N
∑

n=1
βn+

1
J

J
∑

j=1
β j)

K
∑

k=1
λt+1

k xt+1
mk +

K
∑

k=1
λt

kxt
mk ≤ (1− βm)xmo m = 1, 2, · · · , M

K
∑

k=1
λt+1

k et+1
qk +

K
∑

k=1
λt

ket
qk ≤ (1− βq)eqo q = 1, 2, · · · , Q

K
∑

k=1
λt+1

k yt+1
nk +

K
∑

k=1
λt

kyt
nk ≥ (1 + βn)yno n = 1, 2, · · · , N

K
∑

k=1
λt+1

k bt+1
jk +

K
∑

k=1
λt

kbt
jk = (1− β j)bjo j = 1, 2, · · · , J

λt
k ≥ 0; λt+1

k ≥ 0; k = 1, 2, · · · , K

(21)

In Models (20) and (21), βm, βq, βn, or β j represents the ratio of the slack to a non-energy
input, energy input, desirable output, or undesirable output respectively. If βm = βq = βn = β j,
Models (20) and (21) are converted into Models (18) and (19). The non-radial DDF allows us to exploit
slacks more exhaustively with stronger discrimination power than the radial DDF [55]. We mainly
focused on energy conservation and pollution reduction in this study, so the directional vector is
set to g = (0,−e, 0,−b) here. The DDF we used can be calculated by the following DEA linear
programming models:

→̂
D

t

[x, e, y, b; g = (0,−e, 0,−b)]

= max 1
2 (

1
Q

Q
∑

q=1
βq+

1
J

J
∑

j=1
β j)

K
∑

k=1
λt

kxt
mk ≤ xmo m = 1, 2, · · · , M

K
∑

k=1
λt

ket
qk ≤ (1− βq)eqo q = 1, 2, · · · , Q

K
∑

k=1
λt

kyt
nk ≥ yno n = 1, 2, · · · , N

K
∑

k=1
λt

kbt
jk = (1− β j)bjo j = 1, 2, · · · , J

λt
k ≥ 0; k = 1, 2, · · · , K

(22)

→̂
D

B

[x, e, y, b; g = (0,−e, 0,−b)]

= max 1
2 (

1
Q

Q
∑

q=1
βq+

1
J

J
∑

j=1
β j)

K
∑

k=1
λt+1

k xt+1
mk +

K
∑

k=1
λt

kxt
mk ≤ xmo m = 1, 2, · · · , M

K
∑

k=1
λt+1

k et+1
qk +

K
∑

k=1
λt

ket
qk ≤ (1− βq)eqo q = 1, 2, · · · , Q

K
∑

k=1
λt+1

k yt+1
nk +

K
∑

k=1
λt

kyt
nk ≥ yno n = 1, 2, · · · , N

K
∑

k=1
λt+1

k bt+1
jk +

K
∑

k=1
λt

kbt
jk = (1− β j)bjo j = 1, 2, · · · , J

λt
k ≥ 0; λt+1

k ≥ 0; k = 1, 2, · · · , K

(23)

In Models (22) and (23), βq and β j represent the ratios of energy conservation and emission
abatement, respectively. In Model (22), 1 − βq represents the specific energy performance while
1− β j represents the specific undesirable output performance (wastewater, SO2 or soot performance).
→
D

t(
xt, et, yt, bt; g

)
represents the energy and environmental inefficiency, so we can calculate EEP by

1−
→
D

t(
xt, et, yt, bt; g

)
.
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If input-output combination (x, e, y, b) is observed in the period “t” for two technologies in the

period “t” and “t + 1” respectively, we can estimate
→
D

t(
xt, et, yt, bt; g

)
and

→
D

t+1(
xt, et, yt, bt; g

)
with

Model (22). We can estimate
→
D

t(
xt+1, et+1, yt+1, bt+1; g

)
and

→
D

t+1(
xt+1, et+1, yt+1, bt+1; g

)
similarly.

We can also estimate
→
D

B(
xt, et, yt, bt; g

)
and

→
D

B(
xt+1, et+1, yt+1, bt+1; g

)
by employing Model (23)

with production activity (x, e, y, b) observed in the period “t” and “t + 1” respectively.
To calculate the Luenberger EEPI which represents the EEP change, we need to calculate six DDFs

(activities in “t” and “t + 1” refer to technologies in the period “t”, “t + 1” and pooled respectively)
by Models (22) and (23). Given that different undesirable output structures impact the EEP, a non-radial
efficiency measure can help us identify specific effects and contributions of energy factor and specific
undesirable outputs. The total EEPI can be further decomposed into specific EEPIs to analyze the
contributions of specific undesirable outputs and energy inputs on total EEPI.

2.4. Exploratory Spatial Data Analysis—Moran’s Index

The sample data we used contains abundant spatial information, so we sought to consider the
spatial effects on EEP among different cities. We did so by applying Exploratory Spatial Data Analysis
(ESDA) to describe the spatial distribution of the EEP. We used Moran’s I statistic to measure the spatial
correlation at the city level, including global spatial correlation and local spatial correlation [56].

(1) Global Moran’s I statistics

The global Moran’s I statistics reflect the similarity of attributes with their neighborhoods:

Moran′s Ig =

n
∑

i=1

n
∑

j=1
wij(Yi −Y)(Yj −Y)

S2
n
∑

i=1

n
∑

j=1
wij

(24)

where Yi represents the observed value in the ith city; n represents the number of the cities; wij
represents the spatial weight matrix which reflects the spatial adjacent relationship in the ith and jth
cities. Global Moran’s I ranges from −1 to 1: value less than 0 represents a negative correlation, 0
represents an uncorrelated relationship, and greater than 0 represents a positive correlation. As the
global Moran’s I moves towards −1, the spatial differences among cities become more obvious. If
the obtained value of global Moran’s I is near to 1, there are more intimate relations (e.g., high-value
clusters or low-value clusters) among cities.

(2) Local Moran’s I statistics

Ii =
(xi − x)

S2 ∑
j

wij(xj − x) (25)

If Ii is greater than 0, the ith spatial unit is similar to its neighbors (i.e., “high-high” or “low-low”);
Ii, with a value lower than 0 represents dissimilarities to neighbors (“high-low” or “low-high”). We can
also visually identify the high-value clusters and low-value clusters according to the map of local
indicators of spatial association (LISA).

2.5. Geographically Weighted Regression Model

The spatial heterogeneity of our data means that explanatory variables have varying extent of
influence on the explained variable in different areas. Under the traditional econometric regression
model, regression parameters are same across whole regions and regional differences are neglected.
The geographically weighted regression (GWR) model [57,58], which takes the regional difference into
account, allows regression parameters to change along with the geographical position. Regression
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parameters in GWR are a data set rather than a fixed coefficient. The GWR model can be derived
as follows:

yi = β0(ui, vi) +
K

∑
k=1

βk(ui, vi)xik + εi (26)

where the vector y represents the explained variable; the vector x represents explanatory variables;
(ui, vi) is the space coordinate (longitude and latitude) in the area i. βk(ui, vi) is the regression
parameter for the kth explanatory variable in the area i. εi is random error; we assume that εi ∼
N
(
0, σ2) and cov

(
εi, ε j

)
= 0(i 6= j). To estimate regression parameters, we assign w1(ui, vi), w2(ui, vi),

· · · , wn(ui, vi) for the area i to represent influences from all other areas [59]. According to the weighted
least square method, we can then estimate the regression equation in (ui, vi) by minimizing the
following equation:

n

∑
i=1

wi(ui, vi)[yi − β0(ui, vi)− β1(ui, vi)xi1 − · · · − βK(ui, vi)xik]
2 (27)

with

Y =


y1

y2
...

yn

, X =


x11 x12 · · · x1k
x21 x22 · · · x2k

...
...

. . .
...

xn1 xn2 x3 xnk

 =


x1
′

x2
′

...
xn
′



β(ui, vi) =


β1(ui, vi)

β2(ui, vi)
...

βK(ui, vi)

, W(ui ,vi)
=


wi1 0 · · · 0
0 wi2 · · · 0
...

...
. . .

...
0 0 · · · wik


(28)

We can then derive β̂(ui, vi) =
(

XTW(ui ,vi)
X
)−1

XTW(ui ,vi)
Y. The spatial weighting function is the

key to the above GWR model. Here, we use a Gaussian weighting function as the spatial weighting
function [59].

3. Empirical Study

3.1. Data Source and Description

We initiated our analysis using a data set containing 283 cities in China over 2010–2014. Certain
official statistics measurement criteria changed significantly in 2010, so we set the time period
from 2010 to 2014 to maintain comparability across the data. We chose labor and capital as the
two non-energy inputs. Labor is defined by the number of employees in a city’s industrial sectors
(i.e., the secondary industry except for construction). To define capital, we referred to the total fixed
assets and current assets at constant prices in 2010 [46]. We used the price indexes from corresponding
provinces because fixed asset investment price indexes are not available at the city level. With regard
to current assets, we adopted the consumer price index from the corresponding city to eliminate the
influence of fluctuations in prices. We could not obtain total energy consumption in the industrial
sectors at the city level, so we chose the electricity consumption as an approximate substitution [48].
We used gross industrial output as the sole desirable output and adopted the ex-factory price index of
industrial products to eliminate price fluctuations. The “undesirable outputs” referred to in this paper
contain three specific pollutants: industrial wastewater, industrial sulfur dioxide (SO2), and industrial
soot. We also used the ratio of value added of the service industry in the city’s GDP to analyze GWR.
Data was collected from the China City Statistical Yearbook (2011–2015) [60] and China Provincial
Statistical Yearbook (2011–2015) [61]. The descriptive statistics of inputs and outputs we applied to
empirical analysis are shown in Table 1.
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Table 1. Descriptive statistics of inputs and outputs in 2010–2014.

Index Variable Unit Quantity Mean St.Dev Min Max

Non-energy input
Labor force 10 thousand persons 283 × 5 19.16 28.18 0.39 260.92

Current assets billion Yuan 283 × 5 116.27 196.44 0. 83 1808.43
Fixed assets billion Yuan 283 × 5 90.15 106.34 0.86 827.94

Energy input Industrial electricity 100 million kWh 283 × 5 60.19 91.97 0.045 805.76

Desirable output Gross industrial output billion Yuan 283 × 5 310.31 423.71 1.53 3278.23

Undesirable output
Industrial wastewater million tons 283 × 5 74.71 84.99 0.23 868.04

Industrial sulfur
dioxide thousand tons 283 × 5 58.78 57.33 0.002 572.75

Industrial soot thousand tons 283 × 5 41.71 188.64 0.034 5168.81

3.2. Results and Discussion

3.2.1. Static Energy and Environmental Performance

Descriptive Statistics of Energy and Environmental Performance

We first compared the EEP (calculated by (1 −
→
D

t(
xt, et, yt, bt; g

)
) with Model (22)) and its

decompositions consisting of energy, wastewater, SO2 and soot emission performances (measured
by
(
1− βq

)
and

(
1− β j

)
with Model (22)) at both national and regional levels. Our calculations

of the mean, standard deviation, minimum value, and maximal value in the four areas involve
five-year x cities’ total performance and its decompositions (where x represents the number of cities
in the corresponding area) encompassing both temporal and spatial dimensions. Table 2 shows the
descriptive statistics of total EEP and sub-EEPs for 283 cities in China across 2010–2014. Beside the
overall descriptive statistics at national level, we detailed and sorted them at regional level (i.e., eastern,
central, western and northeastern areas) for further comparisons. All the EEPs in the eastern area are
higher than national level; meanwhile, the northeastern and western areas obtain lower values in EEPs
compared to national level.

Table 2. Descriptive statistics of energy and environmental performance (EEP) and sub-performances.

Performance (Efficiency) Area Quantity Mean St.Dev Min Max

Total

East 87 × 5 0.473 0.298 0.069 1.000
China 283 × 5 0.365 0.292 0.016 1.000

Central 99 × 5 0.362 0.282 0.031 1.000
Northeast 33 × 5 0.272 0.236 0.025 1.000

West 64 × 5 0.270 0.276 0.016 1.000

Energy

East 87 × 5 0.456 0.328 0.042 1.000
Central 99 × 5 0.364 0.304 0.012 1.000
China 283 × 5 0.358 0.315 0.008 1.000
West 64 × 5 0.259 0.291 0.008 1.000

Northeast 33 × 5 0.257 0.253 0.019 1.000

Wastewater

East 87 × 5 0.418 0.326 0.015 1.000
China 283 × 5 0.355 0.308 0.011 1.000

Central 99 × 5 0.347 0.303 0.038 1.000
Northeast 33 × 5 0.333 0.283 0.024 1.000

West 64 × 5 0.280 0.292 0.011 1.000

SO2

East 87 × 5 0.481 0.330 0.037 1.000
China 283 × 5 0.358 0.321 0.007 1.000

Central 99 × 5 0.338 0.314 0.020 1.000
Northeast 33 × 5 0.281 0.266 0.017 1.000

West 64 × 5 0.264 0.303 0.007 1.000
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Table 2. Cont.

Performance (Efficiency) Area Quantity Mean St.Dev Min Max

Soot

East 87 × 5 0.572 0.336 0.014 1.000
China 283 × 5 0.403 0.339 0.014 1.000

Central 99 × 5 0.356 0.311 0.001 1.000
West 64 × 5 0.299 0.311 0.004 1.000

Northeast 33 × 5 0.246 0.267 0.014 1.000

Distribution Dynamic Analysis of Energy and Environmental Performance

We next tracked the EEP evolution for 283 cities in China via the distribution dynamics
approach [62–64]. Each city’s EEP and its decompositions were divided by 283 cities’ yearly average
levels to form the corresponding relative performance indicators. These indicators can then be used to
estimate the kernel densities and stochastic kernels.

Figure 1 shows the distributions of kernel densities for the total performance and
sub-performances. The distribution of total performance in 2010 is bimodal with more than 80%
of cities’ performance distributed around 0.5 times the average performance level and other cities’
performance concentrated on 2.5 times level (possessed by the best performers). Most cities’ total
performances were below average in 2010, but a select few cities performed extremely well and formed
a small convergence club led by best performers. In 2014, the distribution of total performance nearly
reached around 0.5 times the average performance level; the small convergence club dispersed and
members in it became smaller. The ergodic distribution indicates clear convergence to 0.5 times the
average level and small convergence club would nearly disappear. Other kernel density plots for
sub-performances indicate that: (1) energy performance features strong convergence to 0.5 times the
average performance level; (2) small convergence clubs for environmental performances are more
obvious than energy performance.
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(d) Soot; (e) Wastewater.

As shown in the 3D stochastic kernel and 2D contour part plots (Figures 2 and 3), for cities with
below-average levels in total performance and sub-performances, the transition probability generally
moves counter-clockwise from the 45◦ diagonal—cities with relatively low EEP compared to the
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average level remarkably improved over the study period. Cities with above-average performance,
conversely, can be divided into two groups: The first group, the small convergence club led by the best
performers, remain near the 45◦ diagonal in the upper right-hand corner. In the second group, cities
with high total performance and sub-performances gradually decrease in efficiency and converge to
average levels.Sustainability 2018, 10, x FOR PEER REVIEW  13 of 28 
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Analysis of Best and Worst Performers

Identifying the best performers can provide good benchmarks for cities with lower efficiency
in terms of energy conservation and emissions abatement. If EEP equals 1 (Dt(xt, et, yt, bt; g) = 0),
i.e., the city was located in the production frontier for at least in one year between 2010 and 2014,
the city is defined as a “best performer”. As shown in Figure 4, the best performers are mainly located
in Guangdong, Shandong, Jiangsu, Jiangxi, Sichuan, and Hainan provinces. The best performers
possess advanced service industries, which generally consume few resources, or have high ecological
quality. In Qingdao, Shenzhen, and Dongguan, for example, the ratio of service industry to GDP
was 51.22%, 57.39%, and 52.14% in 2014, respectively. The service industry consumes relatively little
energy though it does require a great deal of labor, capital, and technology. Besides, these developed
cities with sufficient funding also can improve their energy conservation and abatement ability via
technical innovation and advanced managerial experience. These cities consume less energy and emit
less pollution while maximizing desirable outputs. Provinces such as Jiangxi, Sichuan, and Hainan
have less developed economies but still exhibit high EEP due to natural endowments (high ecological
quality) and economic support from tourism.

A city with EEP no more than 0.1 (Dt(xt, et, yt, bt; g) > 0.9) in all years of 2010–2014 is defined as a
“worst performer”. As shown in Figure 4, the worst performers are mainly distributed in Heilongjiang,
Guangxi, Ningxia, and Shanxi provinces which are generally rich in coal or nonferrous metal resources.
Cities like Datong (Shanxi), Shizuishan (Ningxia), Huainan (Anhui) and Hegang (Heilongjiang)
are important coal bases of China. A great deal of pollutants are emitted by coal exploitation and
processing. Other cities like Guigang (Guangxi) and Baise (also Guangxi) are important nonferrous
metal bases of China. Nonferrous metallurgy likewise produces substantial air pollutants as well as
mercury and chromium pollution.
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3.2.2. Analysis of Dynamic Changes in Energy and Environmental Performance

National Level

We examined dynamic changes in EEP and its decompositions by EEPI (calculated by
Equations (14)–(16)). We first calculated the average value at the country level involving a five-year
span of 283 cities’ total performance changes and decompositions over temporal and spatial dimensions.
The average EEP change, technical efficiency change, and technological change are 2.38%, −1.57%
and 3.95%, respectively (Table 3). That is to say, China made considerable progress in the energy
conservation and emissions abatement in the study period. The Chinese government made great
strides in environmental protection under the 12th five-year plan (FYP) (2011–2015), which focused
on upgrading the industrial structure for low energy consumption and pollution reduction. Further,
the industrial sectors comprised 57.2% of GDP in 2010 but only 47.1% in 2014. Changes in technical
efficiency continually declined with the exception of the period 2012–2013, whereas a slower and
slower upward trend was observed in technological changes. In other words, EEP change is mainly
driven by technological progress rather than technical efficiency improvement [13,48,65]. Government
policies targeting the improvement of technical efficiency in the industrial sectors may indeed enhance
overall environmental performance.

Table 3. Arithmetic mean of energy and environmental performance index (EEPI) and its decompositions
for 283 cities.

Index 2010–2011 2011–2012 2012–2013 2013–2014 Average

EEPIt,t+1
total 0.0004 0.0246 0.0634 0.0067 0.0238

e f f cht,t+1
total −0.0969 −0.0067 0.0579 −0.0172 −0.0157

techcht,t+1
total 0.0973 0.0313 0.0055 0.0239 0.0395

Cities on the production frontier achieved rapid technological progress and made other cities more
difficult to catch up with the production frontier. In other word, the decrease of technical efficiency
is a relative deterioration caused by fast technological progress. The decline in technical efficiency is
roughly consistent with observations previously made by Meng, Fan, Zhou and Zhou [65]. We further
interpreted the deterioration of technical efficiency by assuming that a production activity with one
energy input, one desirable output, and undesirable output can have reduced energy input and
undesirable output while fixing desirable output as shown in Figure 5. The energy and environmental
production technology can be represented by the energy and environmental input set:

L(y) = {(e, b) : (e, b) can produce y} (29)
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Suppose that one production unit’s activities are observed with two points a
(
et, yt, bt) and

a′
(
et+1, yt+1, bt+1) at periods “t” and “t + 1” respectively. f rontiert represents the production frontier

at period “t”. f rontierB denotes the biennial production frontier of pooled observations from period
“t” and “t + 1”, and f rontierB could be completely determined by f rontiert+1 which implies that
f rontierB = f rontiert+1. Considering yt+1 ≥ yt with the coordinate y, production frontiers in blue
lines (i.e., cross section with y = yt+1) are higher than those in red lines (i.e., cross section with y = yt)
as a result of technological progress. We express the biennial Luenberger index as follows:

EEPIB
t,t+1 = (a− d)− (a′ − i)

e f f cht,t+1
B = (a− c)− (a′ − i)

techcht,t+1
B = {(a− d)− (a− c)} − {(a′ − i)− (a′ − i)}

= (c− d)

(30)

Given (a− c) < (a′ − i), as shown in Figure 5, the catch up effect becomes weak and the technical
efficiency deteriorates, which indicates that relative deterioration occurs. However, considering
(a− d) > (a′ − i), a′ is closer to f rontierB than a, which implies that the EEP for observed production
activity improves from period “t” and “t + 1”.

Table 4 shows the contributions of specific energy and undesirable output to the changes in total
performance and sub-performances. Energy plays a more important role (contribution over 50%)
than undesirable outputs in total performance change and its four sub-performances. With respect to
undesirable outputs, SO2 performance change has the strongest effect on total performance change
(25.36%) while the effect of soot emission performance change is the lowest (0.80%). Technological
change behaves similarly; SO2 technological change contributes more to total technological change
(26.91%) than soot technological change (4.15%). Technical efficiency change shows much different
characteristics. The contribution from wastewater technical efficiency change to total technical
efficiency change was the smallest (4.74%) while SO2 technical efficiency change made the largest
contribution (28.64%). In effect, SO2 has become the largest contributor to total performance change
and sub-performance changes among the three undesirable outputs.

Table 4. Contributions of specific energy and undesirable output to total performance change,
sub-performance changes.

Index EEPIt,t+1
total EEPIt,t+1

energy EEPIt,t+1
SO2 EEPIt,t+1

soot EEPIt,t+1
wastewater

Average 0.0238 0.0123 0.0061 −0.0002 0.0055
Contribution 100% 51.01% 25.36% 0.80% 22.83%

Index e f f cht,t+1
total e f f cht,t+1

energy e f f cht,t+1
SO2 e f f cht,t+1

soot e f f cht,t+1
wastewater

Average −0.0157 −0.0086 −0.0045 −0.0018 −0.0007
Contribution 100% 54.97% 28.64% 11.65% 4.74%

Index techcht,t+1
total techcht,t+1

energy techcht,t+1
SO2 techcht,t+1

soot techcht,t+1
wastewater

Average 0.0395 0.0210 0.0106 0.0016 0.0063
Contribution 100% 53.09% 26.91% 4.15% 15.85%

Regional Level

China can be divided into four areas by economic development levels and geographical
characteristics: eastern, northeastern, central, and western areas. Urban agglomeration, considered to
be an economic growth point, leads regional economic development. We explored the regional
differences in urban agglomeration accordingly. The ten agglomerations we observed include
Beijing-Tianjin-Hebei, the central and southern of Liaoning province, the Yangtze River Delta,
the western side of the Taiwan Strait, the Shandong Peninsula, the Central Plain, the middle
Yangtze River, the Pearl River Delta, Sichuan and Chongqing, and the Central Shaanxi Plain [66,67].
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Table 5 shows the average changes in EEPI and its decompositions among the four areas for every
two consecutive years. The average changes in EEP are positive indicating a marked improvement
in the four areas over the study period. The central area shows the most significant performance
improvement (2.97%), followed by the eastern (2.73%) and western (1.96%) areas. The northeastern
area experienced almost no EEP change (0.50%). Heavy industry renders the northeastern area less able
to improve its EEP. We also found that the eastern area achieved the greatest technological progress
(5.86%) while experiencing the greatest decline in technical efficiency (−3.14%) among the four areas;
technological progress in the eastern area makes a greater contribution to performance improvement,
which substantially offsets the deterioration of technical efficiency.

Table 5. Arithmetic means for EEPIt,t+1
total , e f f cht,t+1

total and techcht,t+1
total in 2010–2014 among four areas.

Arithmetic Mean EEPIt,t+1
total effcht,t+1

total techcht,t+1
total

East 0.0273 −0.0314 0.0586
Central 0.0297 −0.0081 0.0378

West 0.0196 −0.0032 0.0228
Northeast 0.0050 −0.0215 0.0264

We next compared the effects of specific energy and undesirable output on the changes in total
performance and sub-performances in the four areas and ten urban agglomerations. Figure 6 shows the
contributions from specific energy and undesirable outputs to total performance change among four
areas and ten urban agglomerations. Energy contribution rates in the eastern (50.93%), central (51.79%),
and northeastern (88.20%) areas explain more than half of the performance improvement but
less so in the western area (45.38%). Most sub-performances in the four areas were improved.
Soot emission performance declined in eastern and northeastern areas over 2010–2014, likely because
the environmental regulation for soot emissions was eased during the study period despite the truth
that severe haze happened frequently in China. In the 10th FYP period, the central government placed
quantified constraints on soot emission which were canceled in the 11th and 12th FYP periods; the top
priority for the central government with mixed environmental regulations was to curb excessive
emissions of SO2 and NOx.
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Figure 6. Contributions of specific energy and undesirable outputs performance to total performance
among four areas and ten urban agglomerations.
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Energy is apparently the major driving force for improving total performance in the
Beijing-Tianjin-Hebei region, where energy accounts for 95.68% of the improvement in total
performance. Energy contributed 80.64% to the improvement in total performance in the central
Shaanxi plain, which is an important coal base in China. Most urban agglomerations achieved
significant improvement in total performance during 2010–2014, especially the middle Yangtze River.
Total performance declined in the central and southern Liaoning province, however, due to the
deterioration in soot emission performance. Total performance in the Pearl River Delta also declined
due to a rapid increase in energy consumption.

Figure 7 shows contributions from specific energy and undesirable outputs to the total technical
efficiency change among the four areas and ten urban agglomerations. Total technical efficiency
decreased significantly in all four regions. Deterioration in energy technical efficiency is the root cause
of decline in total technical efficiency in the four areas with exception of the central area, which is
defined by a decrease in SO2 technical efficiency (elsewhere the second-most important cause of
decline). Technical efficiency in most urban agglomerations decreased continually from 2010 to 2014.
Only the middle Yangtze River area and central Shaanxi plain made progress in technical efficiency,
which can be attributed to improvements in energy efficiency.
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Figure 7. Contributions of specific energy and undesirable outputs to total technical efficiency among
four areas and ten urban agglomerations.

Figure 8 shows the contributions of specific energy and undesirable outputs to total technological
change among the four areas and ten urban agglomerations. Energy contributed more significantly
than the sum of undesirable outputs in the total technological change in the four areas; SO2 technology
was markedly improved while soot technology only slightly so. Technical progress in almost all ten
urban agglomerations (except the central Shaanxi) grew continually. Total technological change in the
central Shaanxi area declined 2.5% on average due to the bad performance of best performers around
the central Shaanxi area.
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Figure 8. Contributions of specific energy and undesirable outputs to total technological change among
four areas and ten urban agglomerations.

3.2.3. Analysis of Spatial Distribution Evolution on Energy and Environmental Performance Potential

EEP Spatial Pattern

Figure 9 shows the changes in global Moran’s Ig of EEP during 2010–2014. The average value of
global Moran’s Ig is 0.0807, indicating a positive spatial correlation. The positive difference in EEP
spatial distribution increases along with the decline of global Moran’s Ig.
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Figure 9. Changes in global Moran’s Ig of EEP.

We used a LISA cluster map based on the local Moran’s Il to observe the spatial agglomeration
effects, i.e., whether a spatial unit shows a spatial correlation with its neighbors or not (Figure 10).
There is significant agglomeration effect evidenced by four types of spatial correlations: high-high,
low-low, low-high (middle is low and surroundings are high) and high-low (middle is high and
surroundings are low). The high-high type mainly exists in the Huanghe Delta and the developed
southeast coast of China in 2010. The high-high type areas spread from the developed southeast
coast to the areas with high ecological quality, such as the northern border between Sichuan and
Hubei provinces (which have a famous giant panda habitat called the Shennongjia National Nature
Reserve) or the Dongting lake basin (the third-largest lake in China renowned for its beautiful scenery
in the north of Hunan province); China’s second largest lake, Poyang, is located in the northern
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Jiangxi province with a forest acreage over 60%; the Huanghe Delta and Yangtze River Delta similarly
have rich wetland resources which maintain the high-high cluster characteristics resulting from their
inherently high ecological quality. Cities with high ecological quality, especially those with national
nature reserves, wetlands and forests, most commonly feature high-high type correlations.Sustainability 2018, 10, x FOR PEER REVIEW  20 of 28 
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Influencing Factors on Energy and Environmental Performance Potential

Considering the spatial heterogeneity, we used the GWR method instead of the ordinary (global)
linear regression to capture influencing factors on EEP potential with the aim to reveal its spatially
varying links. Energy is positively correlated with pollutants because pollutants mainly originate
in the combustion of energy sources. Energy conservation potential and SO2 emission abatement
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potential exhibit similar distribution characteristics for this reason. In this study, we focused on the
influencing factors of SO2 emission abatement potential:

PotentialSO2 = Dt
SO2

(
xt, et, yt, bt; g

)
× SO2 Emission (31)

We used three key factors to interpret the change in SO2 emission abatement potential: gross
industrial output, pollution intensity, and industrial structure. Here, the ratio of SO2 emission to gross
industrial output represents pollution intensity; the industrial structure is measured by the share of
GDP of the service industry [45,68,69]. The following GWR model was used to investigate the effects
of various influencing factors on SO2 emission abatement potential:

PotentialSO2 i = β0(ui, vi) + β1(ui, vi)GIOi + β2(ui, vi)SIi + β3(ui, vi)SRi + εi (32)

where β denotes the coefficient parameter; ε is a random error term; GIO denotes the gross industrial
output; SR denotes the share of GDP of the service industry; SI represents SO2 pollution intensity.

As shown in Table 6, Model (32) passes the 1% level significance test. The R2 indicator of goodness
of fit is 0.67 (R2 in global regression result is 0.20), which is fairly high. The range of local R2 is between
0.36 and 0.9.

Table 6. Overall fitting results GWR model based on SO2 emission abatement potential.

Indicator SO2 Emission Abatement Potential

local R2 0.36–0.90
R2 0.67

adjusted R2 0.57
residual sum of squares 5.17 × 1010

AICc 6322
F 4.84

probability 0.003

Figure 11a–c shows the spatial distribution of influencing factors that affect SO2 emission
abatement potential. The natural breaks (Jenks) method was used to split the regression coefficient
into four categories to ensure scientific geographical results. In most cities, the gross industrial output
shows a positive effect on SO2 emission abatement potential. Cities with larger gross industrial output
need to consume more energy and are thus inclined to emit more SO2. The strongest impact coefficients
of gross industrial output are distributed in the western parts of the country. The effects of gross
industrial output on SO2 emission abatement potential also show a significant downtrend from the
western interior to the eastern coast. Pollution intensity is also correlated with SO2 emission abatement
potential, because cities with higher pollution intensity produce more pollutants. Heavy industry
accounts for a considerable proportion of industrial sectors in areas around the Bohai Gulf. Cities in
the Shandong Peninsula, central and southern Liaoning province, and Beijing-Tianjin-Hebei showed
the strongest pollution intensity in terms of SO2 emission abatement potential (i.e., areas around the
Bohai Gulf where severe haze is relatively common [70–72]).

The ratio of the service industry to GDP shows an uncertain effect on SO2 emission abatement
potential. We next examined the correlation between the ratio of the service industry to GDP and
SO2 emission abatement potential with standardized z-scores, as shown in Figure 12. The Pearson
correlation between them is pretty weak (0.119). Only 37 (55) cities pass the significance tests at
5% (10%) level among all 283 cities. This suggests that industrial structure is not the significant
influencing factor of SO2 emission abatement potential during our study period. In fact, improvements
to industrial structure caused by relatively fast growth in the service industry do not significantly
reduce SO2 emissions. Although the ratio of industrial sectors to GDP is decreasing on the whole,
the ever-increasing value added by the industrial sectors increases SO2 emissions and leaves
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considerable room for emission abatement. This phenomenon is more common in developed cities,
like Shanghai or cities in Jiangsu and Zhejiang provinces. He, et al. [73] and Hu, et al. [74] similarly
found that industrial structure does not significantly affect industrial pollution at the city level in China.
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4. Conclusions

China is currently facing a trade-off between economic development and environmental
protection. Chinese cities represent complete, independent administrative districts which implement
environmental regulations; top administrators are held accountable for environmental damages.
A given city’s energy utilization and environment regulation directly influence the amount to which
it pollutes the environment, and to identify the best performer and regional difference on EEP will
stimulate the cities to learn from each other. This paper proposed a new biennial Luenberger EEPI
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to avoid infeasibility problem in conducting data envelopment analysis. Changes in EEP were
decomposed into technical efficiency change and technological change. To examine the contributions
of specific undesirable outputs (e.g., SO2, soot, and wastewater) and energy inputs to the EEP, the total
performance was divided into sub-performances via a non-radial measure. We empirically analyzed a
sample of 283 cities from 2010 to 2014 accordingly and investigated the primary drivers of emission
abatement potential based on the GWR model. Our main conclusions can be summarized as follows.

(1) The best performers are mainly located in the Guangdong, Shandong, Jiangsu, Jiangxi, Sichuan,
and Hainan provinces, while the worst performers are mainly distributed in Heilongjiang, Guangxi,
Ningxia, and Shanxi provinces. The best performers possess advanced service industries and either
consume less energy or have inherently high ecological quality, while the worst performers depend on
abundant coal and nonferrous metal resources to support economic development. Best performers
tended to move from the coastal towards the inland area over time.

(2) At the national level, average EEP change, technical efficiency change, and technological
change values are 2.38%, −1.57%, and 7.90%, respectively. China achieved remarkable progress
in energy conservation and emission abatement over the study period. The deterioration of the
technical efficiency is a relative deterioration caused by the fast technological progress. Changes in
EEP are primarily attributable to technological progress, but said progress slowed down during the
study period.

(3) At the regional level, the central area (2.97%) shows the greatest improvement in total
performance followed by eastern (2.73%) and western (1.96%) areas. The northeastern area (0.50%)
shows almost no change in EEP. The eastern area achieves the greatest technological progress (5.86%)
but greatest decline in technical efficiency (−3.14%) among the four areas. The sub-performances
all increased apart from soot emission performance. Deterioration in SO2 technical efficiency is the
biggest driver of deteriorated technical efficiency in all four areas.

We used the ESDA method to find that EEP has obvious spatial agglomeration features.
The high-high type clusters mainly exist in Shandong province and the southeast coast of China;
high-high type clusters move from coastal areas towards the inland areas which have inherently
better ecological quality. The factors that affect SO2 emission abatement potential exhibit significant
spatial heterogeneity in different areas. The gross industrial output positively affects SO2 emission
abatement potential in most cities. The strongest impact coefficients of gross industrial output are
mainly distributed in the western area. Cities with the strongest positive effect of pollution intensity on
SO2 emission abatement potential were mainly distributed in central and southern Liaoning province,
Beijing-Tianjin-Hebei, and Shandong Peninsula areas (i.e., areas around the Bohai Gulf which are
characterized by haze problems). The ratio of service industry to GDP has an uncertain effect on SO2

emission abatement potential, indicating that industrial structure is not the significant influencing
factor of SO2 emission abatement potential in the study period.

Based on the empirical results, we make the following policy recommendations: First,
the measurement of EEP is useful for the Chinese government to build an evaluation system of
EEP of the industrial sectors at the city level. Second, the Chinese government should pay more
attention to the cities with the worst EEP that have abundant mineral resources and encourage these
cities to develop resource-processing industries then they can produce high value-added products
instead of raw materials. Third, Cities that possess advanced service industries or have inherently
high ecological quality achieve a high EEP. Therefore, the city government should encourage the
development of service industry with low energy consumption and low pollution. Besides, they should
pay attention to protecting ecological environment and avoiding the path of “pollution first, treatment
later”. Fourth, the Chinese government should promote the exchange of advanced experience and
technology relating to energy conservation and emission abatement in order to narrow the EEP gaps
between different cities.
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