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Abstract: The simultaneous localization and mapping (SLAM) of robot in the complex environment
is a fundamental research topic for service robots. This paper presents a new humanoid multi-robot
SLAM mechanism that allows robots to collaborate and localize each other in their own SLAM process.
Each robot has two switchable modes: independent mode and collaborative mode. Each robot can
respond to the requests of other robots and participate in chained localization of the target robot
under the leadership of the organiser. We aslo discuss how to find the solution of optimal strategy
for chained localization. This mechanism can improve the performance of bundle adjustment at
the global level, especially when the image features are few or the results of closed loop are not
ideal. The simulation results show that this method has a great effect on improving the accuracy of
multi-robot localization and the efficiency of 3D mapping.

Keywords: SLAM; multi-robot system (MRS); humanoid robot; cooperative localization

1. Introduction

Artificial intelligence has been widely applied to environmental science including environmental
management [1] and sustainability [2]. As the main platform of artificial intelligence applications,
intelligent robots have always been research emphasis of sustainability. Robots can save a lot of
manpower costs, and robots can also adapt to complex and dangerous environment such as alien
planet [3] and disaster or hazardous area [4,5]. Humanoid robots are referred as the mechanical device
having structure and motion ability similar to the human beings. Relative to the tracked and wheeled,
multi-legged mobile robots, the humanoid robots has the advantages of strong adaptability, doing large
scope of work, rich action form and high efficiency of energy optimization. It has been an active area
of research in the field of robotics. Now humanoids have become the preferred platform for artificial
intelligence applications and human services. In addition, humanoid robots have a similar appearance
and behavior patterns as compared with the humans as matter of fact they are considered as the first
choice for service robots which are more compatible with humans than other types of robots.

Simultaneous localization and mapping (SLAM) can be described as: a robot in an unknown
environment from an unknown location start to move and localize itself in the process of moving
according to the pose estimation and map that has been generated, the incremental map is constructed
at the same time. The autonomous localization and navigation of the robot can be realized based
on built map and sensor data. A hard nut to crack is the error of SLAM will be accumulated with
the movement of the robot. One of the main methods to eliminate the error is closed-loop detection.
But the robot can detect the closed loop only when it has reached the postion it had been before
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which will make efficiency of exploration suddenly drop in the face of larger and more complex
environments. Therefore, SLAM for multi-robot system has attracted more attention from the research
community. Multi-robot system (MRS) is a set of multiple agents, members in MRS coordinate and
serve each other to complete a task together which can not be accomplished without cooperation.
Multi-robot cooperative SLAM has always been the focus of robotics research. Detailed maps and
precise localization are the basis for MRS to accomplish other tasks. Cooperation among robots is
the core of MRS for SLAM expecially for humanoid robots whose localization ability is not strong
enough due to lack of accurate and sufficient motion sensor information (For example, a wheeled
robot has a odometer but a humanoid robot doesn’t), but the emphsis in most of the studies about
multi-robot cooperation for humanoid SLAM, is to construct the independent robot map fushion
results. Closed-loop detection of robot is relatively independent and can only eliminate the position
error of itself, if the robot can locate each other according to their own situation, efficiency of multi
humanoid robot SLAM will be greatly improved.

In this paper, the localization self-confidence and localization tying for a humenoid MRS
are proposed. Each robot has two kinds of switching mode, independent mode and cooperative
mode, the robot can proposed the request of localization assistance according to the its localization
self-confidence, other robots response to the request according to their localization assistant degree,
besides, we propose a method of multi-robot localization called chained localization. Finally, a method
to obtain the optimal strategy of chained localization is aslo discussed. The configuration and additional
properties of a biped robot in order to achieve this collaborate localization mechanism is introduced in
Section 4. A vision based localization function between two robots is informed in Section 5. We discuss
the algorithm of how to find optimal solution of cooperation in Section 6. The total sequences of our
mechanism and the simulation experiments are shown in Sections 7 and 8.

2. Related Work

Relative observation between robots to solve cooperative localization has always been a hot topic
in MRS research. Some geometric based algorithms can be used to calculate the relative positions
between two robot satisfying certain constraints [6,7]. AT Rashid, M Frasca proposed a new algorithm
called cluster matching where clusters of nodes scanned by distance IR sensor are deployed to estimate
location and orientation of the robots which can’t be tracked [8]. Nikolay Atanasov, Jerome Le Ny
focused on getting optimal control strategy by minimizing the entropy of the estimation task [9].
MW Mehrez and Gki Mann designed a framework in which robots are located and commanded to
follow time varying trajectories with respect to another robot reference frame to get optimal relative
localization [10]. D Fox, W Burgard employed probabilistic methods to measure each robot’s belief
whenever one robot detects another so that high-cost sensors among groups can be shared across
multiple robots [11]. Od Silva and Gki Mann proposed a target tracking inspired design which can
accommodate communication at a low predefined [12]. Some filtering algorithms such as evolutionary
assisted particle filter (EAPF) [13] and information filter (IF) [14] were also used to deal with the
problem of multi-sensor information fusion in cooperative localization of multiple robots. Some work
also addressed wireless communication [15] and salient landmarks [16].

Some research focus on the integration and representation of maps such as pose graph [17] and
6D graph [18]. Mw Kai, C Stachniss presented an MRS for SLAM with multiple representations of the
maps which can be switched according to the current observation [19]. The critical innovation point
of reference [20] is the design of mechanism which allows multiple threads to concurrently read and
modify the same map for multiple micro aerial vehicles. Lecture [21] describes strategy using data of
2D LIDAR sensors to build a joint map instead of occasional merging of smaller maps.

Hybrid multi robot systems can combine different abilities and different structures of robots in
the same type of tasks. Michael Milford, Gordon Wyeth present a hybrid reactive control system to
perform SLAM [22]. Lecture [23] present a two-level mapping method for MRS which allows robots
set up the constraints of local and global maps when they enter a new camera visual field.
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3. Discussion

The works referred to in the previous section demonstrate state of the art of SLAM for MRS and can
be summarized as the solution of the following three open research questions for Multi-robots SLAM.

Task allocation: The task allocation of a multi-robot SLAM is to assign the robots to the suitable
environment for their exploration, that is, to reorganize the team of robots under the condition that
certain environment is known. For instance, assigning unmanned aerial vehicle (UAV) to places
which are difficult to navigate for unmanned vehicles to replace unmanned vehicles can be seen as
an optimization of task allocation. This kind of optimization can be regarded as the optimization of
local mapping and localization (single robot SLAM) at the higher level.

Relative localization: Relative localization means that the robots determines the relative poses
through mutual observation. Observation can be active or casual. This relative localization is
an important issue for combination two maps built with data from two robots.

Map representation and Consistency of map: The ultimate goal of SLAM for MRS is to generate
a globally consistent map, which consists of local maps generated by single robots. Research on map
representation is to use new forms of maps to better represent local and global maps built by MRS.
One of the main considerations in this study is to ensure the consistency of the map, which is to
guarantee that the local maps generated by single robot are accurate when they are uploaded to the
global map. If local maps generate by robots overlaps, the robots are able to correct the map and their
trajectories by combining their observations to decrease measurement errors.

The above three issue are also the problem that need to overcome for applying single robot SLAM
algorithm to multi-robot SLAM. There are strong correlation between these three points, that is to say,
optimizing one aspect will inevitably affect the overall effect of multi-robot SLAM and the operation
of the other two aspects. For example, if the local maps uploaded by two robots are overlaped,
the overlap part can be used to correct the estimation of relative localization, otherwise the result
relative localization can be used to generate a global map containing the local maps of the robots.

When the robots in multi-agent system localize themself using some of existing algorithms,
they are more dependent on static landmarks and some auxiliary localization such as GPS and IR.
When it comes to relative observation algorithms, robots will observe other robots on condition that
their localization accuracy is unknown, which will lead to further accumulation of errors (If the robot A
gets the pose under the relative observation of B, and the error of B’s self localization is very large, then
the error of A’s self localization will be great too in a large probability). This paper mainly adresses the
active relative observation and tries to solve and propose a mechanism that can cooperative localize
based on the accuracy of the self localization of each robot without the assistance of a global localization
sensor and landmarks.

4. Configuration and Properties of Humanoid Robots

4.1. Localization Self-Confidence

Localization self-confidence (LSC) can be used to estimate the accuracy of a robot’s localization
to its own pose. LSC will continue to decay as the robot itself moves because the cumulative error of
the localization will increase continuously if no closed looping is detected. The LSC will be reset if
the closed loop is detected. LSC is updated such as Algorithm 1 without no assistance of other robots.
while η is decay factor. We assume that every step of the robot takes the same localization error. So η

is a constant. This is the main attribute of a robot according to which the robot decides whether it
needs assistance or not and whether it can assistant others or not. Information provided by robots
with a higher LSC is believed to have higher credibility.
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Algorithm 1 Update of localization self-confidence

1: robot.lsc← 1
2: while robot works do
3: if robot moves then
4: robot.lsc = η ∗ robot.lsc
5: end if
6: if robot detects closed looping then
7: robot.lsc← 1
8: end if
9: end while

4.2. Chained Localization

Localization chain {A1, A2....An}means Ai (i from 1 to n−1) calculates the pose of Ai+1 according
to its pose and the observation of Ai+1. Ai+1 will update its pose as the calculated value of A′is ,
and continue to calculate the pose of Ai+2 with its new pose. This way of localization is called chained
localization which is the mechanism of collaborative SLAM among robots proposed in this article.
The running process is shown as follows:

Pi = localization(...localization(localization(P1, V1,2), V2,3), Vi−1,i) (1)

where localization is the algorithm to get pose of robot i (Pi) according to pose of robot i (Pi−1) and
observation of robot j (Vi,i−1). Figure 1 is diagrammatic of chained localization.

Figure 1. Chained localization.

4.3. Localization Self-Confidence Updating Method for Chained Localization

After the successful implementation of the chained localization, the LSC of the robot i (from 2
to n) participating in the chained localization is updated as follows:

LSCi = (γi−1,i.....γ2,3((γ1,2(lsc1 + k ∗ dist1,2)) + k ∗ dist2,3) + k ∗ disti−1,i) (2)

γij is observation error coefficient from i to j of which the range is 0 to 1. The observation error of
robot i to robot j obeys normal distribution. So when calculating localization self-confidence, the robot
should take into account the effects of these errors and let LSC be multiplied by this discount factor.
γij can be seen as an inherent attribute codetemined by robot i and robot j. k ∗ distij indicates the loss
of LSC due to robot i covers distij in order to observe robot j. In this paper, k and γ are set as constant.
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4.4. Localization Tying

Localization tying shows the fitness of one robot to assistant another robot for localization.
tyingij means localization tying of robot i to robot j. tyingij is calculated as follows:

tyingij =
lsci − lscj

distij
(3)

while distij represents the distance that robot i should cover if it wants to assistant robot j. If this path
is not found, i will be deleted from the list of assistant robots.

4.5. Path-Finding Algorithm

D* algorithm [24] is applied for 3D path-finding which is mainly used for robot exploration. It is
aslo the path finding algorithm used by the Mars probe. D* algorithm is a heuristic shortest path
algorithm which can be applied to the dynamic environment. It can reduce the range and cost of the
search path by defining the estimation function as the estimation of the length of the path. First, it starts
to search the nearby reachable points from the starting point and saves their estimation functions and
search outwards based on searched points. In the process of search, reachable points with minimum
estimated value is selected greedily out until the end point is reached.

4.6. Organiser

Organiser is the mainstay of this MAS as it will handle the assistant requests of all robots and
giving the optimal cooperation strategy.

5. Assistant Localization between Two Red Robots

In this section, we specifically discuss how a robot can localize another robot in chained
localization. The robot that is localized is called the target robot and the robot which localizes it
is called assistant robot. Each robot uses RGB-D camera to collect visual information. First, A part
of the 3D feature points of the target robot can be searched in the RGB-D images collected by the
robot. Next, these feature points are matched with the feature points on the target robot’s 3D model
like Figure 2.

y1

y2

Figure 2. Assistant localization between two robots.

5.1. Obtaining the World Coordinates of Features Point on Target Robots

Set the coordinate of features point y under assistant robot’s coordinates frame as P = [X, Y, Z]T

and coordinates on the physical imaging plane as P′ = [X′, Y′, Z′]T . The relationship between P and
P′ is shown in Equation (4). {

X′ = f X
Z

Y′ = f Y
Z

(4)

while f is the focal length. The pixel coordinates of P are set as [u, v]T . The relationship between [u, v]T

and P′ is shown in Equation (5).
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{
u = αX′ + cx

v = βY′ + cy
(5)

α, β are the scaling coefficient on the u,v axis. [cx, cy]T is the translation vector of the origin. Replace αx′

with fx and βY′ with fy, This equation can be expressed in homogeneous coordinates as Equation (6)

Z

u
v
1

 =

 fx 0 cx

0 fy cy

0 0 1


X

Y
Z

 = KP (6)

where K is equal to

 fx 0 cx

0 fy cy

0 0 1

 which is also known as the internal reference matrix of the camera.

P can be considered as a transformation of Pw under the current robot pose. The pose can be represented
by a rotation matrix R and a translation vector t. So the Equation (6) can be converted to Equation (7)

where T is equal to

(
R t
0T 1

)

ZPuv = Z

u
v
1

 = K(RPw + t) = KTPw (7)

Pw = K−1T−1ZPuv (8)

5.2. Getting the Pose of the Target Robots

What we want to do is to get R and t in Equation (7) Solving the pose of the target robot can be
transformed into finding a solution to the iterative closest point (ICP) problem. Set the coordinate of
features point yi of assistant robot’s 3D model as Pi and world coordinate as pw

i . The error term for the
point pair (Pi,Pw

i ) is
ei = pi − (RPw

i + t) (9)

Then, the least squares problem is constructed, and R, t, which minimizes the sum of squared
error shall be obtained.

minR,t =
1
2

Σ||pi − (Rpw
i + t)||2 (10)

The following is the derivation of its solution:
First, define the centroid of two sets of points:

p =
1
n

Σ(pi), Pw =
1
n

Σ(pw
i ) (11)

1
2 Σ||pi − (Rpw

i + t)||2 = 1
2 Σ||pi − Rpw

i − t− p + Rpw + p + Rpw||2
= 1

2 Σ||pi − p− R(pw
i − pw) + (p− Rpw − t)||2

= 1
2 Σ||pi − p− R(pw

i − pw)||2 + ||(p− Rpw − t)||2
+2(pi − p− R(pw

i − pw))T(p− Rpw − t)

(12)

The objective function after the simplification is:

minR,t =
1
2

Σ||pi − p− R(pw
i − pw)||2 + ||(p− Rpw − t)||2 (13)
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We only need to get R first and then make p− Rpw− t equal to zero to get t. Further simplification
is as followed:

qi = pi − p, qw
i = pw

i − pw (14)

The objective function can be further reduced to:

R∗ = arg max
R

1
2

Σn
i=1||qi − Rqw

i ||2 (15)

Expand the error term for R, the result is shown as Equation (16):

1
2

Σn
i=1||qi − Rqw

i ||2 =
1
2
(ΣqT

i qi + qwT
i RT Rqw

i − 2qT
i Rqw

i ) (16)

R is an antisymmetric matrix, so the result is only related to third items−qT
i Rqw

i . The optimization
objective function is changed to:

Σn
i=1(−qT

i Rqw
i ) = Σn

i=1 − tr(Rqw
i qT

i ) = −tr(RΣn
i=1qw

i qT
i ) (17)

In order to solve R, first define the matrix

W = Σn
i=1qiqwT

i

SVD decomposition of W is obtained:

W = UΣVT (18)

When w is full rank, R is as
R = UVT (19)

Finally, we can calculate out t based on R:

t = p− Rpw (20)

6. Approximate Solution of Optimal Strategy for Chained Localization

In this section, we will discuss how to approach the optimal strategy for chained localization.
The optimal strategy for chained localization is a sequence {a1, a2, ....., at} whose cumulative reward is
larger than other sequences whose ending is at, at is the robot who needs assistance. Cumulative reward
is used to measure the change of localization self-confidence of all robot after chained localization.
Cumulative reward is defined as:

Vπ = γ12(r12 + γ23(r23 + γ34(r34 + .....γn−1,n ∗ rn−1,n))))|π = {a1, a2.....an} (21)

LSCi was determined by all the robots before i as Section 4.3 shown, so before the sequences prior
to i is determined ri,i+1 is uncertain. Two algorithms are proposed to get optimal solution based on
reinforcement learning and greedy algorithm.

6.1. Algorithms Based on Reinforcement Learning

The process can be considered as to find the path whose maximum cumulative reward from
the first robot to the target robot. If the update of the assistance tying matrix Γ is not considered,
this process can be regarded as being provided with Markov property. Let aij represent the action
that robot i observe robot j, that means the state is changed from Si to Sj. Localization tying rij can be
rewarded as immediate rewards. γij is the discount factor. Therefore, the problem of obtaining the
optimal strategy can be solved by the algorithm of reinforcement learning. This algorithm is shown as
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Algorithm 2. The state representing target robot is selected as absorbing state. From step 3 to step 12,
each Q(s, a) is continuously changing until all of them become optimal.

The premise of applying this algorithm is to assume that the process is Markov process.
But according to the analysis in Section 6, this process is not strictly following the Markov property.
This method is an approximate algorithm. After each iteration, the smaller the update matrix is,
the closer the strategy is to the optimal strategy. We discuss a method based on greedy algorithm
without considering this approximation in the next subsection.

Algorithm 2 Algorithms based on Reinforcement Learning

input: R: The immediate payoff matrix, Γ: Observation error coefficient
input: S: Sets of all state, s f : The state meaning the first assistant
input: P: State transition matrix robot, st: The robot need assistance
output: π∗ f : Optimal assistance chain from ss to st

1: function GETOPTIMALSTRATEGY(R, Γ, S, ss, st)
2: for each s ∈ S a ∈ A(Actions that can be taken in state s) do
3: Q(s,a) = 0
4: end for
5: repeat
6: convergence← 1
7: for each s ∈ S do
8: for each a ∈ A do
9: Q′(s, a) = rs,p(s,a) + γs,p(s,a)(maxa′(Q(P(s, a), a′)))

10: if thenQ′(s, a) 6= Q(s, a)
11: convergence← 0
12: end if
13: Q(s, a) = Q′(s, a)
14: end for
15: end for
16: until
17: end function

6.2. Algorithms Based on Greedy Algorithm

The main idea of this algorithm is to search for better strategies based on the current optimal
strategy. A table containing the source state’s (the first state we choose for the optimal strategy)
reachable states, as well as the optimal path to each state are maintained. The state j whose optimal
strategy is maximum is selected and its next reachable state i is searched, if the state i is not in the
optimal policy of the state j and is not in the table, the state i is added to the table. If the state i is already
in the table, the reward of the policy that contains the j and that of the best policy of i are compared.
If the policy containing the j is larger, the optimal policy of the j is set as the optimal strategy of j plus i
which means πi ← πj + j. The concrete steps of the algorithm are shown by the Algorithm 3.

Algorithm 3 is explained in the following manner: First all the variables are initialized and (7 to 13)
add the source state to the open table (14). Then get the current optimal strategy and search the better
strategy based on it (16–50). Finally, output the strategy πt.
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Algorithm 3 Algorithms based on Greedy Algorithm

input: To: The initial matrix of localization tying , Γ: Observation error coefficient
input: A: Sets of allg agent, as: The first assistant robot, at: The robot need assistance
output: πt: Optimal assistance chain from as to at

1: function GETOPTIMALSTRATEGY(R, A, as, at)
2: Π: πi is a list containing optimal Strategy from aS to at
3: V: vi is Cumulative reward when the best strategy πi is taken
4: T: Ti is the matrix of localization typing when the best strategy πi is taken (i > 0)
5: open: An list containing the as which can be visited next
6: open← []
7: i← 0
8: repeat
9: convergence = 1

10: Vi = 0
11: Πi = []
12: Ri = R
13: i← i + 1
14: until i = n
15: Add (open,s)
16: repeat
17: aj = open.head
18: i← 0
19: repeat
20: if Rj.rji 6= 0 and i 6∈ πj then
21: Add (open,i)
22: convergence← 0
23: if πi = [] then
24: vi = γji(Rj.rji)
25: Ri.update (Rj)
26: Add (πj,j)
27: else
28: π∗ = Insert (πj,i,πj.tail)
29: v∗ = Value (π∗,Rj)
30: if v∗ > vi then
31: convergence← 0
32: πi = π∗
33: Ri.update (Rj)
34: k← 0
35: repeat
36: if j ∈ πk then
37: Vi ← 0
38: Πi ← []
39: Ri ← R
40: end if
41: until k = n
42: end if
43: end if
44: end if
45: until i = n or convergence = 0
46: if convergence = 1 then
47: Delete (open,j)
48: end if
49: open.sort()
50: until convergence = 1
51: end function



Sustainability 2018, 10, 2946 10 of 18

7. Sequences of Collaborative Algorithm

In this section, the whole sequences of collaborative algorithm and the communication process
between organiser and robots will be introduced.

Each robot has two switchable modes: independent mode and collaborative mode. Robot can
explore and SLAM freely in independent mode, but once it needs to assist other or be assisted, it will
switch to the collaborative mode at the request of organiser until the collaboration is completed and
can be switched back. To achieve this goal, each robot has to run two threads at the same time: motion
thread and listen thread. The whole sequences of algorithm running on all of robots’ clients is shown
as Algorithm 4 and it is explained in following manner: First initialize all the parameters (02–06).
Then the robots can judge whether they can move freely or not. In the process of exploration, the visual
odometer and bundle adjustment are running at the same time. The pose map is uploaded to organiser
at set intervals (09). The robot needs to judge whether assistance is needed or not (10). If the assistance
is not necessary it moves and updates the parameters ifself (12–20), otherwise it will ask organiser for
help and block up there to wait for a response (22–23). If it gets a command to assist others, he will
arrive at the designated position and observe the specified target, and finally return the observation or
information “mission failture” to organiser (26–30). When it comes to the listen thread, robots will
determine its status based on information obtained from organiser. If one robot needs to assistant
others, it will get the path and target (36–39). If the command is “queuing”, the robot will wait in place,
in order to ensure that there is no unlimited waiting, the robot will cancel the request and continue to
move freely after more than a certain time, but the level of his need for help will increase (40–48). If the
others are ”being assistanted”, it will be waiting for other robot assistance in place (49–50). Robot can
aslo obtain pose and lsc calculated by organiser as the prior information visual odometer and bundle
adjustment (51–53). After the chained localization is execued, robots must upload its own parameters
as required (54–55).

The main function of organiser is to handle the request queue, to get the optimal policy for each
request, and to monitor the execution process of the policy. Therefore, two threads are needed
to implement the function: listen request thread. The sequences of this algorithm is shown as
Algorithm 5 and it is explained in following manner: Organiser determines whether the current
request needs to wait or not and notify the relevant robot according to the queue’s condition (5–11).
If the requirement is delete specified request, then request is deleted (12–13). When processing
requests, first, all requests in the queue are sorted according to the assistant level and get the first
request (16–17). Then organiser ask all robots except target robot for the information and calculate the
optimal algorithm (18–30). For each robot in the optimal strategy, the organiser send their goals and
move paths (31–36). After all robot replying, the organiser send the parameters that need updating
for each robot (37–40). The communication process between the organiser and the robot is shown in
Figure 3 where parameters are level and lsc.
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Algorithm 4 Sequences of robots

1: for each a ∈ A do
2: a.lsc← 0
3: a.Waitstep← 0
4: a.waittime← 0
5: a.x ← 0
6: a.level ← 0
7: while a.isrunning = True do
8: Motion thread:
9: if a.randomMoving = True then

10: if a.lsc > needAssistance or x > Waitstep then
11: a.freeExplore()
12: a.lsc← η ∗ a.lsc
13: if a.Waitstep 6= 0 then
14: a.x ← a.x + 1
15: end if
16: if robot detects closed looping then
17: a.lsc← 1, a.level ← 0
18: a.x ← 0
19: a.Waitstep← 0
20: end if
21: else
22: sendrequest (a.lsc, a.postion, a.level)
23: waitresponse()
24: end if
25: else
26: if a.moving (a.path) then
27: a.sendmessage (a,a.observe(a.target))
28: a.path← Null
29: a.target← Null
30: else
31: a.sendmessage (a,Fail)
32: end if
33: end if
34: Listen tread:
35: response = getResponse()
36: if response = assistantOthers then
37: a.path← response.path
38: a.target← response.path
39: a.randomMoving← False
40: else if response = queuing then
41: a.starttiming()
42: a.randomMoving← False
43: if a.timing() > a.waittime then
44: sendrequest(delete,a)
45: a.randomMoving← True
46: a.level ← a.level + 1
47: a.waitstep = Waitstep
48: end if
49: else if response = waitforAssistant then
50: a.randomMoving = False
51: else if response = updatePose then
52: a.pose = response.pose
53: a.lsc = response.lsc
54: else if response = askInformation then
55: sendmessage(a)
56: end if
57: end while
58: end for
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Algorithm 5 Sequences of organiser

1: organiser.queue = []
2: while organiser.isrunning = True do
3: listen request thread:
4: request = getRequest()
5: if request.type = askAssistant then
6: if queue.empty = False then
7: queue.add (requst.a)
8: sendmessage (a,queuing)
9: else

10: sendmessage (a,waitforAssistant)
11: end if
12: else if request.type = deleteRequest then
13: queue.delete (request.a)
14: end if
15: handle request thread:
16: queue.sort (level)
17: a = queue.head()
18: for each a′ ∈ A− a do
19: sendmessage (askInformation)
20: end for
21: waitforResponse()
22: π ∗ .path← Null
23: π ∗ .Value← 0
24: for each a′ ∈ A do
25: if a′.lsc > a.lsc + θ then
26: if thenπ ∗ .value < getOptimalStrategy(R, A, Π, a, a′).value
27: π∗ ← getOptimalStrategy(R, A, Π, a, a′)
28: end if
29: end if
30: end for
31: for each a ∈ π∗ do
32: sendmessage (a,a.target,a.path)
33: if a ∈ queue then
34: queue.delete(a)
35: end if
36: end for
37: waitforResponse()
38: for each a ∈ π∗ do
39: sendmessage(a,a.pose,a.lsc)
40: end for
41: end while
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Figure 3. Sequences of communication between organiser and robots.

8. Experiment

The goal of the simulation experiments described in this section is to evaluate the performance
of the proposed cooperative SLAM algorithm under different parameters. The experiment was
implemented on the robot operating system (ROS) platform whose distributed design is very suitable
for simulating MRS. Gazebo is a ROS package used to simulate the real-world, including indoor
environment and outdoor environment. The experimental environment is ROS system running on
distributed computing cluster. ‘Gazebo’ and organiser are deployed to one node, and the simulation
program of six robots are deployed evenly on the other three nodes. Network delays can be used
to simulate communication delays. We build one simulation robots using the ‘darwin-op’ model
with a deep camera in its head and the control API of ‘darwin-op’. The initial pose of each robot is
known and “orbslam2” [25] which is an Open-Source SLAM System for Monocular, Stereo and RGB-D
Cameras runs independently on each robot. The experimental world is shown as Figure 4:

The background of our experiment is that multiple humanoid robots explore unknown maps.
So the main indicators to measure the implementation of the task are robots position RMSE,
orientation RMSE and main landmark position RMSE. The effect of cooperative localization between
robots can be reflected under such experimental background.

The experiments have been done with η = 0.996, γ = 0.93, θ = 0.35 (robot will ask for assistance
when LSC is lower than it). The time step is set as 5 s.
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Figure 4. Experimental world.

Experiment 1. This experiment verify the effectiveness of the proposed algorithm compared with
relative method. The Table 1 shows the result of three different ways which are explained below after
30 experiments for each case:

• Case 1: Cluster matching algorithm in the environment without distance IR sensor referred to in
literature [8]. But we made some changes to that algorithm to consistent with our experiment
background. We assume that there is no IR sensor in the environment, and the target robot that
needs help is an “invisible robot”.The cluster matching algorithm proposed in literature 3 is used
to get the cluster head and the neighbors of the invisible robot which is also the assistant robots.

• Case 2: The proposed method with optimal algorithm based on reinforcement learning.
• Case 3: The proposed method with optimal algorithm based on greedy algorithm.

Table 1. Total comparison result.

Robots Position RMSE (m) Orientation Position RMSE (deg) Landmark Position (m)

Case 1 0.3246 7.5352 0.3386
Case 2 0.2573 5.3498 0.2477
Case 3 0.2392 4.8344 0.2238

The proposed algorithm reduce robots position RMSE (m) by 25.30% Orientation position RMSE
(deg) by 35.84% and Landmark position RMSE (m) by 33.90% compared with cluster matching
algorithm in the best case. The development of these three indicators over time are shown in Figures 5–7
respectively. The cluster matchings algorithm does not take into account the accuracy of the pose
of the observer itself, especially without the help of IR sensor. However the proposed algorithm
determines the strategy of cooperation according to LSC of each robot which can make the advantage
of collaboration better.

Experiment 2. This experiment shows the effects of different parameters and different optimal
strategies on proportion of coordination. Active cooperative localization improves the efficiency of
correction of robots’ pose and landmarks at the expense of the efficiency of MRS in exploring new
landmarks. The cost of MRS in active collaborative localization can be measured by the distance of
the robots covered in the process. The more journey it is, the greater the possibility of the robot to
find new landmarks is if they covered that distance in free walk, and the greater the cost is. Therefore,
The variable used to compare is percentage of the distance robots cover for collaboration. The Figure 8
shows the result of three different ways which are explained:
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• Case 1: The proposed method with optimal algorithm based on greedy algorithm.
• Case 2: The proposed method with optimal algorithm based on reinforcement learning.
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Figure 5. Robots position RMSE.
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Figure 6. Orientation position RMSE (deg).
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Figure 7. Landmark position RMSE (m).
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Figure 8. Percentage of the distance robots cover for collaboration with different optimal algorithm.

Different θ will also affect the process of collaboration. Figure 9 shows the consumption of
collaboration where case 1 case 2 case 3 respectively take θ as 0.2, 0.35, 0.6. The experimental results
show that when the greedy algorithm and the theta value are larger, the consumption of collaboration
is larger, so although the effect of collaborative positioning is improved, it will affect the exploration
and construction of MAS.
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Figure 9. Percentage of the distance robots cover for collaboration with different optimal algorithm.

9. Conlusions

This paper proposed a relative localization method called chained localization for humanoid
multi-robot SLAM. Robots in the proposed MAS are provided with an extra attribute: LSC which can
be updated when they are exploring or the closed loop is detected or the collaborative localization
is completed. Besides, We also propose two algorithms for obtaining optimal strategies for chained
localization based on reinforcement learning and greedy algorithm. Compared with other algorithms,
each robot can share its accumulated localization advantage which can reduce dependence on
closed loop detection and static landmark. The proposed mechanism and algorithms is suitable for
application to large scale environment without static landmark, global localization sensors. However,
This algorithm can only be used when the initial absolute pose of the robot is known, because the
global map and the local map can only be consistent through the pose of the robot. Finally, we designed
and did simulation experiments to compare our proposed methods with the state of the art relative
algorithm. The proposed algorithm reduce robots position RMSE (m) by 25.30% orientation position
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RMSE (deg) by 35.84% and landmark position RMSE (m) by 33.90% compared with cluster matching
algorithm which is drastic improvement. In the future work, we plan to apply machine learning to
the multi-robot collaboration SLAM, which means trying to adjust some of the key parameters in the
cooperative mechanism according to the effect of the SLAM.
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