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Abstract: This paper presents the “model construction method”, an optimization method and
industrial internet of things (IIoT) technology that is proposed for nearly zero energy buildings
(nZEB), providing a comfortable visual environment by only utilizing natural light while improving
its induced indoor air conditioner energy consumption (ACEC). The incident light is sampled by light
sensors, and this data is sent to the cloud server. The visual comfort and indoor ACEC, both of which
are induced by incident light, are combined as the optimization objective, and the area of windows
covered by curtains is used as the optimal parameter in the particle swarm optimization (PSO).
The visual comfort and indoor ACEC induced by incident light are modeled, and the construction
method is independent of the geographical location. Five modes are defined for applications with
different purposes, the performance of which are investigated and compared carefully. The result
shows that natural light could provide comfortable visual comfort, while the ACEC induced by it
could be reduced effectively.

Keywords: visual comfort; air conditioner energy consumption; natural light; particle swarm
optimization; Industrial Internet of Things

1. Introduction

Nearly zero energy buildings (nZEB) have attracted lots of interests and work over the last decade,
as building energy consumption plays an import role in total energy consumption [1]; about 40% of total
energy in developed countries [2], and about 25% in China [3]. As a result, developing nZEB technology
could improve total energy consumption effectively, which is valuable for global sustainability.

Building energy efficiency improvement and natural energy, like solar radiation and wind, are two
important technologies for realizing nZEB. Building energy consumption forecast methods have been
developed to improve building design and equipment setting [4]. In [5], an approach used in designing
building envelopes is developed, which ensures conditions of thermal, visual, and acoustic comfort
with a minimum of energy consumption. In a building that is well designed thermally, the electricity
consumption of the lighting system is the dominant source of consumption [6,7]. In [8], the required
visual comfort for every single user by utilizing visual comfort zones is provided, while more than
60% energy savings could be achieved. In [9], a smart energy efficient lighting system is developed
based on the presence of occupancy and occupancy localization information.

Natural light could also be utilized in nZEB. In [10], energy saving (<25%) by using natural
light and artificial light is realized, which is controlled by a self-adaptive integrated system. Another
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study [11] finds that creating a luminance contrast of between 11:1 and 12:1 on the window wall
with a 45% window-to-exterior-wall ratio using a supplementary LED system could improve energy
consumption, because it will diminish the likelihood of users turning on the ceiling lights. However,
the incident solar radiation will increase the energy consumption of the air conditioner. In [12], shading
devices installed on windows are designed to reduce energy consumption, while artificial light is used.

Furthermore, smart controlling systems plays a key role in nZEBs [13–18]. In [13], an efficient
home energy management controller (EHEMC) based on genetic harmony search algorithm (GHSA)
is proposed to reduce electricity expense, peak to average ratio (PAR), and maximize user comfort.
For multiple homes, modes of operation for the appliances, according to their energy consumption,
with varying operation time slots are classified, and the constrained optimization problem is solved
using heuristic algorithms. In [14], the hybrid gray wolf differential evolution (HGWDE) is proposed
for jointly optimizing electricity costs and user preferences. When the electricity tariff is in peak
periods, the load is shifted into the slots with low price. Similar works are reported in [15] and [16],
which employ the binary multiple knapsack problem formulation technique and finite state machine,
respectively. In [17,18], energy saving is achieved based on a Multi-Agent architecture, which is the
representative architecture in this field. In these works, the visual comfort is not taken into account.

In this paper, an IIoT-based smart controlling system and the corresponding models,
model construction method and optimization method, are proposed for providing a comfortable
visual environment by utilizing only natural light, while improving its induced ACEC effectively.
In the proposed system, the incident light is sampled by light sensors, and the cloud-based service
analyzes this data by employing the proposed model and PSO, then the corresponding order is
sent to drive automatic curtains. A framework of the smart controlling system is proposed for
conducting experiments, and the cloud-based IIoT technology makes the system low cost, easy
to deploy, and usable for large-scale deployment [19]. The curtains could stop the incident light,
and influence the occupants’ visual comfort and ACEC significantly. Therefore, the area of windows
covered by curtains is used as the optimal parameter in the PSO [20]. A model combining visual
comfort with indoor ACEC is proposed, in which there are several windows in different situations.
Five modes are defined for different applications by setting the model coefficients a and b with different
values: (a) mode 1 (a = 1 and b = 0), only energy consumption is concerned; (b) mode 2 (a = 0 and
b = 1), only visual comfort is concerned; (c) mode 3 (a = 2 and b = 1), energy consumption has priority;
(d) mode 4 (a = 1 and b = 2), visual comfort has priority; and (e) mode 5 (a = 1 and b = 1), the moderate
policy. The performance of 5 modes is investigated carefully. Compared with mode 2, which has
the best visual comfort, mode 3 reduces air conditioner power about 117 w (24.5%), while the visual
comfort is nearly the same. These results show that it is practicable to provide good visual comfort by
utilizing only natural light, while the ACEC caused by natural light could be reduced effectively.

2. Framework of IIoT-based Smart Controlling System

The framework of the proposed IIoT-based smart controlling system is shown in Figure 1.
The proposed IIoT-based smart controlling system is composed of cloud-based services,
smart gateways, and automatic curtains with light sensors. Automatic curtains are connected to
gateways wirelessly (In Figure 1, it is via Zigbee wireless network), and gateways submit the data to
cloud-based services via the Internet.

Light sensors sample the incident light and periodically submit the information to services on
the cloud through gateways, which implement protocol conversions between Zigbee and Internet.
Though one curtain includes one or more light sensors in Figure 1, it is obvious that curtains could
share these sensors.

The service on the cloud periodically analyzes this data from gateways by employing the proposed
model and PSO, and sends the corresponding order to drive automatic curtains through gateways.
The model depends on the building, and five modes are defined for different applications, by setting
the model coefficients a and b with different values, which will be discussed in detailed in Section 3.
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Figure 1. The framework of the proposed IIoT-based smart controlling system.

The proposed framework could be deployed in home buildings, office buildings, and industrial
constructions. The cloud-based IIoT technology makes it low cost, easy to deploy, and usable for
large-scale deployment. Furthermore, PSO is suitable for multi-variable optimization, therefore the
proposed system will have superiority in complex architecture.

In our work, the comfortable visual environment of the home building in Shanghai is provided
by natural light, and the ACEC that is induced by natural light is improved.

3. Model and Particle Swarm Optimization

This section introduces the model, the model construction method, and function and optimization
method that was researched and used in this paper, including the model of energy consumption
induced by incident light, the fit function of natural light levels induced by incident light, the fit
function of indoor visual comfort, and the particle swarm optimization. Strong sunshine is required to
make this model work effectively, and that’s the reason why 12:00 on July 15 in Shanghai is chosen in
this work. The model construction method is independent of the geographical location, though the
house in this work is in Shanghai, China.

3.1. Model of Energy Consumption Induced by Incident Light

As shown in Figure 2, the dimensions of the house are 6 × 4 × 2.8 m3, and there are two windows
on the south wall and east wall, the sizes of which are 6 × 2 m3 and 4 × 2 m3, respectively. The vertical
distance between the ground and the center of the window is 1.6 m. There is another house with the
same dimensions and structure on the east of the research area, and the distance between the two
houses is 4 m.

Curtains on the south wall and east wall are used to stop incident light, as shown in Figure 2b,c.
The visible transmittance of windows (single glass) is 0.737, and it is assumed that the curtain could
stop incident light completely (100%). Then the incident light power could be expressed as:

P = Pu1 × W2 × H2 + Pu2 × W3 × H4

= Pu1 × L1 × H1 × x1 + Pu2 × W1 × H1 × x2
(1)

where x1 is the ratio of none curtain-covered area of the south window to the whole area of the south
wall, and x2 is the ratio of none curtain-covered area of the east window to the whole area of the east
wall. The range of x1 and x2 are both from 0 to 0.7. Pu1 and Pu2 are the incident light power per square
meter on the south and east wall, respectively, which could be obtained by light sensors or employing
simulation tools such as Autodesk Ecotect Analysis.
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The incident light provides indoor visual comfort, and also increases the room temperature, which
should be removed by air conditioner to keep the room temperature constant. The energy efficiency
ratio (EER) of the air conditioner is supposed to be 3.4, namely it is a product of China energy efficiency
index (EEI) 2. Then the air conditioner power induced by incident light is:

Pac = P/3.4 (2)

The Pac at 12:00 am on 15 July is listed in Table 1.
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Table 1. Pac at 12:00 am on 15 July.

Pac (W) x1 x2 Pac (W) x1 x2

70.8 0.1 0 37.0 0 0.1
141.5 0.2 0 74.0 0 0.2
218.0 0.3 0 111.0 0 0.3
283.0 0.4 0 153.0 0 0.4
372.9 0.5 0 184.8 0 0.5
413.0 0.6 0 221.8 0 0.6
441.7 0.7 0 249.9 0 0.7

The fit function of Pac is:

Pac = Pac1 + Pac2

= 646.7 × x1 +18.6 + 360.1 × x2 + 3.3
= 646.7 × x1 + 360.1 × x2 + 21.9

(3)

where their root mean squared errors (RMSE) are 20.7 and 4.0, respectively.
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3.2. Model of Energy Consumption Induced by Incident Light

The indoor natural light level (LL) provided by incident light is sampled at position A at 12:00 am
on July 15. The coordinate of A is (3, 2, 0.8), and the origin of the coordinate is shown in Figure 2a.
The light level at position A is used to calculate the indoor visual comfort at 12:00 am on July 15,
and the data is obtained by employing Autodesk Ecotect Analysis, as shown in Table 2.

Table 2. Light level at position A at 12:00 am on 15 July.

LL (Lux) x1 x2 LL (Lux) x1 x2 LL (Lux) x1 x2

201.3 0.1 0 282.9 0 0.6 531.4 0.1 0.7
311.3 0.2 0 321.9 0 0.7 655.3 0.2 0.7
413.1 0.3 0 261.6 0.1 0.1 894.8 0.5 0.7
474.1 0.4 0 426.5 0.2 0.2 490.2 0.3 0.1
536.7 0.5 0 582.3 0.3 0.3 680.8 0.3 0.5
582.5 0.6 0 709.0 0.4 0.4 762.1 0.3 0.7
629.1 0.7 0 814 0.5 0.5
52.2 0 0.1 916.6 0.6 0.6
91.4 0 0.2 1003.2 0.7 0.7
140.7 0 0.3 728.5 0.7 0.1
198.9 0 0.4 777.1 0.7 0.2
240.8 0 0.5 824.5 0.7 0.5

The fit function of indoor light level is:

LL = −1206 × x1
2 + 1719 × x1 + 460.3 × x2 + 63.93 × x1 × x2 + 17.23 (4)

where the RMSE is 27.0.

3.3. Fit Function of Indoor Visual Comfort

The curtain could change the incident light and light level in the room dramatically, therefore the
occupants’ visual comfort [21,22] is significantly influenced by it. In [22], the acceptable light levels
are examined in an office environment by interviewing 293 occupants, the data of which is used for
fitting visual comfort function, as listed in Table 3. The occupants’ acceptability of light level is defined
as the ratio of the number of acceptance to the sample number (293), and is used to represent visual
comfort (VC).

Table 3. Occupants’ responses towards local visual environment [22].

VC LL (Lux) VC LL (Lux)

0.59 250 0.95 750
0.67 350 0.92 850
0.85 450 0.85 950
0.9 550 0.78 1050
0.97 650

The fit function of visual comfort is:

VC = −1.73 × 10−6 × x2 + 2.5 × 10−3 × x + 0.0531 (5)

where the RMSE is 0.03. Substituting (4) into (5), then we have:

VC = −1.73 × 10−6 × (−1206 × x1
2 + 1719 × x1 + 460.3 × x2 + 63.93 × x1 × x2 + 17.23)2

+ 2.5 × 10−3 × (−1206 × x1
2 + 1719 × x1 + 460.3 × x2 + 63.93 × x1 × x2 + 17.23) + 0.0531

(6)
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3.4. Particle Swarm Optimization

PSO consists of 6 steps [20,23], and the pseudocode is shown in Appendix A:

1. Initiate the positions pn and velocities vn of n particles.
2. Evaluate the value of the PSO fitness function for each particle.
3. Compare and update each particle’s own best position pbestn.
4. Compare and update n particles’ global best position gbest.
5. Update the positions and velocities:

vn = w × vn + c1× random × (pbestn − pn) + c2 × random × (gbest − pn) (7)

pn = pn + vn (8)

6. After N iterations, stop the program.

Both c1 and c2 are chosen to be 2 [20], inertia weight W is 0.8, and the fitness function is:

F = a × 0.2 × lg (646.7 × x1 + 360.1 × x2 + 21.9) − b × [−1.73 × 10−6 × (−1206 × x1
2

+ 1719 × x1 + 460.3 × x2 + 63.93 × x1 × x2 + 17.23)2 + 2.5 × 10−3 × (−1206 × x1
2 + 1719 × x1

+ 460.3 × x2 + 63.93 × x1 × x2 + 17.23) + 0.0531]
(9)

The coefficients a and b, used to define different modes, represent the weight of air conditioner
energy consumption and visual comfort, respectively.

4. Analysis and Results

The incident light increases the room temperature. Therefore, the air conditioner should work
to remove it from the room to keep the room temperature unchanged. The incident light could be
reduced by the curtain, which also influences occupants’ visual comfort. PSO is used to optimize the
curtain-covered area of windows, and five modes are investigated for different applications, which are
defined as below:

(a) mode 1: a = 1 and b = 0, indicates that only energy consumption is concerned.
(b) mode 2: a = 0 and b = 1, indicates that only visual comfort is concerned.
(c) mode 3: a = 2 and b = 1, indicates that energy consumption has priority.
(d) mode 4: a = 1 and b = 2, indicates that visual comfort has priority.
(e) mode 5: a = 1 and b = 1, indicates the moderate policy.

The optimal solutions of 5 modes are listed in Table 4.

Table 4. Optimal solutions of 5 modes.

x1 x2 ACEC (W)

mode 1 0 0 0
mode 2 0.7 0.18 477
mode 3 0.36 0.29 360
mode 4 0.36 0.45 417
mode 5 0.36 0.4 319

Figure 3a,b shows the complexity of PSO applied in this work. It is found that the optimal solution
is obtained after 300 iterations for most cases, as shown in Figure 3, therefore N is set to be 300.
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4.1. Mode 1 (a = 1, b = 0)

As shown in Table 4, the optimal solution is x1 = 0 and x2 = 0, which indicates the entire windows
are covered by curtains, and no solar radiation could enter the room. Therefore the air conditioner
energy consumption induced by the incident light is 0, while occupants’ visual comfort is the worst.

4.2. Mode 2 (a = 0, b = 1)

The optimal solution is x1 = 0.7 and x2 = 0.18, as shown in Table 4. Substituting this solution into
(6), the corresponding visual comfort (occupants’ acceptability) is 0.96, which indicates that the natural
light level is the best. The corresponding air conditioner power is 477 W.

4.3. Mode 3 (a = 2, b = 1)

The optimal solution is x1 = 0.36 and x2 = 0.29, as shown in Table 4. The corresponding visual
comfort (occupants’ acceptability) is 0.94, and the corresponding air conditioner power is 360 W.
Compared with mode 2, mode 3 achieves nearly the same visual comfort, while the air conditioner
energy consumption is reduced by 24.5%.

4.4. Mode 4 (a = 1, b = 2)

The optimal solution is x1 = 0.36 and x2 = 0.45, as shown in Table 4. The corresponding visual
comfort (occupants’ acceptability) is 0.96, and the corresponding air conditioner power is 417 W.
Compared with mode 3, mode 4 has nearly the same visual comfort, but the air conditioner energy
consumption increases dramatically. It is observed that it is the east window not the south window
that is adjusted to improve the visual comfort, which could explain the stronger incident light on the
south window.

4.5. Mode 5 (a = 1, b = 1)

The optimal solution is x1 = 0.36 and x2 = 0.4, as shown in Table 4. The corresponding visual
comfort (occupants’ acceptability) is 0.95, and the corresponding air conditioner power is 399 W.
Compared with mode 3, mode 5 has nearly the same visual comfort and larger air conditioner
energy consumption.

By investigating the performance of all modes, it is found that mode 3 has the best performance.
Compared with mode 2 which has the best visual comfort, mode 3 could reduce the air conditioner
power about 117 w (25%), while the visual comfort is nearly the same.
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5. Conclusions

The visual comfort and indoor AECE, both of which are induced by natural light at noon during
summer in Shanghai, are optimized by employing the proposed model and optimization method.
A fitness function measuring the visual comfort and the corresponding ACEC in the building was
constructed, and the area of windows covered by curtains was used as the optimal parameter in
the PSO. Five modes were defined and investigated for different applications, and mode 3 achieved
nearly the best visual comfort with energy consumption reduced by 24.5%. The results verify that the
proposed model and optimization method could work effectively to provide a good visual environment
by utilizing natural light while reducing the ACEC of buildings.
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Appendix A Pseudocode of the Proposed Optimization

%Main function

%%%%%%%%%%%%%%%%%%%%

[xm,fv,C]=PSO(@fitness,20,2,2,0.8,300,2,0,0.7);% call PSO function

xxx2(:,1)=C(1,:);

xxx2(:,2)=C(2,:);

plot(xxx2) %plot optimal solution

xlabel(’Iteration’);

ylabel(’Optimal solution’)

%Fitness function

%%%%%%%%%%%%%%%%%%%%

function f=fitness(a,b)

f=A*0.2*log10(646.7*a+18.6+360.1*b+3.3)-B*(-1.73e-6*(17.23+1719*a+460.3*b-1206*a2+63.93*a*b)2

+2.5e−3*(17.23+1719*a+460.3*b-1206*a2+63.93*a*b)+0.0531);

end

%PSO function

%%%%%%%%%%%%%%%%%%%%

function[xm,fv,C]=PSO(fitness,N,c1,c2,w,M,D,lb,ub)

% N-particle number, c1, c2-acceleration constants, w-inertia weight, M-iterations, D-particle dimension

%initialization:

x(i,j)=rand()*(ub-lb)+lb; %initialize position
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v(i,j)=rand(); %initialize speed

%initialize fitness

p(i)=fitness(x(i,1),x(i,2));

y(i,:)=x(i,:);

%initialize local and global extremum

gbest=[x(1,1),x(1,2)];

for i=2:N

if fitness(x(i,1),x(i,2))<fitness(gbest(1),gbest(2))

gbest=x(i,:);

end

end

% iterations

C = zeros(2,M);

for t=1:M

for i=1:N

v(i,1)=w*v(i,1)+c1*rand*(y(i,1)-x(i,1))+c2*rand*(gbest(1)-x(i,1));

v(i,2)=w*v(i,2)+c1*rand*(y(i,2)-x(i,2))+c2*rand*(gbest(2)-x(i,2));

x(i,:)=x(i,:)+v(i,:);

for j = 1:D

if x(i,j)<lb

x(i,j) =lb;

end

if x(i,j)>ub

x(i,j) =ub;

end

end

if fitness(x(i,1),x(i,2))<p(i)

p(i)=fitness(x(i,1),x(i,2));

y(i,:)=x(i,:);

end

if p(i)<fitness(gbest(1),gbest(2))

gbest=y(i,:);

end

end
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C(1,t) = gbest(1);

C(2,t) = gbest(2);

end

xm=gbest’;%optimal solution

fv=fitness(gbest(1),gbest(2));
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