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Abstract: This study provides high-resolution modeling of daily water budget components at
Hydrologic Unit Code (HUC)-12 resolution for 50 watersheds of the South Atlantic Gulf (SAG)
region in the southeastern U.S. (SEUS) by implementing the Soil and Water Assessment Tool (SWAT)
model in the form of a near real-time, semi-automated framework. A near real-time hydrologic
simulation framework is implemented with a lead time of nine months (March-December 2017) by
integrating the calibrated SWAT model with National Centers for Environmental Prediction coupled
forecast system model version 2 (CFSv2) weather data to forecast daily water balance components.
The modeling exercise is conducted as a precursor for various future hydrologic studies (retrospective
or forecasting) for the region by providing a calibrated hydrological dataset at high spatial (HUC-12)
and temporal (1-day) resolution. The models are calibrated (January 2003—-December 2010) and
validated (January 2011-December 2013) for each watershed using the observed streamflow data
from 50 United States Geological Survey (USGS) gauging stations. The water balance analysis for the
region shows that the implemented models satisfactorily represent the hydrology of the region across
different sub-regions (Appalachian highlands, plains, and coastal wetlands) and seasons. While
CFSv2-driven SWAT models are able to provide reasonable performance in near real-time and can be
used for decision making in the region, caution is advised for using model outputs as the streamflow
forecasts display significant deviation from observed streamflow for all watersheds for lead times
greater than a month.

Keywords: hydrologic modeling; soil moisture; SWAT; southeastern U.S.; CFSv2; HUC-12

1. Introduction

Global food security has come under severe threat, especially with the increasing human
population and associated demand for freshwater resources and food production [1-3]. There are
concerns over the increasing vulnerability of the southeastern U.S. (SEUS) to water-related conflicts
due to continued growth in industrial, agricultural, metropolitan, and recreational water demand [4-6].
It is important to note that the SEUS is expected to have the largest absolute increase in population
compared to any other region in the U.S. by 2030 [7,8]. Since water is a limited resource, it is likely that
conflict for water sharing and use will become more commonplace and severe in the coming years.
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Effective water resources planning has been very important for policymakers and engineers
alike for this region, especially in the wake of several droughts in the region within a span of
less than a decade. In the last fifteen years, the SEUS region has experienced an array of severe
droughts, including severe and/or extreme drought conditions in early 2017 that impacted around
half of the study region. These droughts have not only caused enormous strain on the agriculture
and farms activities in the region but have also heightened instances of wildfires in the region,
especially in the Appalachian region [9]. As the frequency of future hydrologic extremes is expected
to increase, a reliable hydrologic forecast can be useful for the efficient planning of available water
resources [10]. Previously, Lu et al. [11] developed an empirical model to estimate long-term annual
actual evapotranspiration for forested watersheds in the SEUS. Limaye et al. [12] developed a
macroscale hydrologic model for regional climate assessment studies in the SEUS. However, these
studies do not address the watershed-scale variability in the region, which plays a crucial role in
informed water resources management in the region.

Soil moisture and evapotranspiration (ET) are two important components of the hydrologic
cycle and play an important role in the water, energy, and carbon cycle. ET plays an important
role in linking the water, energy, and carbon cycles, and hence is crucial for the climate system and
the hydrological cycle [13]. Accurate soil moisture and ET estimation is essential for delivering
(or improving the quality of) reliable meteorological, hydrological, and environmental forecasts,
such as precipitation [14], discharge estimates and prediction [15,16], identifying flash-flood prone
areas and flood forecasting [17-19], the identification and characterization of droughts [20-22],
and understanding soil-vegetation—atmosphere interactions [23,24] and boundary layer fluxes for
improved water resource management [25,26]. However, both soil moisture and ET exhibit significant
spatiotemporal variability across different scales owing to a range of processes, such as precipitation,
and energy and water fluxes [27,28]. Factors including orography (on all scales), vegetation, and soil
texture [29] also influence ET diurnally. There are no long-term observation data for soil moisture,
unlike other hydrological variables, such as precipitation and streamflow, which are frequently
recorded and reported. Additionally, large-scale remote sensing of ET using mechanistic or empirical
models with the remotely sensed land surface and atmospheric properties [30-33] is popular;
however, comparisons of the large number of remotely sensed ET datasets have indicated significant
uncertainties associated with these products, with relative errors of 15-30% [33-35].

Currently, a combination of climate forecasts or reanalysis data with hydrological models is
used to simulate the impacts of land use and climate change and other anthropogenic activities
on the hydrological cycle [36,37]. These models provide a physical representation of the spatially
variable hydrological processes [38] and key hydrological components such as ET and soil moisture.
Previous studies have integrated hydrological models with a climate forecast dataset to forecast the
state of hydrologic variables at seasonal/sub-seasonal time steps [39-42]. Utilizing information from
seasonal climate forecasts and long-term climate predictions has proven to be of great interest to
water planners and decision-makers to improve preparedness towards, and mitigation of, impacts
due to climatic extremes [43,44]. Dynamical seasonal forecasting systems that are based on coupled
atmosphere—ocean—land general circulation models (CGCMs) have been widely used for hydrologic
forecasting in recent years [45,46]. Seasonal climate forecasts are useful in improving farmers’ ability
to mitigate adversities linked to climate extremes, particularly in rain-fed systems [41]. Farmers can
use such forecasts to improve their crop diversification strategies and to decide which crops to
plant [47,48]. Skillful prediction of the field-scale soil moisture is important to decide crop type,
resource use, and crop insurance and contract renewals [44]. Application of the climate forecast
system reforecast and reanalysis (CFSRR) products in hydrologic monitoring and prediction, seasonal
soil moisture estimation, and understanding land-atmosphere interactions [49-54] has also been
extensively explored. Very recently, Zhang et al. [55] integrated CFSv2 [56] with the Variable Infiltration
Capacity (VIC) model and satellite data to predict drought in southwestern China and reported that
CFSv2-coupled hydrological models only provide reliable soil moisture drought predictions for lead
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times of 1 month. Recently, Kang and Sridhar [57] demonstrated the use of a CFSv2 weather forecast
dataset in conjunction with VIC and SWAT models for improving drought prediction over the U.S.

However, most of these studies do not address the local landscape processes and biophysical
heterogeneity to understand the watershed-scale hydrological responses to hydrological extremes,
such as high/extreme precipitation or droughts, at local scales. Hydrological models implementable
in a near real-time, semi-automated framework at the sub-watershed scale of 12-digit Hydrologic
Unit Code (HUC-12) resolution are largely unavailable for the SAG region, despite growing
water-related conflicts and growing demand for water for both agricultural and industrial applications.
Recent studies by Kang and Sridhar [58] and Sehgal and Sridhar [59] highlight the importance of
sub-watershed scale variability in hydrological processes and provide the impetus for high-resolution
modeling with a focus on seasonal and sub-seasonal forecasting for the SAG region.

This study implements the SWAT model for 50 watersheds in the SEUS, calibrates and validates
the models using the observed streamflow data, and provides retrospective hydrological simulations
for the SAG region from 1982-2013 at a daily time step. Furthermore, the SWAT model is integrated
with climate drivers from CFSv2 models to provide near real-time simulation and 9-month lead
forecasts of hydrological variables from January 2014 to March 2017, and from April 2017 through to
December 2017, respectively. The choice of SWAT model for simulating watershed hydrology is carried
out by carefully evaluating the advantages of using semi-distributed hydrological models over lumped
or fully distributed models, and the ease of implementation of the SWAT model compared to other
similar, process-based models. While complete understanding of catchment hydrology may not be
achievable using fully-distributed models, primarily due to the lack of quality dataset at a high spatial
and temporal resolution, the lumped models are often criticized for not being capable of providing
a reliable representation of the spatial variability in the land uses and hydrological processes [60].
Therefore, a semi-distributed model, such as SWAT, provides a tradeoff between fully-distributed and
lumped models.

The objectives of this study are to provide high-resolution (HUC-12, daily), validated hydrological
datasets for future application to the study region by implementing the following steps:

(@) Develop the SWAT model to simulate various hydrologic variables at a daily time step for the
South Atlantic-Gulf (SAG) region of the southeastern U.S. (SEUS) at HUC-12 (12-digit Hydrologic
Unit Code) resolution.

(b) Two-fold validation of the dataset using observed streamflow and in-situ soil moisture dataset.

(c) Develop a near real-time forecasting framework with a forecast window of 9 months to forecast
the water balance components at the sub-watershed scale using the calibrated SWAT model
initialized with climate drivers from CFSv2 at a daily time step.

The purpose of this study is to develop models to represents the sub-watershed scale processes at
a high resolution (HUC-12), which can be used under a dynamic setting to develop water resources
scenarios for the routine assessment of water availability with relative ease over sub-continental scales.

2. SWAT Model

Model Background

The Soil and Water Assessment Tool (SWAT) is used in this study to simulate the hydrologic
cycle at a sub-watershed scale. SWAT operates in a continuous-time mode, and is a process-based,
semi-distributed, comprehensive water balance model [61-63]. Simulations from the SWAT model
incorporates weather, hydrology, sedimentation, soil temperature, plant growth, nutrients, pesticides,
and land management [64]. The model uses precipitation, radiation, and temperature, along with
elevation, soil, and land cover/land use data as inputs for simulating surface and sub-surface
hydrological processes. The unique combinations of soil type and land use (and slope if desired) are
lumped as a hydrologic response unit (HRU) that dictates the physical response of the watershed to
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climate drivers. Thus, each sub-watershed is divided into several HRUs and the land component of
the hydrologic cycle is modeled for each HRU. Surface runoff is estimated in the model using the Soil
Conservation Service Curve Number (SCS-CN) method [65].

A two-layer structure represents the aquifer system in SWAT, where the first layer represents
the shallow aquifer and can interact with the surface water or add to the groundwater flow, whereas
the water in the deeper layer is considered to be out of the system. These fluxes are calculated as a
lumped average value for the entire HRU. The surface runoff is routed to the outlet to the watershed
as streamflow. SWAT uses a temperature dependent equation like the Penman-Monteith equation
for estimating the potential evapotranspiration, while plant growth is modeled using a modified
Environmental Policy Integrated Climate (EPIC) model to estimate actual plant transpiration [66].
For more details on the SWAT model, readers are further referred to the SWAT literature database for
literature on SWAT for various hydrological modeling applications [67].

3. Study Area and Model Dataset

3.1. Study Area

This study evaluates the hydrology of the South Atlantic-Gulf (SAG) region in the southeastern
U.S., as shown in Figure 1. The geographic area of the SAG region spans an area of 724,326 square
kilometers and encompasses Florida (FL) and South Carolina (SC), and parts of Georgia (GA),
Alabama (AL), Louisiana (LA), Mississippi (MI), North Carolina (NC), Tennessee (TN), and Virginia
(VA) [68]. The western part of the SAG region is bounded by Appalachia and is predominantly forested
with low development and urbanization, high elevation, and silty soil. The central and southern parts
of the SEUS are dominated by woody wetlands, open spaces, and cultivated crops. The southern tip of
Florida is dotted with water bodies and wetlands, with some areas of cultivated crops and developed
spaces. The soil in the coastal plains has a high percentage of sand and low percentages of clay and silt
(Figure 2).
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Figure 1. (Left) Map showing the location of the study area. Watersheds in the South Atlantic-Gulf
(SAG) region are highlighted in grey shade. The soil moisture measurement stations from the U.S.
Climate Reference Network (USCRN) are shown with red triangles. The inset shows the location of the
entire study region over the map of the contiguous U.S. (Right) Map showing the modeled watersheds
with their respective numbers.

The SAG region is identified using a two-digit number “03” in the HUC system. This region is
divided into 18 basins, each distinguished using a four-digit HUC identifier ranging from 0301-0318.
These HUC-4 basins are further divided into 50 watersheds, and the SWAT model is used to model
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the hydrology for each watershed at a HUC-12 resolution. HUC-12 is the 12-digit identifier for the
sub-watersheds. Out of a total of 7453 HUC-12 sub-watersheds provided by the National Hydrography
Database plus (NHD+) in the study area, the SWAT model delineated 7391 sub-watersheds for the
entire SAG region, thus ensuring high spatial resolution of the simulations. Table 1 provides the
list of 18 basins in the SAG region; each is referred to by its HUC-4 identifier and the name of the
sub-watersheds with the outlet matching with the U.S. Geological Survey (USGS) streamflow-gauging
stations. Note that the authors provide the watershed numbers only for ease of reference and the
identification of these watersheds in the study, and they are not to be confused with the watersheds at
HUC-6, which are larger than these watersheds in most cases.
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Figure 2. Elevation, percentage of silt, sand and clay, and land use (NLCD 2001) in the study area.
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Table 1. CFSv2 monthly ensembles with respective initial day of the month for four members initialized
at 00Z, 06Z, 12Z, and 18Z [69].

Initialization Month Total Members Initialization Days
January 28 1,6,11,16,21, 26,31
February 20 5,10, 15, 20, 25

March 24 2,7,12,17,22,27
April 24 1,6,11, 16,21, 26

May 28 1,6,11, 16,21, 26, 31
June 24 5,10, 15, 20, 25, 30
July 24 5,10, 15, 20, 25, 30
August 24 4,9,14,19,24,29
September 24 3,8,13,18, 23,28
October 24 3,8,13,18,23,28
November 24 2,7,12,17,22,27
December 24 2,7,12,17,22,27

3.2. Model Dataset

The basic drivers for the SWAT model were the U.S. Geological Survey (USGS)-derived Digital
Elevation Model (DEM), State Soil Geographic (STATSGO) soil data, and land use/land cover data
from the National Land Cover Data (NLCD) 2011 [70]. Weather data (precipitation and temperature)
is obtained from the National Centers for Environmental Prediction (NCEP) Climate Forecast System
Reanalysis (CFSR) data [56,71,72]. The reanalysis data is available for a period of 36 years from 1979 to
2013 and can be accessed through the global weather database for SWAT (URL: https:/ /globalweather.
tamu.edu). Studies have previously evaluated the performance of the reanalysis product and have
reported satisfactory performance in watershed-scale modeling using the dataset [72-75]. One USGS
station for each watershed was chosen for calibrating and validating the streamflow generated using
the SWAT model (listed in Table 1). The land use, soil, and elevation data used in the models are
shown in Figure 2.

The CFSR is extended as an operational, real-time product that forecasts the atmospheric variables
with a lead time of nine months and was initialized multiple times a day, and on different days of
the month (Table 2). Precipitation and temperature time series were obtained from CFSv2 data from
1 April 2011, through to 19 December 2017 by using the first instance of the CFSv2 model dataset from
1 April 2011, through to 12 March 2017, and a 9-month forecast data was then obtained from the most
recent initialization (12 March 2017 in this study). Figure 3 provides a schematic of data assimilation
for the study. The red ellipse highlights the model run for each initialization, which was used for SWAT
model implementation, with a total number of K initializations from 1 April through to 12 March 2017.
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Figure 3. Data assimilation scheme for precipitation and temperature from the CFSv2 dataset.
Precipitation and temperature time series were obtained from 1 April 2011, through to 12 March
2017, for the first instance of the CFSv2 model runs. Then, 9-month forecast data were obtained from
the most recent initialization.
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Table 2. List of the 18 basins in the South Atlantic-Gulf region identified with a four-digit Hydrologic Unit Code and a six-digit identification number (not to be

confused with HUC-6) for the constituent watersheds along with their respective outlet USGS stations (reproduced with permission from Sehgal and Sridhar [59]).

Basin USGS Station Watershed River/Basin Basin USGS Station Watershed River/Basin
02066000 030101 Roanoke 0309 02292900 030902 Caloosahatchee
0301 02075500 030102 Dan 02296750 031001 Peace
02047000 030103 Nottoway 0310 02301500 031002 Alafia
0302 02084000 030201 Tar 02313000 031003 Withlacoochee
02091814 030202 Neuse - 02323500 031101 Suwannee
02134500 030301 Lumber 02317500 031102 Alapaha
0303 02106500 030302 Black 0312 02330150 031201 Ochlockonee
02108000 030303 NE Cape fear 02338000 031301 Chattahoochee
02129000 030401 Pee Dee 0313 02350512 031302 Flint
0304 02134500 030402 Lumber 02358700 031303 Apalachicola
02132000 030403 Lynches 02369600 031401 Yellow
02147020 030501 Catawba 0314 02366500 031402 Choctawhatchee
0305 02169500 030502 Congaree 02374250 031403 Conecuh
02175000 030503 Edisto 02397000 031501 Coosa (Rome)
02197000 030601 Savannah 0315 02407000 031502 Coosa (Childersburg)
0306 02198000 030602 Barrier Creek 02428400 031503 Alabama
02202500 030603 Ogeechee 02448500 031601 Noxubee
02203000 030604 Canoochee 0316 02466030 031602 Black warrior
02223500 030701 Oconee 02469761 031603 Tombigbee
0307 02215000 030702 Ocmulgee 02478500 031701 Chickasawhay
02225500 030703 Ohoopee 0317 02474500 031702 Tallahala
02228000 030704 Satilla 02479300 031703 Red Cr.
0308 02234000 030801 St. Johns (Geneva) 02482550 031801 Pearl (Carthage)
02244040 030802 St. Johns (Buffalo bluff) 0318 02488500 031802 Pearl (Monticello)
0309 02270500 030901 Arbuckle Cr. 02489500 031803 Pearl (Bogalusa)
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4. Methods

4.1. Modeling Framework

The SWAT model was calibrated from 2003 through to 2010 with a three-year warm-up period
(2000 through to 2002) and was validated from 2011 through to 2013. The parameterization of the
models was carried out in ArcSWAT 2010 (https:/ /swat.tamu.edu/software/arcswat/). The sequential
uncertainty fitting-2 (SUFI-2) algorithm [76-78] was employed to calibrate the model parameters using
the SWAT-CUP (calibration/uncertainty or sensitivity program) interface. The SUFI-2 algorithm was
used based on its ability to provide the best fitness while accounting for the high degree of uncertainty
between the simulated and observed dataset [79]. The parallel processing routine [80] available with
SUFI-2 was used while simulating 1000 iterations for each watershed. Once the calibrated parameters
were obtained from SWAT-CUP, a MATLAB-based script was written to update SWAT input-output
files and run the SWAT model with calibrated parameters for the validation period and re-run the
SWAT model for the period of January 1982 through to December 2013 with a three-year warm-up
period (1979 through to 1981) to obtain the long-term hydrologic variables for this study.

4.2. Calibration of SWAT Model Using the Sequential Uncertainty Fitting (SUFI)-2 Algorithm

A set of 24 parameters were chosen for calibration to address various hydrologic components
of the watershed, such as surface runoff (curve number, soil and plant evaporation, surface runoff
and Manning'’s coefficient, and available soil water capacity, etc.), baseflow (groundwater “revap”,
aquifer—soil interaction, depth of water in the shallow aquifer, time for water leaving the root zone to
reach the shallow aquifer, and deep aquifer percolation), storm water (channel hydraulic conductivity,
stormflow lag time, etc.), snow (snowmelt rate, snow temperature, etc.), etc. Nash Sutcliffe Efficiency
(NSE) [81] was chosen as the performance criteria for the models. The choice and effect of these
parameters are very well documented in the SWAT literature [62-87], and the selected parameters
are consistent with the aforementioned studies. The same set of selected 24 parameters were
calibrated for each watershed as a measure to achieve reasonable performance for watershed-scale
streamflow simulation and a broad representation of the geographical and hydrological variability
of the region. These parameters were carefully selected to address both wetland /riparian watershed
hydrology [65-89] and inland basin characteristics, with special regard to the heterogeneity in elevation,
vegetation, and soils of the study region.

A list and a brief description of the 24 parameters selected for this study is provided in Table 3.
In order to provide realistic estimates of the parameter space for each watershed, the initial parameters
were fine-tuned before implementing calibration in the interest of computational ease and time.
The minimum and maximum values provided in Table 3 provided the parameter range used for the
search of the optimum value of the respective parameter in calibration. Since the total number of
watersheds used in this study made it difficult to provide the calibrated values in the form of a table,
Figure 4 provides the spatial map of the calibrated values of the parameters used in this study:.
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Table 3. Selected parameters for calibrating the SWAT Model using Sequential Uncertainty Fitting 2 (SUFI-2) algorithm for the daily discharge dataset from 1 January

2003 to 31 December 2010. The minimum and maximum parameter range for the SUFI-2 optimization is provided in the table. The calibrated values are shown in

Figure 4.
Class Name Description Method Used Min. Max.
ESCO Soil evaporation compensation factor (unitless) Replace (v) 0 1
EPCO Plant evaporation compensation factor (unitless) Relative (r) —-0.2 0.2
HRU HRU_SLP Average slope steepness (mm/mm) Relative (r) -0.2 0.2
OV_N Manning’s “n” value for overland flow Replace (v) 0.01 30
SLSUBBSN Average slope length (m) Relative (r) —-0.2 0.2
MGT CN2 Initial SCS curve number for moisture condition II (unitless) Relative (r) -0.2 0.2
BIOMIX Biological mixing efficiency (unitless) Relative (r) —0.2 0.2
SOL SOL_AWC Available water capacity of the soil layer (mnvimm) Relative (r) —0.2 0.2
SOL_BD Moist bulk density (mg/m? or g/cm3) Replace (v) 0.9 2.5
SMTMP Snowmelt base temperature (°C) Relative (r) —-0.2 0.2
SMFMN Melt factor for snow on Dec 21 (mm H,O/°C-day) Relative (r) —-0.2 0.2
SMFMX Melt factor for snow on June 21 (mm H,O/°C-day) Relative (r) —-0.2 0.2
BSN Calibration coefficient used to control the impact of storage time constant (K,) for
MSK_CO1 . m Relative (r) -0.2 0.2
normal flow when Ky, is calculated for the reach
MSK_CO2 Same as above, but for low flows Relative (r) —-0.2 0.2
SURLAG Surface runoff lag coefficient Replace (v) 0.05 24
GWQMN Threshold depth of water in the shallow aquifer required for return flow to occur (mm) Replace (v) 0 5000
GW_REVAP Groundwater revaporation coefficient (unitless) Replace (v) 0.02 0.2
GW GW_DELAY Groundwater delay (days) Replace (v) 0 500
ALPHA_BF Base flow alpha factor (days) Replace (v) 0 1
RCHRG_DP Groundwater recharge to deep aquifer (fraction) Relative (r) -0.2 0.2
REVAPMN Thre?,hold depth of w.ater in the shallow Relative (r) —02 0.2
aquifer for revaporation to occur (mm)
RTE CH_N2 Manning coefficient for channel (unitless) Replace (v) —0.01 0.3
CH_K2 Effective channel hydraulic conductivity (mmvh) Replace (v) —0.01 500
ALPHA_BNK Baseflow alpha factor for storage (days) Replace (v) 0 1
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To highlight the influence of the land use characteristics on the estimation of the model parameters,
a comparison is made between some of the selected model parameters, namely CN2, BIOMIX,
HRU_SLP, and ESCO (for brevity), with the percentage of land use under five classes, namely
developed land, forest, cultivated, grass/shrub/hay, and wetlands, at a watershed scale in Figure 5.
It can be observed that there was a strong influence of land use characteristics on the model parameters.
A higher HRU SLP corresponded to the higher percentage of forest areas, as much of the Appalachian
mountain region is heavily forested. A higher value of BIOMIX corresponded to the higher percentage
of forest or grasslands and a low amount of development in watersheds. High ESCO values
corresponded to forested watersheds and a higher percentage of wetland areas, especially in the coastal
watersheds. CN2 was impacted by a combination of factors, including a higher percentage of developed
or cultivated areas or a higher percentage of wetlands. In some cases, CN2 also corresponded to a
high forest cover percentage. However, this can be explained by the mountainous topography of these
watersheds. It was observed that while the values of these parameters varied for each watershed
(Figure 4), the overall performance of the models for streamflow simulation during calibration and
validation periods at all 50 outlets was satisfactory with the given set of model parameters. The strong
influence of land use, topography, soil type, and other watershed scale characteristics could be seen
on the spatial variability of these parameters. For instance, predominantly forested areas showed
higher values for BIOMIX due to the higher redistribution of soil constituents from biota (for example
earthworms, etc.) compared to wetlands or developed watersheds; HRU_SLP values were higher
for mountainous regions compared to plains and coastal areas; SLSUBBSN was found to be higher
for coastal watersheds due to the low gradient. OV_N showed variability based on the surface
characteristics of the overland flow and varied from basin to basin. Other important parameters,
such as CN2, SOL AWC, ALPHA_BF, and EPCO, show significant spatial variability. A combination
of these factors determined the response of a watershed to precipitation and the resultant discharge
and storage. For example, low ALPHA_BF numbers signified a slow response to changing moisture
conditions in the baseflow under no recharge to the watershed, whereas higher CN2 numbers signified
higher runoff for a given precipitation amount. Interaction with groundwater (GW_DELAY, GW_QMN,
and GW_REVAP) and runoff play a major role in the partitioning of precipitation in the watershed
into runoff, soil, and groundwater storage. A slow surface-aquifer interaction, coupled with a high
curve number, led to high values of discharge.
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Figure 4. Maps of SWAT parameters calibrated using the SUFI-2 algorithm.

4.3. Performance Evaluation of the SWAT Model

The SWAT-simulated streamflow is compared with the observed discharge data from the selected
USGS gauging stations for the purpose of performance assessment. Three statistical performance
indices, namely the coefficient of determination (R?), the normalized root mean square error (NRMSE),
and Willmott’s Index (WI) [90,91], were used for quantitative assessment of the results. The NRMSE
were normalized values of the RMSE to a range of [0, 1] to facilitate comparison of the model
performance with other watersheds. For all selected indices, values closer to 1 indicate better
performance. Latest studies have proposed spatial-pattern-oriented model calibration and performance
indices (based on simulating the spatiotemporal variability of the dataset) [92,93] based on satellite
observations and/or advanced measurement and monitoring capabilities in the study region [94].
However, a lack of such a dataset at the spatial and temporal resolution of this study restricted
the validation of the dataset to sub-watershed scale validation of observed streamflow from USGS,
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and validation of the seasonal and sub-seasonal variability of the simulated soil moisture using
in-situ stations.
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Figure 5. Scatter plot of CN2, BIOMIX, HRU SLP, and ESCO with the percentage of dominant land-use
types for the 50 watersheds in the study region.

4.4. Hydrologic Simulations Using the CFSv2-Integrated Calibrated SWAT Model

The calibrated SWAT model was integrated with CESv2-derived variables from April 2011
through to December 2017 with a warm-up period of 3 years, thus providing simulation outputs
from January 2014 through to December 2017. Seamless daily simulation outputs were obtained from
January 1982 through to December 2017 by combining the retrospective model simulations from the
CFSR-integrated SWAT model and the CFSv2-integrated SWAT model. SWAT-CFSv2 model outputs
(soil water, evapotranspiration, potential evapotranspiration, surface runoff, watershed precipitation,
etc.) for the period of April 2011 through to March 2017 were obtained in near real-time mode since the
input meteorological data was taken from the first CFSv2 model runs, whereas SWAT-CFSv2 output
data from March through to December 2017 were the forecasted model outputs.
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4.5. Water Balance Analysis

This study follows Sridhar and Hubbard [95] and Singh et al. [96] in studying the water balance
of the study region. The fundamental water balance equation can be expressed as:

aa—f:PRECJrIfETfRfD (1)
where S is the soil water in the root zone (mm); ¢ is the time (day); PREC is precipitation (mm/day);
I is the irrigation (mm/day); ET is the actual evapotranspiration (mm/day); R is runoff (mm/day);
and D is the drainage below the root zone (mm/day).

The daily estimates of water balance components for each watershed were added to the monthly
totals and subsequently used to estimate the monthly water balance components for each watershed.
The change in soil water storage ASW was calculated by subtracting the storage of the previous month
from the current month’s (t) storage.

ASW = SW; — SW,_; @)

The actual ET was computed for each month using the change in precipitation and soil
water storage
ET = PREC — ASW,ifASW <0
ET = PREC + ASW,ifASW > 0 (©)]
ET = PET,ifASW > 0

The difference between potential ET (PET) and actual ET, was used to calculate the water deficit.
Surplus water was estimated by subtracting ET from the sum of the soil storage and precipitation.

Deficit = PET — ETSurplus = PREC—(ET — ASW) 4)
5. Results and Discussion

5.1. Streamflow Validation

A spatial representation of the SWAT models in simulating stream discharge is provided in
Figure 6. It can be seen that while the performance of the SWAT models can be deemed satisfactory
for most inland gauging stations, the performance of the models was weak in the coastal marshlands,
especially in Florida. It is to be noted that at these gauging locations, the observed streamflow discharge
was heavily influenced by tides. These tidal activities added a secondary oscillatory component in the
streamflow records. These tidal cycles corresponded to a period of 24.84 h and successive averaging in
daily computations of the recorded data by USGS led to a secondary oscillatory component in the data
with a time period of about two weeks. These oscillations, which were unrelated to the watershed
hydrology, were often missed by the SWAT models, leading to a high degree of discrepancy between
the observed and the simulated streamflow. Furthermore, extensive basin management and regulation
practices could also lead to poor simulations by the SWAT models as water management practices
were not explicitly included in the SWAT model setup in this study. Additionally, it was observed that
the performance of the SWAT model was better for larger, downstream watersheds due to reduced
intermittency and sustained flow regimes. A combination of these factors caused the deviation of
SWAT-simulated values from the observed dataset. For a vast majority of watersheds (approximately
30 inland watersheds), the models showed R? = [0.45, 0.68], NRMSE = [0.07, 0.1], and WI = [0.45,
0.68] for the calibration and validation datasets at daily time step, respectively. The performance of
the models for the rest of the SAG region was assessed to be satisfactory based on the findings of
several other studies conducted in various parts of the SEUS, such as Virginia [58], the coastal plain of
southwestern Georgia [97], low-gradient watersheds in South Carolina [98], etc.
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5.2. Validation of Soil Moisture Data

Given the importance of long-term high-resolution soil moisture (SM) simulations for the study
region, a comparison was made between the SWAT simulated SM with nine in-situ stations located
within the study area. These soil moisture stations belong to the U.S. Climate Reference network
(USCRN), which provide observations for five standard depths, i.e., 5 cm, 10 cm, 20 cm, 50 cm, and 100
cm. Weekly averaged values of the observed SM from USCRN stations were compared with the
corresponding values of the area averaged, sub-watershed scale SM from the total rooting depth of
the SWAT models after suitable conversion to volumetric units. Figure 1 provides the geographic
locations of the USCRN stations selected for this study. The SM time series for five soil sensor depths
for one of the USCRN stations used in the study area are provided in the supplementary material.
In order to capture the general dynamics of the SM across the total rooting depth, this study used
in-situ soil moisture data from three sensor depths, i.e., 10 cm, 20 cm, and 50 cm, for simultaneous
comparison with area-averaged total rooting depth soil moisture simulations from the SWAT models
for the respective sub-watershed. For ease of comparison, a suitable conversion was applied to the
SWAT simulated soil moisture to obtain the volumetric SM content using the total rooting depth of the
respective sub-watershed.

Figure 7 provides a comparison of the in-situ and simulated SM values for three sensor depths.
The days with the missing in-situ data were ignored in the analysis. Strong seasonality was evident
from the plots, where SM values could be observed to decline in the summer months and recovered
in the winter months. Table 4 provides the comparison between the SWAT simulated SM with the
in-situ measurements using correlation and RMSE as performance indices. It can be observed that
the performance of the SM simulation was satisfactorily high except for the coastal watersheds (in
Florida and another in South Carolina) for reasons highlighted in Section 5.1. While for most locations,
the general inter-seasonal dynamics was captured by the SWAT simulated SM, there could be a
systematic bias in the simulations or errors in capturing the extreme high and low values. Despite
relatively high values of RMSE in some stations due to systematic bias in the simulations, high values
of correlation between the in-situ and simulated SM provided the opportunity to use the simulated
SM in applications where the general trend of the dataset and deviation from the retrospective values
were of importance. This made SM simulations from SWAT useful for retrospective drought analysis
and/or real-time monitoring, as used by Sehgal and Sridhar [59].

However, there were two important considerations in interpreting the comparison of model and
in-situ SM data: (i) difference in the scale of the SWAT simulations and in-situ observations, and
(ii) difficulty in determination of the representative sensor depth for capturing the rooting depth
soil moisture dynamics. While point-scale measurements typically have a support scale of a few
centimeters, the SWAT models provided a lumped estimate of SM simulations at the HRU scale.
This difference in scale between the in-situ and SWAT simulated SM may have added systematic
bias in the two datasets. Furthermore, moisture distribution within a soil profile is a non-linear and
complex process with a strong influence of a combination of factors like local topography, vegetation,
soil composition, soil hydraulic properties, etc. This makes it difficult to assign a representative soil
depth to capture the root-zone soil moisture dynamics using the in-situ measurements.
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Figure 6. Values of the statistical performance indices for the 50 USGS streamflow gauging stations
selected for this study for the calibration (2003-2010) and validation (2011-2013) periods. (Statistical

1y, (0i-piy?

(Max(0)—Min(0))’ Wl =1-

indices are defined as: R? = L (0-0)(Pi—P) -, NRMSE =

B B VI (0i-0)*\/xiy (Pi-P)
Z?’:j:g\[((lil:g))ljr\(%ii%%lz)z [90], where O; and Pi are the observed and estimated discharge time series and
n is the number of data points).
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Figure 7. Comparison of weekly in-situ soil moisture and the SWAT simulated soil moisture (in

volumetric units) from the corresponding HUC-12 resolution sub-watershed for three sensor depths

(10 cm, 20 cm, and 50 cm) at nine locations.

Table 4. Performance evaluation of the sub-watershed (HUC-12) scale SWAT-simulated soil moisture

(in volumetric units) using in-situ soil moisture observations for three sensor depths (10 cm, 20 cm, and

50 cm) at nine locations.

Correlation RMSE (m3/m3)

Station location (Lat, Lon) 10 cm 20 cm 50 cm 10 cm 20 cm 50 cm
Durham, NC (35.97, —79.09) 0.658 0.681 0.749 0.227 0.224 0.372
Blackville, SC (33.36, —81.33) 0.324 0.345 0.279 0.131 0.125 0.020
McClellanville, SC (33.15, —79.36) 0.550 0.543 0.502 0.080 0.017 0.076
Watkinsville, GA (33.78, —83.39) 0.581 0.602 0.643 0.043 0.012 0.078
Sebring, FL (27.15, —81.37) 0.424 0.436 0.533 0.081 0.029 0.100
Newton (W), GA (31.31, —84.47) 0.552 0.564 0.481 0.029 0.017 0.033
Newton (SW), GA (31.19, —84.45) 0.579 0.594 0.628 0.051 0.007 0.098
Selma, AL (32.33, —86.98) 0.726 0.673 0.339 0.290 0.029 0.045
Newton, MS (32.34, —89.07) 0.582 0.348 0.265 0.107 0.099 0.095

5.3. Near Real-Time Daily Simulations Using the CESv2-Integrated SWAT Model

To evaluate the performance of the CFSv2-integrated SWAT model using near real-time
meteorological data from CFSv2 model outputs, the time series plots of the observed and simulated
discharges for the Roanoke, Pearl, Satilla, and Coosa Rivers are shown in Figure 8. The R? values
of the simulation are provided in the figure. It can be seen that the performance of the models for
these watersheds was similar to the calibration and validation results, as discussed in the previous
sections. The 9-month forecasts of simulated discharge were compared with the observed discharge
values for the four watersheds, which are provided in Figure 9. It can be observed from Figure 9
that while the near real-time simulation using SWAT-CFSv2 models provided a realistic estimate of
the discharge, the simulations using the forecasted meteorological dataset may not be considered
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to be reliable. The observed and forecasted river discharge values could be observed to be within a
close range only up to a lead of approximately 1 month, beyond which the simulated and observed
discharge show a high degree of disagreement. This issue could be countered by updating the SWAT
model with every new initialization of CFSv2 (or a few times each month) in order to update the model
state with the latest forcing dataset for reliable forecasts of hydrological variables.
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Figure 8. Observed vs. simulated daily discharge time series using the CFSv2 integrated SWAT
model at the outlet for four selected watersheds from 1 January 2014 to 12 March 2017, using near
real-time data.
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Figure 9. Observed vs. simulated daily discharge time series using the CFSv2 integrated SWAT model
at the outlet for four selected watersheds using the 9-month forecast data from 13 March 2017 to 12
December 2017. Note the low values of forecasted streamflow using the SWAT-CFSv2 model for the
9-month lead time.

5.4. Water Budget Analysis for the SAG Region

Figure 10 shows the monthly water budget for the 50 watersheds in the study summarized in the
form of a box plot to capture the mean, median, and variability within individual components.
Most watersheds in the study region received precipitation during the summer (June-August).
With high temperatures and available moisture, precipitation in the summer rose to its peak value.
Soil water remained relatively consistent in the region, with a minor dip during summer months.
High temperatures during April through to August led to higher PET compared to ET, thus causing
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water-deficit conditions. Water-surplus conditions were attained with incoming precipitation in
summer months and the subsequent fall in temperature in late spring and fall seasons. Figure 11
provides water budget plots for two select watersheds, namely the Roanoke and Pearl River watersheds.
Differences in the water budget for the two watersheds is evident from Figure 11 and was primarily
driven by the climatology of these watersheds. The Roanoke watershed received a total monthly
precipitation of approximately 100 mm throughout the year. Increasing temperatures in the summer
led to a fall in soil water storage. However, low temperatures and reduced plant transpiration in
the late fall and winters helped bring soil water back to values above 150 mm. The Pearl River falls
received the highest rainfall in summer months (June—August) and was often affected by the tropical
cyclones. Soil water for the watershed consistently remained higher than 150 mm. High summer
temperatures and moisture availability fueled high evapotranspiration in the watershed, especially
during summers.
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5.5. Hydrological Forecasts for South Atlantic-Gulf Region Using the CFSv2-Integrated SWAT Model

The effect of the drought in the region can be observed in Figure 12 for the year 2016, where a
high PET and low soil moisture and precipitation led to water deficit conditions and hence drought in
the SEUS. Dry conditions affected large parts of the study region, predominantly Alabama, Georgia,
Florida, and many parts of North and South Carolina, leading to severe drought conditions in the
affected regions. A similar condition was expected to be observed in July and August 2017, with relief
due to forecasted precipitation in the region in the later part of the year. Spatial maps of the forecasted
values of PREC, PET, ET, and soil water storage (SW) are provided in Figure 12. The spatial variability
in the hydrologic variables is evident from Figure 12, which is strongly influenced by seasonality
and hydroclimatology. Summer temperatures led to high PET and ET and low soil moisture in the
region from May through to August. High spatial variability can be seen in the case of precipitation,
where parts of Louisiana, Alabama, and Georgia were expected to receive higher precipitation during
April and May, whereas many parts of Florida and the Carolinas receive precipitation during July
through November. For interested readers, the observed total precipitation for the study region is
provided from April-December 2017 in Figure S8.1 of the Supplementary Material.
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Figure 12. Spatial plots of forecasted monthly average values of precipitation (PREC), actual
evapotranspiration (ET), potential evapotranspiration (PET), and soil water storage (SW) for the
SAG region.
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5.6. Uncertainty in Model Outputs

Data, model, and parametric uncertainty are three main causes of errors in hydrological models.
Model uncertainties can be a result of measurement errors associated with the model inputs (DEM,
land use classification), from the model structure and its assumptions and simplification, and from
approximations in determining parameters [99,100]. Parameter uncertainty, among other sources,
is highly likely because of lack of availability of the measured parameters (e.g., soil hydraulic properties
and basin characteristics, etc.). Calibrating models for the best parameters may also have issues such as
equifinality [101] (different parameter sets resulting in similar model results), due to interactions and
interrelationships between the parameters. This is specifically true for heavily managed watersheds in
some parts of the study region where the model parameters adjust for anthropogenic influence on the
watershed without any explicit inclusion of management practices in the design or implementation of
the hydrologic model. The issue of equifinality and parametric uncertainty in the SWAT model is well
discussed in the literature [102-104].

The performance of the SWAT-CFSv2 simulations also depend heavily on the forecasting ability
of the CFSv2 weather data for the region of analysis. Several other studies have highlighted the issue
of uncertainty in CFSv2 models and their influence on the simulation of various hydrologic models.
Zhang et al. [55] tested the efficiency of VIC models initialized with satellite-aided monitoring (MONIT),
CFSv2, and ensemble streamflow prediction (ESP), and evaluated the performance of the soil moisture
forecast skill and observed that the uncertainty in the soil moisture forecast is mostly controlled by
initial conditions in the first month and that uncertainties in the CFSv2 climate forecasts have the largest
contribution to SM forecast errors at longer lead times. Furthermore, seasonality hydroclimatological
variations have a significant impact on the modeling performance of CFSv2 models [105-107]. In other
words, the hydrological predictions using SWAT-CFSv2 may be more skillful in some seasons compared
to others due to the combined influence of teleconnections with large-scale climatic drivers, which
may lead to a more predictable influence on the water budget of the study area (hurricanes and high
precipitation or increased temperatures and reduced precipitation, etc.).

6. Conclusions

This study provides an important platform for generating high-resolution hydrologic simulations
for the southeastern U.S. at high spatial (HUC-12) and temporal (daily) resolution, which can be of
importance to water planners and policymakers of the region. The models were calibrated using the
SUFI-2 algorithm module in SWAT-CUP for the period of January 2001-December 2010 and validated
through to December 2013 at a daily time step using observed streamflow datasets from USGS.

From the calibrated model, we generated the water budget components for 50 watersheds in
the South Atlantic-Gulf region of the southeastern US from January 1982-December 2013 using the
CFSR meteorological dataset. In addition, we provided a framework for near real-time forecasting of
hydrologic variables in the study area by integrating the SWAT model with meteorological drivers
from CFSv2 climate forecast models with a lead time of 9 months. The CFSv2-integrated SWAT model
estimated soil moisture and other hydrologic outputs corresponding to the near real-time CFSv2
model simulation output from January 2014 through to March 2017 and forecasted values for 9 months
through to December 2017.

The results have been carefully evaluated by several quantitative and subjective approaches.
Observed streamflow and in-situ soil moisture datasets were used to provide a statistical estimation of
the accuracy of the model simulations, whereas the influence of land use on calibrated parameters,
the complementary relationship between ET and PET [108,109], and the water balance of the study
region were studied in order to gain confidence in the model simulations. The results indicated that the
models were effective in capturing the hydrologic variability in the implemented watershed in terms
of high accuracy in simulating streamflow discharge for 50 outlet points and a satisfactory correlation
with the in-situ soil moisture dataset from nine stations across the region for the total rooting depth
soil profile. The near real-time simulations using the CFSv2-integrated SWAT model were found to be
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satisfactory. However, the hydrological forecasts made using the forecasted meteorological dataset
from CFSv2 needs improvement for longer lead time periods. The hydrological forecasts from the
CFSv2-integrated SWAT model were found to be reasonable for a lead time of approximately 1 month,
beyond which the uncertainty in the models render the hydrological forecast unreliable. However,
regularly updating the integrated SWAT-CFSv2 models on a weekly /bi-weekly basis could help solve
this shortcoming. Insights into the watershed-scale hydrological processes over the vast regions of
the SEUS are useful for water planners and policymakers of the region, which is increasingly prone
to water scarcity in the wake of high (and growing) agricultural and industrial water demand. As a
follow-on study, the simulated dataset will be subsequently evaluated for varied applications such as
drought monitoring and forecasting, flood /forest fire risk assessments, and other applications related
to agricultural and water resources.

Supplementary Materials: The following are available online at http:/ /www.mdpi.com/2071-1050/10/9/3079/
s1, S1: Climatology (average annual precipitation, and maximum and minimum annual temperatures) of 50
watersheds based on 1979-2013 data; S2: Flow hydrographs: SWAT simulation versus USGS observed discharge;
S3: Performance statistics of the SWAT model calibration and validation for 50 watersheds; S4: Watershed-scale
water balance plots from simulated hydrologic variables using calibrated SWAT model implementation for the
period January 1982-December 2013; S5: Time series of soil moisture from an in-situ station; S6: Modeling
evapotranspiration; S7: Watershed-scale time series of the forecasted hydrologic variables (precipitation, actual
evapotranspiration, potential evapotranspiration, and soil moisture) simulated using SWAT-CFSv2 hybrid models.
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