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Abstract: In the past decade, sustainable practices have been adopted in transportation infrastructure
projects to reduce adverse environmental effects. To evaluate the sustainability levels of engineering
projects holistically, rating systems have been developed to assess and reward points based on various
sustainable best practices (indicators). This study aimed to establish a systematic methodology to
weight indicators related to materials and resources most commonly used by various transportation
infrastructure rating systems based on their contributions to sustainability. A multi-criteria approach
for assessing the indicators based on three criteria, indicator performance, environment, and cost,
was designed. The criteria were then used to evaluate the indicators and assessed points based on
their contributions toward sustainability. Results revealed that state-of-the-art engineering practices
could differentiate weighting of points from the typical linear point increase that is traditionally
used. In addition, a maximum cap is crucial to ensure that some indicators do not end up being
weighted disproportionately.

Keywords: multi-criteria weighting; life cycle assessment (LCA); indicators; infrastructure rating
systems; sustainable transportation engineering

1. Introduction

The transportation infrastructure system is crucial for a country because it supports the flow of
goods and connects the social fabric of cities. To build up such network, road infrastructure projects
consume immense amounts of energy and resources every year and have been responsible for emitting
considerable amounts of greenhouse gases into the environment. The study by the United States
Environmental Protection Agency (USEPA) estimated that in 2015 the transportation sector accounts
for 27% of all emissions in the USA [1]. The roadway transportation accounts for 90-95% of the
transport sector’s GHG emissions in the world and, in Asia the road construction represented 37%
of manmade GHG emissions in 2005 [2]. Therefore, many developed countries are attempting to
implement initiatives or policies that identify sustainability as a metric and quantify performance [3,4].
The initiatives also consider the engineering sector and its impact on sustainability. Sustainable design
can be applied to engineering projects thereby allowing infrastructure systems to maintain economic,
environmental, and social sustainability.

Over the past two decades, in the building sector, the design of sustainable buildings has
progressed substantially with the help of rating system tools such as Leadership in Energy and
Environmental Design (LEED) in the US and EEWH Green Building Evaluation System in Taiwan to
assess sustainability performance [5,6]. Meanwhile, some infrastructure sustainability rating systems
have gradually emerged in the past decade such as Greenroads, Invest, Envision, I-Last, GreenLITES,
and CEEQUAL [7–12]. Those sustainability rating systems feature a list of best practices in the
form of indicators with a common evaluation metric. The evaluation metric could be ecology-based,
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equity-based, life cycle costing (LCC)-based, life cycle assessment (LCA)-based, noise-based, and urban
heat island effect-based, etc. [7]. Though, some of these evaluation metrics are not easily quantifiable.
Among those, LCC-based and LCA-based weighting presented the most definable approach with
direct, quantifiable results. For example, in the Greenroads Rating System, LCA was used as weighting
to evaluate the environmental impact of the indicators [7]. Typical findings from road infrastructure
LCA studies show that construction activities have the lowest impact on sustainability and therefore
those related indicators in the Greenroads scheme were given one point [7,13,14].

Numerous studies have reported LCA and LCC of road infrastructure [15–18]. LCA has
been used to quantify the environmental impact due to road construction, operation, maintenance,
and rehabilitation activities [19–25]. Harvey et al. have presented a state-of-the-art pavement
life-cycle assessment framework on the overall approach, methodology, system boundaries of
pavement LCA [26]. On the other hand, LCC is commonly used to quantify the long-term economic
impact of various infrastructure design, construction, rehabilitation, maintenance, and operation
alternatives [27,28]. The FHWA has outlined the framework and developed software tools of the
LCC analysis for pavements application [8,29]. Furthermore, LCC was used along with LCA to
evaluate cost-effectiveness for selecting highway pavement designs [30]. Gschösser and Wallbaum
also presented a similar study for concrete, composite, and asphalt pavements [31]. LCA and LCC
together can determine the cost of a project regarding its environmental impacts that are the excellent
tool to assess the sustainability level of the indicators in an infrastructure sustainability rating system.
The remaining issue is that LCA and LCC have different units and cannot simply add to each other.

The problem of combining attributes with different properties arises when performing
multi-criteria assessments. Several solutions have been proposed in the literature, with Giutozzi
et al. using a method of rescaling each criterion from different assessments as a unitless ratio between
zero and one and then summing each rescaled criterion with a criterion weight to determine the best
alternative for evaluating a variety of pavement maintenance strategies over 50 years [32]. Once a
multi-attribute evaluation has been proposed, the weighting among its various criteria based on the
preferences must be established. Comparing the preferences is essential because different solutions
are perceived as optimal by different stakeholders. Smith and Tighe used the analytical hierarchy
process (AHP) as a tool to determine user preferences for pavement rehabilitation activities [33].
Stakeholders were surveyed about their preferences regarding road maintenance and their related
criteria. These preferences were evaluated using AHP to assess what was considered most significant
by stakeholders and other alternatives.

In the most sustainable transportation rating system, the weighting is usually expressed as
scores or points and gives value to the indicator. The point values for all indicators are assigned
differently in each rating system. Weightings established by rating systems may typically refer to other
rating systems, literary sources, or expert questionnaires and surveys. Little studies have focused
on how these indicators are weighted against the common metric. For instance, in the Greenroads
rating system, weightings of the indicators related to “Materials and Resources” were based on
the extensive literature review of pavement LCA studies [7]. However, most studies focusing on
pavement LCA are project-specific, and the conclusions cannot be generalized outside the defined
scope of the LCA, resulting in a disparity in their findings. In order to support the on-going research
to develop the sustainable transportation infrastructure management system (STIMS), which is a
sustainable infrastructure rating tool, for the Construction Planning Agency Ministry of Interior of
Taiwan, it is necessary to establish a rational way to determine the weightings of the indicators in
the rating system to reflect better designed and higher impact. This study aims to investigate how
to distribute weightings or scores within and among indicators. A multi-criteria assessment was
established for the indicator associated with material and resource by identifying and ranking their
impacts regarding performance, environment, and economy. Scenarios tailored for each indicator were
created to determine their effects using a life-cycle perspective for weighting.
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2. Research Methodology

The top four indicators related to materials and resources in roadway engineering that were
most prevalent in the rating systems (namely recycled materials, reuse of materials, local materials,
long life design) were selected for further study, as shown in Table 1 [7–12]. A 1-km typical urban
road project located in Taiwan was used as a scenario and its impact based on various conditions
that fulfilled the indicator requirements was determined. The environmental impact was evaluated
using LCA, which calculates impact based on the impact assessment category of the global warming
potential (GWP). The economic impact was measured through LCC analysis based on project costs.
The performance was measured by determining the magnitudes that indicators require to achieve
their objectives. These three impact values were normalized and then used to establish two tiers of
weighting. The normalized values were used to establish a relative weight between each indicator
and its own scenario conditions and an overall weight for weighting all indicators with respect to
each other. The overall weight determines the total number of points that can be given to an indicator,
whereas a relative weight establishes how many points can be divided among the total points assigned
by the overall weight.

Table 1. The summary of indicators used in different sustainable rating systems.

Material Type Indicator Themes CEEQUAL Envision GreenLITES Greenroads I-Last INVEST Total

Recycled Materials
√ √ √ √ √ √

6
Reuse of Materials

√ √ √ √ √ √
6

Local Materials
√ √ √ √ √

5
Hazard Material Minimization

√ √ √
3

Responsible Sourcing
√ √ √

3
Long Life Design

√ √ √ √ √
5

Earth Balance
√ √ √ √ √ √

6
Deconstruction

√ √
2

Reduce Net Embodied Energy
√ √ √

3
Divert Waste

√ √
2

2.1. Life-Cycle Assessment

LCA is a framework that uses a quantitative approach to evaluate the environmental impact
that was for the impact studies. The LCA framework has become a flexible tool that can be used for
comparing products and their alternatives, as well as identifying improvements that can be made
to products. As a tool, it can generate a comprehensive list of relevant items, including emissions,
waste, energy, water, and natural resource usage. The life cycle approach ensures that any changes
made to improve a certain aspect does not create long-term negative impacts. Thus, LCA allows a
holistic strategy for identifying strategies to reduce environmental impact. The foundations of the
LCA framework have been recognized by the ISO 14040 series. The fundamental concepts outline the
principles, framework, requirements, and guidelines [34,35].

Material and resource related indicators were applied to evaluate the life-cycle environmental
impacts associated with a typical 1-km-long urban road characterized based on various project
conditions. These impacts were quantified using process-based LCA. The process-based LCA is
modeled such that each product is made up of a series of unit processes. Each unit process has inputs
and outputs that have environmental effects and can be related to each other. The interrelationship
that forms these processes that make up a product can be formulated using matrix algebra to sum up
all the environmental effects [36].

The process map shown in Figure 1 presents the boundaries and scopes of the various processes
that make up the project divided into life-cycle stages. The figure presents an aggregated display of
all the processes deemed for all the indicators studied. Some processes may only pertain to certain
indicators. For example, the local material indicator only considers transportation impacts due to initial
construction per its scope. From a life cycle perspective, a different boundary is established for each
indicator. Each indicator varies between processes, and, by extension, each indicator most varies where
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its impact occurs in the life cycle stages. In addition, in some cases, some processes at certain life-cycle
stages may be considered equally impactful for different scenarios and are therefore not calculated.
For example, different projects may use different percentages of reclaimed asphalt pavement (RAP) in
pavement design, but they are all assumed to apply the same construction methods. Since the asphalt
mixture contains RAP requires to fulfill same construction and performance specification thus work
efficiency (energy consumption) of the construction equipment are considered to be equal; differences
do not need to be considered as they would negate each other when compared.
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One severe disadvantage of process-based LCA is the exhaustive data required for every product.
In this study, LCA was accomplished by incorporating data from various sources. For emissions due
to raw materials, these data sources came from two commercially available LCA software databases
namely GaBi (Ganzheitliche Bilanz) and SimaPro Life Cycle Assessment Softwares, which offer cradle
to gate emission information for various raw construction materials. The databases provided many
options for impact assessment. For this study, the assessment method specified in the Tools for
Reduction and Assessment of Chemicals and Other Environmental Impacts (TRACI) by USEPA was
used. A unified impact assessment method must be chosen because of the complexity of impact
category indicator environmental mechanisms. ISO requires the use of impact category indicators
based on science-based environmental mechanisms [34,35]. However, different impact assessment
methods tend to result in different impact categorization factors, and there is currently no consensus
regarding this subject.

2.2. Life-Cycle Cost Analysis

Unlike LCA, LCCA has been extensively used in pavements with an established procedure.
The goal of using LCCA is to evaluate economic impacts of the various products. LCCA on its own can
be used to compare alternative designs and evaluate the required payback periods for proposed designs.
Whereas LCA quantifies the environmental effects, LCCA provides the economic effects. In conjunction
with LCA, LCCA can determine the required costs associated with environmental alternatives.

The LCA framework has only been established on a general level by ISO 14040, while the LCCA
framework for pavements has been specifically established by the Federal Highway Administration
(FHWA). The software was developed based on best practice methods adopted by the FHWA.
These practices were implemented to successfully streamline protocols and provide adequate
results. The LCCA process involves establishing design alternatives, determining activity timing,
and estimating associated costs at the agency and user level. LCCA in Pavement Design and FHWA
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LCCA Primer contain the bases of the agency and user costs as well as the LCCA framework [8,29].
The agency costs involve initial construction, periodic maintenance, and rehabilitation activities.
User costs include the vehicle operation costs, the traffic delay costs, and the accident costs.
Incorporating the traffic delay costs associated with construction and maintenance activities or vehicle
operation cost savings due to improved pavement conditions into LCCA analysis remains a challenging
issue that is full of uncertainties [37]. Also, uncertainties exist between agency activities and accident
rate or vehicle operating cost [32]. The primary issue is that even greater uncertainties exist when the
LCA of user cost activities was evaluated. Because the FHWA framework for LCCA was established in
the early 2000s prior to the establishment of LCA, no environmental inputs or outputs were considered
in its framework. Therefore, to translate user cost related activities into LCA analysis requires a
considerable amount of additional data and assumptions, which was out of the scope of this study.
The LCCA in this study is used in conjunction with LCA to compare the alternatives. If the service
lives and analysis periods are equal for both tools, then the differential costs calculated by LCCA can
be used given the two use the same life cycle perspective. Therefore, in order to coincide the analysis
boundary between LCA and LCCA analysis, the user costs activities were excluded in this study.

The LCCA period was set to 50 years in this study. Various maintenance activities were estimated
over the analysis period. Because the costs of maintenance activities were spent at different times,
they could not be simply added up. The costs were therefore discounted to a common point in time.
Several economic methods exist for converting future costs into present values. The FHWA LCCA
framework for pavement uses the net present value (NPV) and equivalent uniform annual cost (EUAC),
which were both used in this study.

The EUAC converts all project costs into a uniform recurring annual cost over the analysis period.
The NPV discounts all costs assumed to occur at the beginning of an analysis period. Although both
EUAC and NPV are similar in that they use a real discount rate to convert future costs into a common
timeframe, they provide different views of the same aspect. For both EUAC and NPV, a discount rate
of 4% was used, and costs of various materials were provided by local experts in the industry [29].

Lastly, a salvage value to estimate the residual value of the pavement at the end of the analysis
period was used. Currently, no general consensus exists on how to estimate infrastructure salvage
values because infrastructure projects are never terminated at the end of an analysis period [38].
One approach utilizes estimating the cost of demolition and value of the recycled project wastes.
The disadvantage of this approach is sometimes the value of recycled waste is used for another
project resulting in double counting of the benefits of the recycled materials. In this study, the relative
value of the remaining serviceability was considered with respect to the cost of the last performed
maintenance activity.

2.3. Indicator Performance

The performance was the third criteria used to assess the indicators. Performance uniquely
identifies the magnitudes required by the indicators to achieve their objective. Even though it may
seem arbitrary, in this study, the indicator performance was calculated based on the extent that each
indicator achieves its objective and was presented as follows.

A. Performance of the recycled material indicator

The baseline scenario (business as usual) of the recycled materials indicator is defined as 0%
recycled materials used which is the common practice in the road construction in Taiwan, and the
indicator performance is defined as one minus the weight percentage of the recycled materials used
in the project as shown in Equation (1). Three scenarios consisting of 20%, 40%, and 60% recycled
materials used were analyzed in this study based on the weightings in Greenroads [7].

PRecycled material = 1− ∑ wi

∑ Wj
. (1)
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where: ∑ wi is the total weight of recycled materials (i); ∑ Wj. is the total weight of all materials (j) used
in a project.

B. Performance of the reused material indicator

Similarly, the baseline scenario of the reused materials indicator is defined as no existing materials
or structures are used in the new construction project. The indicator performance is identified as one
minus the volume proportion of the existing pavement structures or other structural materials to be
used again in the new pavement construction as shown in Equation (2). Three scenarios consisting of
50%, 70%, and 90% reused materials were analyzed in this study.

PReused material = 1− ∑ vi

∑ Vj
. (2)

where: ∑ vi is the total volume of reused materials (i); ∑ Vj. is the total volume of all existing pavement
structures or other structural materials (j) used in a pavement section.

C. Performance of the local material indicator

For the local material indicator, the baseline worst case scenario refers to that materials are
transported from a long distance to the construction site. In this study, the national average goods
transport distance of 92 km was used as a baseline scenario. The value was extracted from the
“commodity flow survey” performed by the Ministry of Transportation and Communication (MOTC) in
Taiwan [39]. Three levels of material weighted percentage of 60%, 75% and 95% and three levels of
materials transport distance of 40km, 60km and 100km were analyzed. The indicator performance was
calculated based on the combination of the transport distance and percent weight of the material as
shown in Equation (3).

PLocal Materials = d1 (%) + d2 ∗ (1−%). (3)

where: d1 is the distance required by the indicator (40 km, 60 km, 100 km); % (60%, 75% 95%) is the
percentage of materials required to be transported within d1; d2 is the country weighted average
distance (92 km).

D. Performance of the long-life design indicator

Performance of the long-life design indicator was measured using the area under the curve
of a pavement condition index (PCI) vs. pavement life graph. In addition to the initial design
of the pavement structure to meet the long-life requirement, five future maintenance strategies
were also considered over the 50 years’ analysis period. The baseline scenario was designated
as “Do Nothing” which means the future maintenance and rehabilitation (M&R) activities would
be triggered when the pavement PCI reached 50. Other scenario includes “overlay (OL) only”,
“slurry seal (SS) + overlay (OL)”, “micro-surfacing (MS) + overlay (OL)”, “slurry seal (SS) + cold
in-place recycling (CIR)”, and “micro-surfacing (MS) + cold in-place recycling (CIR)” [40,41]. Table 2
summarizes the various scenarios for the long-life pavement design indicators and their associated
M&R treatment trigger criteria. The asphalt pavement performance model (PCI vs. time) developed by
Metropolitan Transportation Commission (MTC) of San Francisco Bay Area was used in the study [42].
The effectiveness (PCI improvement) of aforementioned M&R treatments were summarized from
previous studies [43,44]. Figure 2 illustrates the pavement performance curve for “Do Nothing” and
“micro-surfacing + overlay” scenario. Thus, the areas under the pavement performance curve can be
calculated as indicator performance for various scenarios.
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Table 2. The long life design scenario and M&R trigger conditions.

Scenario Do Nothing OL only SS + OL MS + OL SS + CIR MS + CIR

Treatment
Trigger

Condition

Perform major
rehab when PCI

reach 50

Perform OL
(PCI = 65)

Perform SS
twice (PCI = 80);

Perform OL
(PCI = 65)

Perform MS
twice (PCI = 80);

Perform OL
(PCI = 65)

Perform MS
twice (PCI = 80);

Perform OL
(PCI = 65)

Perform SS
twice (PCI = 80);

Perform CIR
(PCI = 65)
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Figure 2. The pavement performance curves for “Do Nothing” and “micro-surfacing + overlay”
scenario for over 50 years analysis period.

2.4. Normalization of Impacts

Each of the three criteria (environment, economy, and performance) was applied to assess the
impact values with different units and quantities. Therefore, a rescaling method was used to modify
the impact values so that they fell between 0 and 1. Using this method, a direct comparison between the
different quantity values can be assessed for the three criteria. Because of different representations of
what is considered beneficial or detrimental between the criteria, a brief explanation for each criterion
is described in Equation (4):

Rescaled valuen = ScenarioConditionn/Baseline. (4)

Environment Criteria: The environment criteria were based on the impact assessment categories of
GWP. The baseline case scenarios were the most polluting; therefore, when scaled against themselves,
they resulted in a maximum value of 1. All other scenarios scaled in proportion to the baseline case
resulted in lower values.

Economy Criteria: The economic criteria were based on the cost associated with performing the
associated scenario and baseline activities. Baseline case scenarios were found to be most expensive,
and all scenarios were therefore scaled in proportion to them.

Performance Criteria: The performance criteria measure the degree that the indicator has achieved.
For the recycled, reused and local material indicators, the difference in the degree of achievement
was used in order to maintain the same scaling where a maximum value of 1 was considered most
detrimental across all criteria. The long-life indicator utilized the area under the pavement condition
curve to identify its performance. The baseline case yielded the lowest area under the curve which
reflects the M&R strategy yielded the lowest service level of the pavement. Instead, M&R strategy
yielded high pavement service level over time has the greatest area under the pavement condition curve.
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The difference between maximum performance and the baseline was used for scaling. This difference
would align with the prior criteria where high rescaled values were considered highly detrimental.

2.5. Weighting of Indicators

The three criteria can be visualized by assuming a three-axis plot of performance, cost,
and environment (global warming potential) (Figure 3). The scalar vector as the arrow shown in
Figure 3 was then used to quantify a value that would combine all three criteria so further weighting
of the indicators could be established.Sustainability 2018, 10, x FOR PEER REVIEW   8 of 18 
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Weighting for indicators was established with the vector scalar on two levels. The first level
establishes weighting for the indicator itself and its various scenarios—relative weight. Relative weight
determines how many points each indicator tier (20%, 40%, 60% recycled material) can earn.
The relative weight was obtained by using the scalar derived from the vector of every scenario
and rescaling all scalars with reference to the most beneficial scenario. Assuming that an indicator was
allocated a certain amount of points, determined by the next level of weighting, the highest achieving
scenario would by default gain the maximum points. The other scenarios would receive a fraction of
those points due to their lower contributions to sustainability.

The second level of weighting was established for all indicators relative to each other to determine
the total points each indicator could obtain—overall weight. This weighting was based on comparing
the difference in cost and environmental impact among each indicator’s various scenarios and their
baseline case—their environmental and cost savings. These savings were normalized and a vector
scalar was again used to combine their results. The vector scalars were then used to calculate the
overall weight as defined by Equation (5).

Points f or indicator (i) = n× vector scalar o f best case scenario indicator (i)

∑4
j=1 vector scalar o f best case scenario indicator (j)

(5)

where: n is a number of possible points that was assigned to the indicators including recycled material,
reuse of materials, local materials, and long life design indicator.

3. Results and Discussion

The results of the four indicators were assessed by using the same base case project scenario of a
1-km-long urban road with varying conditions depending on the indicator. The relative weighting
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of each indicator was first presented, followed by the overall weight, which compares all indicators
against each other and assigns the maximum amount of points each indicator can have.

3.1. Indicator Normalization and Weighting

Points are typically awarded for contributions to sustainability, and these are tied to the
different scenario conditions. Table 3 presents the raw impact values in terms of performance,
costs, and environment for the recycled material indicator. Environmental impact was calculated
for one commonly known impact assessments (i.e., GWP). The scenarios analyzed were cases of
0%, 20%, 40%, and 60% recycled materials (where the 0% case was a baseline). At 40% recycled
project material, the maximum state of practice for RAP and fly ash in cement fines have already been
achieved. Therefore, for a project to achieve a higher tier, the only option left would be to use recycled
aggregate. However, because recycled aggregate has low benefits to the environmental impact and
cost, the marginal cost and environment benefits for a change from 40% recycled material to 60%
recycled material are much lower than those for a marginal change from 20% recycled material to
40% recycled material. The performance criteria reflect that regardless of which recycled material
is more beneficial than another, the use of a relatively high percentage of recycled material is still a
benefit in many regards. This can be seen in Table 3 with the linear increase in the impact values as the
percentage of recycled materials are increased linearly. Despite the inherent varying benefits between
various recycled materials which the other two criteria reveal, higher recycled material usage provides
two main benefits: reducing the use of non-replenishable virgin resources and diversion to waste
streams. These recycled materials are typically industrial by-products that are destined for the landfill.

Table 3. The recycled material indicator impacts values.

Scenario Condition Detail

Actual Value

Performance
Cost Environment

(1000$) GWP (kg CO2-eqv)

Baseline: 0% Recycled Materials 1 20,984 1,257,413
20% Recycled Materials 0.8 18,247 875,841
40% Recycled Materials 0.6 13,552 784,973
60% Recycled Materials 0.4 12,137 773,037

Table 4 rescales the values found in Table 3. Recycled Material Indicator Impacts Values, and these
results are shown in Figure 4. From this rescaled table, the final results from relative weight show that
compared to the baseline worst case scenario, using just an additional 20% recycled material provides
the most sustainable benefit. Otherwise, the two scenario conditions of using 40% and 60% recycled
material provide lesser benefits. Assuming a linear weight, the rescaled impact values should fall close
to the performance value.

Table 4. The recycled material indicator rescaled impact values.

Scenario Condition Detail
Rescaled

Vector Scalar Relative Weight
Performance Cost Environment (GWP)

Baseline: 0% Recycled Materials 1 1 1 1.73
20% Recycled Materials 0.80 0.90 0.70 1.39 0.71
40% Recycled Materials 0.60 0.79 0.62 1.12 0.89
60% Recycled Materials 0.40 0.70 0.61 1 1
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Following the recycled indicator, the other two indicators were also assessed based on their
relative weight for various scenarios (Tables 5–8). The only exception was the long life design indicator
(Tables 9 and 10). No relative weight was established because the long-life design indicator is achieved
by fulfilling the design structure of the pavement to long life design specifications. This differs from the
other three indicators, which had varying degree of fulfilment conditions. However, the benefits of this
indicator can vary, and this was shown by conducting a life cycle assessment with an analysis period
beyond this indicator’s scope. A combination of different minor and major rehabilitation methods was
used to compare it to a corresponding do-nothing scenario.

Table 5. The reuse of material indicator impacts values.

Scenario Condition Detail

Actual Value

Performance
Cost Environment

(1000$) GWP (kg CO2-eqv)

Baseline: 0% Reuse 1 8859 739,210

50% Existing Material Reused

Slurry Seal 0.5 4435 403,160
Microsurfacing 0.5 4430 415,047

Overlay 0.5 5991 437,723
CIR 0.5 4511 393,873

70% Existing Material Reused

Slurry Seal 0.2 2666 261,014
Microsurfacing 0.2 2658 277,655

Overlay 0.2 4843 284,290
CIR 0.2 2772 248,012

90% Existing Material Reused

Slurry Seal 0.1 896 137,027
Microsurfacing 0.1 887 158,424

Overlay 0.1 3696 149,016
CIR 0.1 1033 120,311
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Table 6. The reuse of material indicator rescaled impact values.

Scenario Condition Detail
Rescaled

Vector Scalar Relative Weight
Performance Cost Environment (GWP)

Baseline: 0% Reuse 1 1 1 1.73

50% Existing Material Reused

Slurry Seal 0.5 0.50 0.55 0.89

0.29
Microsurfacing 0.5 0.50 0.56 0.90

Overlay 0.5 0.68 0.59 1.03
CIR 0.5 0.51 0.53 0.89

70% Existing Material Reused

Slurry Seal 0.2 0.30 0.35 0.51

0.50
Microsurfacing 0.2 0.30 0.38 0.52

Overlay 0.2 0.55 0.38 0.70
CIR 0.2 0.31 0.34 0.50

90% Existing Material Reused

Slurry Seal 0.1 0.10 0.19 0.23

1
Microsurfacing 0.1 0.10 0.21 0.26

Overlay 0.1 0.42 0.20 0.47
CIR 0.1 0.12 0.16 0.22

Table 7. The local material indicator impact value.

Scenario Condition Detail
Actual Value

Performance
Cost Environment

(1000$) GWP (kg CO2-eqv)

100% material within average 92 31,345 242,056
60% material within 100 km 71 22,045 154,571
75% material within 100 km 66 19,412 151,893
95% material within 100 km 59 16,690 123,169
60% material within 60 km 62 19,860 135,057
75% material within 60 km 55 15,791 122,028
95% material within 60 km 45 13,854 99,496
60% material within 40 km 56 17,898 116,903
75% material within 40 km 47 13,190 109,412
95% material within 40 km 35 10,866 83,185

Table 8. The local material indicator rescaled impact value.

Scenario Condition Detail
Rescaled

Vector Scalar Relative Weight
Performance Cost Environment (GWP)

100% material within average 1 1 1 1.73
60% material within 100 km 0.77 0.70 0.64 1.22 0.48
75% material within 100 km 0.72 0.62 0.63 1.14 0.55
95% material within 100 km 0.64 0.53 0.51 0.98 0.64
60% material within 600 km 0.68 0.63 0.56 1.08 0.57
75% material within 60 km 0.60 0.50 0.50 0.93 0.67
95% material within 60 km 0.49 0.44 0.41 0.78 0.80
60% material within 40 km 0.61 0.57 0.48 0.97 0.64
75% material within 40 km 0.51 0.42 0.45 0.80 0.77
95% material within 40 km 0.38 0.35 0.34 0.62 1
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Table 9. The long life design indicator impact values.

Scenario Condition Detail

Actual Value

Performance
Cost Environment

(1000$) GWP (kg CO2-eqv)

Do Nothing 1563 1358 2,956,841

Overlay Only 1173.4 1149 2,158,604

Slurry Seal + Overlay 842.5 1035 1,787,515

Microsurfacing + Overlay 842.5 1036 1,809,902

Slurry Seal + CIR 842.5 853 1,558,834

Microsurfacing + CIR 842.5 857 1,617,943

Table 10. The long life design indicator rescaled impact values.

Scenario Condition Detail
Rescaled

Vector Scalar
Performance Cost Environment (GWP)

Do Nothing 1 1 1 1.73

Overlay Only 0.75 0.85 0.73 1.35

Slurry Seal + Overlay 0.54 0.76 0.60 1.11

Microsurfacing + Overlay 0.54 0.76 0.61 1.12

Slurry Seal + CIR 0.54 0.63 0.53 0.98

Microsurfacing + CIR 0.54 0.63 0.55 0.99

3.2. Overall Weighting

In the previous sections, the impact values of each indicator are assessed and weighted relative
to themselves. In this section, all the indicators are compared relative to each other. In order to
establish such a comparison, the difference of each indicator’s impact was calculated between the
baseline scenarios versus its other scenarios. For example, the recycled material indicator’s baseline
scenario was compared with the 20%, 40%, and 60% recycled scenarios. The difference between
the impact values for different scenario conditions represents the value of sustainability. Therefore,
a higher difference indicates a greater reduction in the environmental impact and cost. Because the
indicator performance is used to identify the benefit of the indicator extent and measures different
representations; therefore, it could not be included in this comparison.

Figure 5 presents a graph of the possible cost savings in achieving the various indicator scenario
conditions. The local material indicators present the highest cost savings could be made by reducing
transport distances. Figure 6 shows the environmental impact reductions of GWP for the various
scenario conditions. Although significant cost savings could be made by using local material indicator,
it had much lower environmental impact benefits. The other indicators exhibited much higher
environmental benefits compared to the local material.

Naturally, long-life design indicators offered the highest environmental impact savings because
they considered a potential scenario over 50 years while other indicators did not. A fair comparison
would be to aggregate the impacts of using recycled materials for all activities over 50 years. However,
this study intended to weigh the indicator’s impact based on its intent and scope. Although a rating
system attempts to holistically assess a project by incorporating practices that can influence future
activities and reduce impacts such as long life design, several indicators focus only on the design
and construction stage. Quantifying their benefits over a longer period is beyond the indicator’s
boundary of impact, and the weightings of the indicator would therefore not be accurate from a rating
system’s perspective.
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Figure 5. The cost savings between various scenario conditions.
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Figure 6. The GWP reduction between various scenario conditions.

The final weighting that considers all four indicators is shown in Table 11 where the cost and
environmental impact of GWP savings were used to determine the overall weight. If 20 points
were assigned to these indicators, based on the impact results from this study, the points given
for achieving each indicator could be obtained from the overall weight percentages. The highest
points assigned to the long-life design indicator consider that the road undergoes a maintenance
plan and is carefully monitored over its lifetime. PMS programs with intensive research and data
collection are required for this to be achieved. At present, this type of practice is not exercised,
and the benefit of the indicator is very unlikely to follow the results. Furthermore, a rating system as
discussed previously only focuses on design and construction and does not design indicators to enforce



Sustainability 2018, 10, 2325 14 of 18

the events that occur during the maintenance and end of life cycles. Nevertheless, the weighting
uses the basis of highest benefit possible for every indicator. Although such practices may not be
established yet, their purpose is to encourage these practices to go beyond the applicable regulatory
minimum. Furthermore, whereas typical rating systems only consider cradle-to-gate indicators,
an ideal rating system should attempt to include all life cycle stages where possible holistically. Thus,
even a requirement such as submittal of proof that an approved design process such as Asphalt
Institute (AI), or the Mechanistic-Empirical Pavement Design Guide (MEPDG) method was used
would prove beneficial over the current practice in Taiwan.

Table 11. The weighting of indicators against each other.

Indicator Scenario Condition Vector Scalar Overall Weight ** Points Possible ***

Recycled Material
20% Recycled Materials 0.40

17% 340% Recycled Materials 0.52
60% Recycled Materials 0.53

Reuse of Materials
Reuse 50% Pavement by Area 0.35

21% 4Reuse 70% Pavement by Area 0.50
Reuse 90% Pavement by Area 0.63

Local Materials

60% material within 100 km 0.26

17% 3

75% material within 100 km 0.31
95% material within 100 km 0.38
60% material within 60 km 0.31
75% material within 60 km 0.40
95% material within 60 km 0.46
60% material within 40 km 0.37
75% material within 40 km 0.46
95% material within 40 km 0.53

Long Life Design

Overlay Only 0.92

45% 9
Slurry Seal + Overlay 1.31

Microsurfacing + Overlay 1.30
Slurry Seal + CIR 1.42

Microsurfacing + CIR 1.36

** Based on each indicator’s best case scenario; *** Assuming 20 points were assigned for this indicator set.

Table 12 shows that the weighting of all indicators from Table 11 was used as the maximum
possible points granted for each indicator. The various relative weights calculated in the earlier sections
were then used to divide the points within the indicator scenario conditions. Maximum points were
granted to the highest achievement and then adjusted accordingly based on the indicator’s own
relative weight. The number of points was assigned ensuring that the minimum number of points
assigned for any indicator would be at least rounded up to one (reuse 50% pavement by area).

Table 12. The final weighting of individual indicators and their conditions.

Compared Among Four Indicators Compared Within Indicator Itself

Indicator Overall Weight Possible Points Scenario Condition Relative Weight Possible Points

Recycled Material 17% 3
20% Recycled Materials 71% 2
40% Recycled Materials 89% 2
60% Recycled Materials 100% 3

Reuse of Materials 21% 4
Reuse 50% Pavement by Area 29% 1
Reuse 70% Pavement by Area 50% 2
Reuse 90% Pavement by Area 100% 4

Local Materials 17% 3

60%-95% material within 100 km 24–35% 2
60%-95% material within 60 km 36–52% 2

60% material within 40 km 59% 2
75% material within 40 km 74% 2
95% material within 40 km 100% 3

Long Life Design 45% 9

Slurry Seal + Overlay

100% 9
Microsurfacing + Overlay

Slurry Seal + CIR
Microsurfacing + CIR
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Typically, rating systems have a global maximum point cap for their indicators. This safeguards
an indicator from being over pursued attaining points as well as ensuring that other indicators may
not be valued so low that they cannot contribute in a meaningful way to the project. The inherent
variability that comes from indicators and projecting their benefits also relies on assumptions in some
cases, and this would limit any flaws or incomplete data used for assessing them. Finally, the problem
of weighting for all types of indicator categories is difficult to evaluate under a common metric, and a
maximum point cap also limits the impact of indicator categories being favored when they are all
important but intrinsically difficult to quantify together.

In this case, a cap on the long life indicator would prevent variability if a proper maintenance
procedure is followed after the long-life design that cannot be verified by the rating system. The cap
would distribute more points among the other indicators and provide a larger point spread for the
local material indicator which was shown to have the bulk of its scenarios being awarded the same
amount of points due to rounding. Table 13 presents maximum points possible for each indicator and
how these points are distributed among the different indicator’s requirement. As a result of the higher
total points assigned to local materials, the various scenario conditions are able to contribute better
point wise.

Table 13. The final weighting of individual indicators and their conditions with point cap.

Compared Among Four Indicators Compared Within Indicator itself

Indicator Overall Weight Possible Points Scenario Condition Relative Weight Possible Points

Recycled Material 22% 4
20% Recycled Materials 71% 3
40% Recycled Materials 89% 3
60% Recycled Materials 100% 4

Reuse of Materials 28% 5
Reuse 50% Pavement by Area 29% 1
Reuse 70% Pavement by Area 50% 3
Reuse 90% Pavement by Area 100% 5

Local Materials 22% 4

60%-95% material within 100 km 24–35% 1
60%-95% material within 60 km 36–52% 2

60% material within 40 km 59% 2
75% material within 40 km 74% 3
95% material within 40 km 100% 4

Long Life Design 28% 5

Slurry Seal + Overlay

100% 5
Microsurfacing + Overlay

Slurry Seal + CIR
Microsurfacing + CIR

4. Conclusions

This study aims to provide a quantifiable framework approach that can weigh an indicator’s
benefits for sustainability by assessing multiple criteria to support the development of the STIM rating
system for roadway sector in Taiwan. At present, a sustainable infrastructure rating system may
weigh all its indicators equally, but most systems have different weightings for various indicators.
The weighting of indicators is not commonly revealed, and many rating systems may borrow from
more established systems, conduct expert surveys, and or use published sources as references. Thus,
a methodology was introduced using scenarios tailored to indicators and assessed with multiple
impact criteria: performance, economic (LCC), and environment (LCA).

Four indicators as the recycled, reused, local materials and long-life design were assessed for use in
the study. A typical 1-km-long urban road project was established as a scenario with varying conditions
that simulated the project achieving the indicators and their impacts in the form of performance, cost,
and environment. The different impacts were rescaled and normalized, which allowed for weighting
of the indicators. The final points prior to a point cap given to recycled materials and its respective
tiers of 20%, 40%, and 60% recycled materials were 2, 2, and 3, respectively. The final points given to
reuse of materials and its respective tiers were 1, 2, and 4. The final points given to local materials
ranged from 2 to 3 for its various tiers. Long-life design was given 9 points with no tiers. A point cap
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was then implemented for all the indicators: recycled materials, reuse of materials, local materials, and
long life design, which reduced the maximum points for each indicator to 4, 5, 4, and 5 respectively.

The point spread shows indicators that granted higher points for greater achievements did not
always scale linearly. Current rating systems typically award a linear or slightly higher increase in
points at the higher tiers of achievement. In this case, reuse of materials and local materials exhibited a
linear increase. However, recycled materials exhibited decreased benefits for fulfilling their indicators
completely. In this case, the current engineering state-of-the-art practices significantly influenced the
impacts between different tiers of achievement for an indicator and its weighting. Using this weight
yields both positive and negative outcomes depending on the perspective. Moreover, it highlights one
of the disadvantages in rating systems that points can undermine different or alternative designs due
to indicators and their weighting. Using a weighting scheme from this study that awards numerous
points for the lower tiers would benefit the project owner because it would be easy to score a high
number of points. If a linear scale were used, it would encourage users to reach higher scores rather
than to be satisfied with attaining most of the points using typical practices; this encouragement would
benefit sustainability as a whole. The argument of whether a rating system should be strictly weighted
for its effects to benefit the state of practice of the project or sustainability at large is another problem
that should be addressed.
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