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Abstract: The Klong U-Tapao watershed is the main source of water supply for agriculture, industry,
and household consumption of the Songkhla province and it frequently contributes serious problems
to lowland areas, particularly flood and soil erosion. Therefore, land use and land cover (LULC)
scenario identification for optimum water yield and sediment retention ecosystem services are
necessary. In this study, LULC data in 2010 and 2017 were firstly classified from Landsat data using
random forests classifiers, and they were then used to predict LULC change during 2018 –2024 under
three different scenarios by CLUE-S model. Later, actual LULC data in 2017 and predictive LULC
data of three scenarios were further used to estimate water yield and sediment retention services
under the InVEST and LULC scenario for optimum water yield and sediment retention ecosystem
services were finally identified using the ecosystem service change index (ESCI). The result of the
study showed the major increasing areas of LULC types during 2010–2017 were rubber plantation
and urban and built-up area while the major decreasing areas of LULC classes were evergreen forest
and miscellaneous land. In addition, the derived LULC prediction of three different scenarios could
provide realistic results as expected. Likewise, water yield and sediment retention estimation of
three different scenarios could also provide expected results according to characteristics of scenarios’
definitions and climates, soil and terrain, and LULC factors. Finally, LULC of Scenario II was chosen
for optimum water yield and sediment retention ecosystem services. In conclusion, the integration
of remote sensing technology with advanced classification methods and geospatial models can be
used as proficient tools to provide geospatial data on water yield and sediment retention ecosystem
services from different scenarios.

Keywords: optimum land use and land cover scenario; water yield and sediment retention ecosystem
services; Random Forests; InVEST model; CLUE-S model; Khlong U-Tapao watershed; Songkhla
Province; Thailand

1. Introduction

Water yield is the sum of runoff from the landscape [1,2]. The relative water volume in a given
landscape affects the quality of ecology in the area [3]. Therefore, changes in the landscape that affect
the annual average water yield can increase or decrease land productivity. For example, replacing
forests on slope land or mountainous areas with rubber plantations results in water retention in the
subsoil layer and decreases water discharge in the dry season and increases evapotranspiration [4].
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In contrast, cultivated land leads to larger average amounts of surface runoff and higher water loss
from the reduced evapotranspiration in the wet season. The increase in water yield may cause floods
and landslides. The water yield is reflected as cumulative surface runoff measured at a specific location;
therefore, it is not the desired type of regulation of water flow with yield and quality. However,
high water yield is an ecosystem service, as is surface runoff, which is dependent on the vegetation
cover under a given land use; thus, over-surface runoff is not an appropriate situation as an ecosystem
service [5,6].

The processes of soil erosion, sediment retention, and sediment transport are key components
and functions of the watershed area [7–10]. Increases in sediment yield are manifested worldwide,
affecting water quality, reservoir management, and natural water resources [11,12]. The sediment
retention service provides by natural landscapes is of great interest to water managers [13].
Understanding where the sediments are produced and delivered allows managers to design improved
strategies for reducing sediment loads [14,15]. Changes in sediment load can have negative impacts on
downstream irrigation, water treatment, recreation, and reservoir performance [14,16]. Erosion and
overland sediment retention are foundations for ecosystem management that govern the sediment
concentration in streams [17]. Sediment dynamics at the watershed scale are mainly controlled by
climate, in particular, the rain intensity, soil properties, topography, and vegetation and conservation
practice [18–20]. The cause of soil erosion resulting from the deterioration of a watershed shows as
greater sediment deposits [21]. The soil erosion rates with land use and land cover (LULC) changes
indicated that cleared land in a watershed will generate the highest soil losses. The vegetation cover
protects the soil from the direct impact of raindrops or heavy rain, which invariably reduces soil loss to
the bare land [22].

Data from the optical satellite sensor of Landsat data have been used to LULC map and to
assess ecological variables in Southeast Asia [23–26]. Landsat TM and OLI, random forest machine
learning algorithms, can achieve accurate LULC map classification with high overall accuracy and
the Kappa hat coefficient [27,28]. The CLUE-S model has been used to simulate the spatial dynamics
and spatial allocation of land use types under different scenarios in Thailand [29–31]. The model
treats the competition between different types of land uses for land allocation based on logistic model
analysis [32].

The multiple ecosystem service evaluations are estimated using the variety toolsets of the InVEST
software suite for assessing the impact of land use scenarios at the watershed level. The Water Yield
model of the InVEST has been applied to simulate the annual biophysical contribution of LULC to
water yield [33]. It is flexible for use at the local or regional scale and the results about water yield,
water consumption, and water supply mapping can be applied for decision making support [34].
The Sediment Delivery Ratio (SDR) model has been applied by many researchers to assess soil erosion,
sediment retention and sediment export [34]. Lastly, the ecosystem service change index (ESCI) is
used to calculate the change (gain and loss) of each ecosystem service and these are then integrated to
provide an overall assessment of ecosystem services status for a location [35]. This provides the critical
information needed in the design of management strategies for the ecosystem services.

The problems related to the Khlong U-Tapao watershed under the Songkhla Lake Basin (SLB)
include a broad range of water resource development and land management, particularly flood and
soil erosion. Water shortage is a problem in the dry season, impacting mainly the water supply for the
industrial and agricultural sectors. Additionally, population growth also effectuates LULC change
and agricultural land expansion, as an implication of meeting people’s economic needs, which might
potentially produce water yield and erosion increase [29,30,36].

Flooding in lowland areas of the Klong U-Tapao watershed at Hat Yai city, Songkhla province
also poses regular problems and heavy rainstorms occur every 2 or 3 years, causing inundation
of the area. In addition, the high water level in the Gulf of Thailand usually mains to drainage
problems in the rainy season. In the meantime, soil erosion is another principal issue associated with
unsuitable land management, the cultivation of rubber and other crops on steep hills cause erosion.
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Deforestation generally results in the land being abandoned, and the cleared land rapidly erodes.
In fact, rubber plantations have encroached into many places of the SLB, including Kao Pu Kao Ya
National Park. Currently, 30 percent (144 km2) of the protected forest land (Watershed Class I) of
the Khlong U-Tapao watershed under the SLB has been converted to rubber plantations [37]. These
activities have increased soil erosion and sedimentation in Songkhla Lake [38]. Many factors drive
on soil erosion in the Khlong U-Tapao watershed include unsuitable practices for rubber plantation
and palm oil and deforestation [39]. So, the mitigation of flooding by reducing runoff and prevention
of soil erosion by increasing sediment retention is considered as an important regulated ecosystem
service in the study area. The aim of the research is to identify the scenario of LULC for optimum water
yield and sediment retention ecosystem services in the Klong U-Tapao watershed, Songkhla Province,
Thailand. The specific objectives of the study were (1) to classify LULC status and its change from
2010–2017, (2) to predict LULC change of three different scenarios (Scenario I: Trend LULC; Scenario II:
Forest conservation and prevention; and Scenario III: Agriculture production) between 2018 and 2024,
(3) to assess water yield and sediment retention, and (4) to identify LULC scenario for optimum water
yield and sediment retention ecosystem services.

2. Materials and Methods

2.1. Study Area

The study area is the Khlong U-Tapao watershed under the SLB consists of 10 sub-watersheds:
Khlong Bang Klam, Khong Wa, Khong Wat/Khong Tam, Khong Pom, Khong La/Khong Jam Rai, Khong
Tong/Khong Pra Tu, Khong Ram, Khong Phang La/Khong Ngae, Khong Lea and Khong Sa Dao.
It covers area of 2406.04 km2 with 60 km length and 40 km width (Figure 1).
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Figure 1. Location of the Khlong U-Tapao watershed, Songkhla Province, Thailand.

2.2. Research Methodology

The research methodology workflow (input, process, and output) consisted of 4 components:
(1) LULC assessment and its change; (2) LULC prediction of three different scenarios; (3) ecosystem
service assessment on water yield and sediment retention; and (4) LULC scenario identification for
optimum water yield and sediment retention ecosystem service (Figure 2). Details of each component
were described in the following sections.
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2.2.1. LULC Assessment and Its Change

For this component, two standard product of scaled reflectance data at Level 2 of Landsat 5-TM
dated 7 May 2010 (band 1, 2, 3, 4, 5, and 7) and Landsat 8-OLI dated 23 March 2017 (band 2, 3, 4, 5, 6,
and 7) were downloaded from USGS website (www.earthexplore.usgs.gov) for LULC classification
using the RF. In practice, homogeneous training areas of each LULC type including (1) urban and
built-up area, (2) paddy field, (3) rubber plantation, (4) oil palm plantation, (5) perennial tree and
orchard, (6) aquatic culture area, (7) evergreen forest, (8) mangrove forest, (9) marsh and swamp,

www.earthexplore.usgs.gov
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(10) water body, and (11) miscellaneous land (bare land and abandoned mine) were separately prepared
to extract multiple decision trees for LULC classification by the EnMap-Box software [40]. In principle,
the predicted LULC type of observation is calculated based on the majority vote of the trees under the
RF model, and the discrimination function is defined using Equation (1) [41].

H(x) = argmaxy

k∑
i=1

I(hi(X,θk) = Y) (1)

where I is the indicator function, hi(X,θk) is single decision tree, and Y is the output variable, argmaxy

denotes the Y value when maximizing
∑k

i=1 I(hi(X,θk).
Then, the preliminary LULC maps in 2010 and 2017 were assessed accuracy (overall accuracy,

producer’s accuracy, user’s accuracy and Kappa hat coefficient) based on the reference data from
Google Image in 2010 and field survey in 2017, respectively. Herein, the number of sample sizes for
thematic accuracy assessment was estimated based on multivariate statistics with stratified random
sampling scheme as suggested by Congalton and Green [42]. In this study, the number of sample
points for accuracy assessment was 880 points, with the desired precision of 95%. Lastly, final LULC
maps in 2010 and 2017 were further used to detect LULC change using post-classification comparison
algorithm. The derived results (LULC in 2010 and 2017) were further applied for LULC prediction
between 2018 and 2024 in three different scenarios using the CLUE-S model.

2.2.2. LULC Prediction of Three Different Scenarios

This study used the CLUE-S (Conversion of Land Use and its Effects at Small regional extent)
model to predict LULC between 2018 and 2024 in three different scenarios. The CLUE-S model is based
upon an analysis of location suitability using logistic regressions and simulates the competition and
interactions between the different LULC types. The basic concept and its development of this model
was explained in more detail by [43,44].

Under the CLUE-S model, logistic regression analysis (Equation (2)) was performed to identify
LULC type location preference according to driving force on LULC change after multicollinearity
test. In this study, 8 driving factors on LULC change include elevation, slope, soil fertility, distance
to road, distance to settlement, distance to water bodies, population density at sub-district level and
average household income at sub-district level were examined as same as Reference [31]. Based on
group discussion (participatory method) among stakeholders inside and surrounding the watershed
including local people, NGOs and government agencies (Provincial Agriculture Office, Regional Office
of Agricultural Economics, Regional Irrigation Office, Protected Areas Regional Office, Forest Resource
Management Office, Prince of Songkhla University and Thaksin University), three future LULC
scenarios were proposed including:

Scenario I: Trend LULC. The prediction of LULC in 2024 relies on the historical trend of LULC
change between 2010 and 2017. Herein, land requirement (demand) for LULC prediction during
2018–2024 is based on the annual change rate of LULC between 2010 and 2017 from the transition area
matrix using the Markov Chain model.

Scenario II: Forest conservation and prevention. Under this scenario, the existing government
policy on forest conservation and prevention is integrated and transformed into forest land demand.
Herein, the legal boundary of the national park, wildlife sanctuary, watershed class IA and an existing
forest area in 2017 is used as forest land demand for LULC prediction in the same period.

Scenario III: Agriculture production extension. Under this scenario, government policy on
agricultural production extension by zonation in the future was reviewed and transformed into land
demand for optimum land utilization for oil palm plantation based on suitability map of Department
of Agriculture in 2015. Additionally, the existing forest area (evergreen and mangrove forests) in 2017 is
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preserved under LULC prediction during 2018–2024. The quantitative information of land requirement
in 2024 of three different scenarios according to their definitions is summarized in Table 1.

Log
(

Pi
1− Pi

)
= β0 + β1X1,i + β2X2,i . . .+ βnXn,i (2)

where, Pi is the probability of a grid cell for the occurrence of the considered land use type on location i
and the X’s are the location factors. The coefficients (β) are estimated through logistic regression using
the actual land use pattern as the dependent variable [32].

Table 1. The land requirement of three different scenarios in 2024.

LULC Type Base Line Data in 2017 (Km2)
Land Requirement in 2024 (Km2)

Scenario I Scenario II Scenario III

Urban and built-up area 113.21 145.4 1 145.4 1 145.41 1

Paddy field 20.41 14.59 1 20.4 2 20.41 2

Rubber plantation 1727.46 1,736.85 1 1,568.17 3 1,524.88 4

Oil palm plantation 18.85 32.35 1 32.35 1 259.51 5

Perennial tree/orchard 34.20 37.05 1 34.20 2 34.20 2

Aquatic cultural area 9.38 10.18 1 9.38 2 9.38 2

Evergreen forest 254.01 202.57 1 377.47 6 254.01 2

Mangrove forest 0.85 0.93 1 0.85 2 0.85 2

Marsh and swamp 42.70 37.50 1 42.70 2 37.50 1

Water body 42.43 50.93 1 42.43 2 42.43 2

Miscellaneous land 142.57 137.72 1 132.69 7 77.49 8

Note: 1. Land requirement of a specific LULC type was based on annual change rate of each LULC between 2010 and
2017 from transition area matrix by Markov Chain model; 2. Land requirement of a specific LULC type was fixed
based on its area in 2017; 3. Land requirement of rubber plantation was decreased since an illegal rubber plantation
in the protected area (national park, wildlife sanctuary, watershed class IA) will be revoked and replaced by forest
plantation; 4. Land requirement of rubber plantation was decreased since rubber plantation that situates in oil
palm suitability zones will be replaced by new oil palm plantation; 5. Land requirement of oil palm plantation was
increased according to the strategic plan to expand oil palm plantation. Herein, rubber plantation and miscellaneous
land in 2017 that situate in suitable zones for oil palm plantation will be replaced by new oil palm plantation; 6. Land
requirement of evergreen forest was increased according to reclamation forest areas back from intruders under
reforestation program in an illegal rubber plantation and miscellaneous land that situate in the protected forest area
(national park, wildlife sanctuary, watershed class IA); 7. Land requirement of miscellaneous land was decreased
since it will be replaced by forest plantation; 8. Land requirement of miscellaneous land in 2024 was decreased since
it will be replaced by new oil palm plantation.

2.2.3. Ecosystem Service Assessment on Water Yield and Sediment Retention

Water Yield Estimation

To estimate water yield from the Water Yield model of InVEST, annual water yield, Y(x) for each
pixel on the landscape (x) was calculated [45] as:

Y(x) =
(
1−

AET (x)
P(x)

)
·P(x) (3)

where, AET (x) is the annual actual evapotranspiration on each pixel x and P(x) is the annual precipitation
on each pixel.

In practice, relevant factors of Water Yield model were prepared in advance as followings (see in
Appendix A Table A1).

(1) Annual rainfall. Available annual rainfall records of TMD (Thai Meteorological Department)
between 2010 and 2017 were collected from Reference [46] to calculate water yield for validation.
Meanwhile, annual rainfall data between 2018 and 2024 were downloaded from the Global Products and
Data Services of the National Center for Atmospheric Research [47] for water yield estimation. In this
research, the simulated rainfall data between 2018 and 2024 under RCP8.5 scenario, which represents
the highest rising of radiative forcing pathway (8.5 W/m2), population probability, economic trends,
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greenhouse gas emission level, and technological change [48], were selected to characterize the impact
of climate change on water yield.

(2) Root restricting layer depth. Soil depth under soil series data of Reference [49] was applied to
generate the root-restricting layer depth for water yield estimation.

(3) Plant available water content (PAWC). The PAWC is defined as the difference between the
fraction of volumetric field capacity and permanent wilting point, which is an important influencing
factor of crop production, agro-ecological zoning, irrigation planning, and land cover changes.
The PAWC was estimated based on the relationship between PAWC and the physical and chemical
properties of soil (sand, silt, clay and organic matter) [50] as:

PAWC = 54.509 − 0.132 × sand% − 0.003 × (sand%) 2
− 0.055 × silt% − 0.006 × (silt%) 2

−0.738 × clay% + 0.007 × (clay%) 2
− 2.688 × OM% + 0.501 × (OM%) 2 (4)

where, PAWC is the plant available water fraction (%) represent the measured contents of sand (%),
clay (%), silt (%) and organic matter (%).

(4) Annual potential evapotranspiration (PET). Annual PET is estimated using the modified
Hargreaves’ equation as suggested by Reference [51] as:

PET0 = 0.0013× 0.408×RA×
(
Tavg + 17

)
× (TD− 0.0123P)0.76 (5)

In principle, the modified Hargreaves uses the average of the mean daily maximum and mean
daily minimum temperatures (Tavg in ◦C), the difference between mean daily maximum and mean daily
minimums (TD), extraterrestrial radiation (RA) in MJm−2d−1 and precipitation (P) in mm per month.
Herein, temperature and precipitation data in 2017 and 2024 were extracted and predicted from
meteorological stations of Reference [46] while radiation data is generated by solar radiation tool
within the ESRI ArcGIS software. Then, the PET0 equation was calculated by Model Builder within the
ESRI ArcGIS software again.

(5) Biophysical factor. A biophysical factor table contains LULC code, descriptive name of LULC,
the maximum root depth for vegetated land use classes in millimeters and the plant evapotranspiration
coefficient for each LULC type. Herein, the evapotranspiration coefficient (Kc) of each land use type
was gathered from the previous studies in Thailand as shown in Appendix A Table A1.

Sediment Retention Estimation

Sediment retention was estimated using multiplication operation between soil erosion and
sediment delivery ratio under the SDR model of InVEST. In practice, amount of annual soil loss on
pixel i, Ai was estimated using the Revised Universal Soil Loss Equation (RUSLE) by Renard and
Freimund [52] as:

Ai = Ri·Ki·LSiCi·Pi (6)

where Ai is annual soil erosion (ton. ha−1 yr−1), Ri is rainfall erosivity (MJ mm ha−1 h−1 y−1),
Ki is soil erodibility (ton·ha·hr (MJ·ha·mm)−1), LSi is slope length-gradient factor,
Ci is crop-management factor, and Pi is support practice factor for erosion control.
Brief information of relevant factors for soil erosion estimation are summarized below.
(1) Rainfall erosivity (R). The rainfall erosivity factor was calculated as suggested by Reference [53]

and modified by Reference [54]. Rainfall data in 2017 collected from the TMD [46] was used for
calculating R-factor in RUSLE by Equation (7).

R =
12∑

i=1

1.735 × 10(1.5 log10(
P2

i
P )−0.08188) (7)
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where R is the rainfall erosivity factor (MJ mm ha−1 h−1 y−1), Pi is the monthly rainfall (mm), and P is
the annual rainfall (mm).

(2) Slope length gradient factor (LS). The LS factor was calculated from the Digital Elevation
Model (DEM).

(3) Soil erodibility (K). The K-factor was adopted from standard values of Reference [55], which are
extracted from soil series data (see in Appendix A Table A2)

(4) Cover factor (C). LULC data in 2010 and 2024 from three scenarios were used as input data to
extract C factor value based on the standard assignment of Reference [55] (see in Appendix A Table A3).

(5) Practice factor (P). P factor values were extracted from LULC data based on the standard
assignment of Reference [55] (see in Appendix A Table A3).

Then, soil delivery ratio (SDR) was secondly estimated using connectivity index (CI) that reflecting
the attributes of each LULC type, threshold flow accumulation and maximum SDR. The SDR value
was calculated as suggested by [56] as:

SDRi =
SDRmax

1 + exp
( IC0−ICi

k

) (8)

where, SDRmax is the maximum theoretical SDR, set to an average value of 0.8 [57], and IC0 and k are
calibration parameters that define the shape of the SDR-IC relationship (increasing function).

Finally, sediment retention was estimated as suggested by Reference [45] as:

Sediment retention = R×K × LS(1−CP) × SDR (9)

Moreover, the existing water yield (runoff) and sediment export data between 2010 and 2017 at X.90
station of the Royal Irrigation Department [58] were used to validate water yield (runoff) and sediment
delivery ratio model using NSE (Nash-Sutcliffe Efficiency) and Coefficient of determination (R2).

2.2.4. LULC Scenario Identification for Optimum Water Yield and Sediment Retention

The analyzed ecosystem services change the state of water yield and sediment retention due to
LULC change was assessed using ESCI as suggested by [35] as:

ESCI X =

ESCURx j − ESHISxi

ESHISxi

 (10)

where, ESCIx is the ecosystems services change index of service X, ESCURx j and ESHISxi are the current
and historic ecosystem service state values of service X at times j and i, respectively.

In this study, historical ecosystem service values (water yield and sediment retention) was based
on LULC in 2017 while the current ecosystem service was based on the predicted LULC between 2018
and 2024. To extract gain and loss of ecosystem services (water yield and sediment retention), historical
ecosystem service values in 2017 and annual ecosystem services values between 2018 and 2024 were
separately calculated pair by pair using Equation (10). The derived results were then averaged to
identify LULC scenario for optimum water yield and sediment retention ecosystem services.

3. Results

3.1. LULC Assessment and Its Change

Rubber plantations, urban and built-up area substantially increased from 2010–2017. In fact,
rubber plantation covered area of 1,672.66 km2 or 69.52% in 2010 and 1,727.46 km2 or 71.80% in 2017.
Likewise, urban and built-up area in this period were 80.37 km2 or 3.34% and 113.21 km2 or 4.71%
respectively. On the contrary, evergreen forest and miscellaneous land use decreased rapidly in the
same period. Evergreen forest and miscellaneous land covered area of 318.52 km2 or 13.24% and
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177.75 km2 or 7.39% in 2010 and covered area of 254.01 km2 or 10.56% and 142.57 km2 or 5.93% in 2017
(Figure 3). In addition, the derived overall accuracy and Kappa hat coefficient for classified thematic
LULC map in 2010 and 2017 were 91.36% and 84.00%, and 94.32% and 87.00%, respectively.
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The transitional change matrix of LULC between 2010 and 2017 (Table 2) indicated that
approximately 24.52 km2 of rubber plantations were converted to urban and built-up areas during this
period and followed by miscellaneous land 6.07 km2. Meanwhile, approximately 12.06 km2 of rubber
plantations were transformed to oil palm plantation as the result of government policy (Ministry of
Agriculture and Cooperatives, 2014). Nevertheless, about 73% of miscellaneous land (129.21 km2) and
20% of evergreen forests in 2010 (63.33 km2) were converted into rubber plantations.

3.2. LULC Prediction of Three Different Scenarios

The result of multicollinearity test among independent variables (driving force on LULC change)
with VIF values is summarized in Table 3. It indicated that none of the variables have highly correlated
with each other since all independent variables have VIF < 10 [59,60].
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Table 2. LULC change between 2010 and 2017 as a transitional matrix.

LULC Types LULC 2017 (km2)

UR PD RP OP PO AQ EF MF MS WA ML Total

LULC2 010 (km2)

Urban and built-up area (UR) 80.37 - - - - - - - - - - 80.37
Paddy field (PD) 0.61 20.41 6.55 0.02 0.08 - - - - 0.20 0.70 28.56

Rubber plantation (RP) 24.52 - 1528.37 12.06 - - - - - 6.78 100.93 1672.66
Oil palm plantation (OP) - - - 5.50 - - - - - - - 5.50

Perennial tree/orchard (PO) 0.67 - - - 30.43 - - - - - 0.57 31.66
Aquatic cultural area (AQ) - - - - - 8.42 - - - - - 8.42

Evergreen forest (EF) 0.05 - 63.33 0.14 0.30 - 254.01 - - 0.20 0.49 318.52
Mangrove forest (MF) - - - 0.01 - 0.02 - 0.64 - 0.02 0.06 0.74

Marsh and swamp (MS) 0.93 - - 0.28 0.16 0.40 - 0.22 42.70 1.37 2.56 48.61
Water body (WA) - - - - - - - - - 32.21 1.06 33.27

Miscellaneous land (ML) 6.07 - 129.21 0.85 3.24 0.54 - - - 1.64 36.22 177.75

Total 113.21 20.41 1727.46 18.85 34.20 9.38 254.01 0.85 42.70 42.43 142.57 2406.04
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Table 3. Multicollinearity statistics test of driving factors effect to LULC type.

Independent Variable
(Driving Force on LULC Change)

Unstandardized Coefficients
Standardized Coefficient VIF

Beta Std. Error

Elevation 0.0054 0.0001 0.2743 3.6138
Slope 0.0017 0.0004 0.0094 1.3602

Distance to water bodies −0.0001 0.0000 −0.0681 1.4320
Distance to road 0.0000 0.0000 0.0129 4.1062

Distance to settlement 0.0001 0.0000 0.0904 5.1322
Soil fertility 0.1152 0.0065 0.0358 1.1509

Population density at sub-district level −0.0003 0.0000 −0.0768 1.0649
Average household income at sub-district level 0.0000 0.0000 0.0077 1.1218

Meanwhile, logistic regression analysis which was performed to identify LULC type location
preference according to driving force on LULC change is summarized in Table 4. As a result, the most
dominant driving factor for all LULC type allocation was the distance to settlement, and followed by
distance to water bodies and road network. All significant driving factors show negative or positive
relationship with the probability of each LULC allocation. The derived multiple linear equations from
binomial logistic regression analysis provided AUC values were excellent (>0.9) for most LULC classes
and it was fair fit (AUC = 0.72) for miscellaneous land (Table 4). This is because miscellaneous land
randomly occurred in the landscape, and it does not require specific conditions.

Table 4. Multiple linear regression equations of each LULC type location preference and AUC values
by logistic regression analysis.

Driving Forces on LULC Change UR PD RP OP PO AQ EF MF MS WA ML

Constance 1.384 −1.144 1.890 −1.979 −2.249 4.619 −5.867 −5.237 −0.134 −1.725 −2.024
Elevation n. s. −0.143 −0.009 −0.045 n. s. n. s. 0.017 −0.167 −0.180 −0.019 −0.006

Slope n. s. −0.015 0.008 n. s. −0.018 −0.030 0.025 −0.123 −0.020 n. s. −0.009
Distance to water bodies n. s. n. s. n. s. n. s. n. s. −0.051 n. s. −0.001 n. s. −0.002 n. s.

Distance to road −0.005 n. s. n. s. 0.001 −0.002 0.003 n. s. 0.013 n. s. 0.002 n. s.
Distance to settlement −0.086 0.001 n. s. 0.001 −0.001 −0.004 0.001 −0.008 0.001 −0.001 n. s.

Soil fertility n. s. 0.138 0.275 0.134 0.330 n. s. n. s. n. s. n. s. n. s. n. s.
Population density at sub-district level n. s. n. s. −0.001 −0.011 n. s. n. s. n. s. n. s. n. s. n. s. n. s.

Average household income at sub-district level n. s. n. s. n. s. n. s. n. s. −0.001 n. s. n. s. n. s. n. s. n. s.

AUC 0.996 0.942 0.914 0.839 0.856 0.993 0.983 0.971 0.960 0.907 0.724

As results of LULC prediction of three different scenarios (Figure 4 and Table 5), the significant
LULC types with increasing area between 2017 and 2024 under Scenario I were urban and built-up
area, oil palm plantation, perennial trees/orchards, and water bodies. In contrast, the dominant LULC
types with decreasing area in the same period were paddy field, evergreen forest, marsh and swamp,
and miscellaneous land. The LULC change under this scenario is dictated by historical LULC change
between 2010 and 2017 which represents socio-economic development in the study area.

Table 5. Area of LULC data in 2017 and 2024 of three different scenarios and their changes.

LULC Types

Area in km2

Base Year Scenario-I Scenario-II Scenario-III

2017 2024 Change 2024 Change 2024 Change

Urban and built-up area 113.21 144.17 30.96 145.1 31.89 140.16 26.95
Paddy field 20.41 14.48 −5.93 20.25 −0.16 20.41 0

Rubber plantation 1727.46 1726.77 −0.69 1569.66 −157.8 1528.48 −198.98
Oil palm plantation 18.85 32.35 13.5 32.34 13.49 257.44 238.59

Perennial tree/orchard 34.2 37.19 2.99 33.9 −0.3 34.2 0
Aquatic cultural area 9.38 10.09 0.71 9.38 0 9.38 0

Evergreen forest 254.01 215.46 −38.55 377.33 123.32 257.93 3.92
Mangrove forest 0.85 0.93 0.08 0.85 0 0.85 0

Marsh and swamp 42.7 37.26 −5.44 42.27 −0.43 36.89 −5.81
Water body 42.43 50.44 8.01 42.43 0 42.44 0.01

Miscellaneous land 142.57 136.91 −5.66 132.56 −10.01 77.87 −64.7
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Meanwhile, the significant LULC types with increasing area between 2017 and 2024 under
Scenario II were urban and built-up area, perennial trees/orchards, and evergreen forests. On the
contrary, the dominant LULC types with decreasing area in the same period were rubber plantation
and miscellaneous land. The LULC change under this scenario is mostly dictated by policy on
forest conservation and prevention transformation, particularly the increase of evergreen forests by
reforestation programs on illegal rubber plantations in the protected forest area. This scenario fits with
the recent policy on forest conservation and prevention of Thai Government who tries to reclaim forest
areas back from intruders and to enforce strict laws based on jurisprudence and political principles [61].

In the meantime, the significant LULC types with increasing area between 2017 and 2024 under
Scenario III were urban and built-up area, oil palm plantation, and evergreen forest. On the contrary,
the dominant LULC types with decreasing area in the same period were rubber plantation, marsh and
swamp, and miscellaneous land. The LULC change under this scenario is mostly dictated by policy on
agriculture production extension, particularly the increasing of oil palm plantation and decreasing of
rubber plantation. In fact, the Office of Agricultural Economics has set up a strategic plan to expand oil
palm plantation area from 7,200 km2 to 12,000 km2 during 2015–2026 by replacement of old rubber
plantations [62].

3.3. Water Yield Ecosystem Service Assessment

Based on LULC data in 2017, total water yield (runoff) was 1,863.80 mil. m3. Meanwhile, the
predictive LULC data between 2018 and 2024 of Scenario I will generate the lowest average water
yield than Scenario II and III with average value of 1,746.89 mil. m3 (Table 6). Since LULC of Scenario
I does not represent dramatic LULC change. The contribution of each LULC type on water yield is
insignificant. Herewith, major increasing LULC classes under this scenario were urban and built-up
area, rubber plantation, oil palm plantation while minor decreasing LULC classes were paddy field,
evergreen forest, marsh and swamp, and miscellaneous land. In contrast, LULC of Scenario II and
III were predicted based on the transformation of government policy in forestry and agriculture,
respectively. The contribution of LULC from Scenario II and III highly reflects on water yield (runoff)
than Scenario I. Under Scenario II, major increasing LULC classes were urban and built-up area, oil
palm plantation, and evergreen forest; major decreasing LULC classes were rubber plantation and
miscellaneous land during 2018–2024. Likewise, major increasing LULC classes under Scenario III,
were urban and built-up area and oil palm plantation, and decreasing LULC classes were rubber
plantation and marsh and miscellaneous land in the same periods. Additionally, Scenario III will
generate the highest annual water yield than Scenario I and II with an average value of 1,752.96 mil.m3

(Table 6). Spatial distribution of water yield in 2017 and 2024 of three different scenarios are displayed
in Figure 5.
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Table 6. Estimation of water yield of three different scenarios between 2018 and 2024.

Year
Annual Rainfall Water Yield (mil. m3)

(mm) Scenario I Scenario II Scenario III

2018 2406.08 1,755,154,110.51 1,755,799,564.77 1,756,375,718.37
2019 2221.32 1,616,257,946.91 1,617,767,874.74 1,619,029,718.35
2020 2371.75 1,726,525,208.33 1,728,733,356.91 1,730,702,036.99
2021 2330.22 1,695,370,640.42 1,698,139,630.56 1,700,840,701.27
2022 2502.55 1,820,993,958.11 1,824,878,523.67 1,828,995,825.16
2023 2462.50 1,790,466,081.66 1,795,291,837.77 1,799,989,836.18
2024 2509.89 1,823,490,354.39 1,829,037,584.00 1,834,815,601.78

Average 2400.62 1,746,894,042.90 1,749,949,767.49 1,752,964,205.44Sustainability 2019, 11, x FOR PEER REVIEW  4 of 24 
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In addition, the validation result of water yield estimation with observed data from the hydrological
station of the Royal Irrigation Department at X90 (Khlong U-Tapao) during 2010–2017 provided an
excellent fit with NSE of 0.81 and R2 of 0.87 as mentioned by Reference [63].

3.4. Sediment Retention Ecosystem Service Assessment

Based on LULC data in 2017, the average annual soil loss was 10,293.19 tons/km2. Meanwhile, the
predictive LULC data between 2018 and 2024 of Scenario I will generate the highest annual erosion than
Scenario II and III with an average value of 9,609.39 tons/km2. In contrast, Scenario II will generate the
lowest annual soil erosion than Scenario I and III with an average value of 8,403.54 tons/km2 (Table 7).
Likewise, the average annual sediment retention in 2017 was 2,892.58 tons/km2. In the meantime,
the predictive LULC between 2018 and 2024 of Scenario II will retain the highest annual sediment
retention than Scenario I and III with an average value of 3,320.18 tons/km2 since Scenario II will
generate the lowest soil erosion than other scenarios. On the contrary, the predictive LULC of Scenario
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I will retain the lowest annual sediment retention than Scenario II and III with an average value of
3,307.81 tons/km2 (Table 7). Similarly, average annual sediment export in 2017 was 227.40 tons/km2.
Meanwhile, the predictive LULC between 2018 and 2024 of Scenario II will deliver the lowest annual
sediment export than Scenario I and III with an average value of 181.26 tons/km2 since Scenario II will
retain the highest sediment retention than other scenarios. On the contrary, the predictive LULC of
Scenario I will deliver the highest annual sediment export than Scenario II and III with an average
value of 227.08 tons/km2 (Table 7). Spatial distribution of sediment retention in 2017 and 2024 of three
different scenarios is displayed in Figure 6.
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Table 7. Estimation of soil erosion, sediment retention, and sediment export of three different scenarios
between 2018 and 2024.

Year
Soil Erosion (tons/km2) Sediment Retention (tons/km2) Sediment Export (tons/km2)

Scenario I Scenario II Scenario III Scenario I Scenario II Scenario III Scenario I Scenario II Scenario III

2018 9541.79 9166.44 9352.96 3310.83 3314.86 3313.82 219.60 204.65 208.52
2019 8850.74 8215.66 8578.79 3053.91 3060.66 3058.07 206.75 181.75 191.32
2020 9445.76 8472.76 9076.33 3235.46 3245.68 3240.85 222.12 184.25 202.15
2021 9334.90 8127.66 8866.48 3221.15 3233.53 3227.32 220.84 174.99 197.99
2022 10,066.07 8519.22 9380.56 3487.20 3502.96 3495.42 240.05 181.68 209.58
2023 9891.33 8174.51 9169.52 3391.58 3409.01 3400.00 236.47 171.92 205.31
2024 10,135.12 8148.53 9226.04 3454.56 3474.59 3464.58 243.75 169.57 206.65

Average 9609.39 8403.54 9092.96 3307.81 3320.18 3314.29 227.08 181.26 203.07

In addition, the validation result of the sediment export estimation with observed data from the
hydrological station of the Royal Irrigation Department at X90 (Khlong U-Tapao) during 2011–2017
provided a good fit with NSE of 0.66 and R2 of 0.82 [63].
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3.5. LULC Scenario Identification for Optimum Water Yield and Soil Retention Ecosystem Services

The calculated average ESCI values of water yield (runoff) and sediment retention ecosystem
services from three different LULC scenarios were simultaneously compared to identify the LULC
scenario for optimum water yield (runoff) and sediment retention ecosystem services as summarized
in Table 8. As a result, average cumulative ESCI values of water yield (runoff) and sediment retention
ecosystem services from LULC of Scenario II can provide the highest average ESCI value of 0.0434
among three different LULC scenarios. Therefore, LULC of Scenario II was chosen for optimum water
yield (runoff) and sediment retention ecosystem services in Khlong U-Tapao watershed. This LULC
scenario can mitigate flooding events in Khlong U-Tapao watershed and reduce sediment export in
Songkhla Lake.

Table 8. Average ESCI values of the ecosystem service on water yield and sediment retention service
among three different scenarios.

Period

Ecosystem Change Services Index (ESCI)

Scenario I Scenario II Scenario III

Water Yield Sediment Retention Average Water Yield Sediment Retention Average Water Yield Sediment Retention Average

2017–2018 −0.0583 0.1449 0.0433 −0.0579 0.1460 0.0441 −0.0576 0.1456 0.0440
2017–2019 −0.1328 0.0561 −0.0384 −0.1320 0.0581 −0.0370 −0.1313 0.0572 −0.0371
2017–2020 −0.0737 0.1188 0.0226 −0.0725 0.1221 0.0248 −0.0714 0.1204 0.0245
2017–2021 −0.0904 0.1139 0.0118 −0.0889 0.1179 0.0145 −0.0874 0.1157 0.0142
2017–2022 −0.0230 0.2059 0.0915 −0.0209 0.2110 0.0951 −0.0187 0.2084 0.0949
2017–2023 −0.0393 0.1728 0.0668 −0.0368 0.1785 0.0709 −0.0342 0.1754 0.0706
2017–2024 −0.0216 0.1946 0.0865 −0.0186 0.2012 0.0913 −0.0155 0.1977 0.0911

Average 0.0406 0.0434 0.0432

4. Discussion

4.1. LULC Assessment, Change, and Trend

Para-rubber trees, which are an economic tree of farmers in the Southern region of Thailand,
had been increased during 2010–2017 and tended to increase in the near future according to the
transitional probability of the Markov Chain. The observation is consistent with the previous study of
Reference [37] which found forest land at Watershed Class I of U-Tapao watershed has been converted
to rubber plantations. Likewise, Reference [39] mentioned that deforestation that has taken place in
the SLB is converted into rubber plantations. Meanwhile, evergreen forests, which mostly situate
on steep slopes, have been encroached for rubber plantations. Nevertheless, the prices of unsmoked
rubber sheets grade III have a tendency to decline since it reaches the highest record in 2011 with
132.43 Baht/kg [64]. Additionally, the Thai Government encourages farmers to convert rubber to oil
palm plantation [65] and reclaims forest areas back from intruders by law enforcement [61]. These
imply that deforestation may tend to decrease in Klong U-Tapao watershed.

Besides, the classified LULC map from Landsat–TM and OLI using the RF classifier can provide
overall accuracy and Kappa hat coefficient more than 80% that represents strong agreement or accuracy
between the classified map and the reference map [66]. Additionally. These accuracy results are
consistent with previous studies of [67–70]. However, to apply the RF model under the EnMap BOX
software, users are required to observe the preliminary LULC result and add more training sample
points to increase the accuracy of classification as mentioned by Reference [71].

4.2. LULC Prediction by CLUE-S Model

As results of LULC prediction by the CLUE-S model, the predicted LULC data in three different
scenarios can provide realistic results as expectation. The deviation values between the required
land area and the predicted area of each LULC type under three different scenarios are very small
and vary from −0.1008% to 0.1290% or −10.08 km2 (underestimation) to 12.89 km2 (overestimation).
In fact, the deviation value depends on iteration driving factors of each LULC type which indicates the
maximum different allowance between the required and allocated area of LULC type under CLUE-S
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model [72–74]. Moreover, the derived AUC values for each LULC type allocation using binomial
logit regression analysis exhibit good fit (0.7239) and excellent fit (0.9957) between the predicted and
real LULC transition as mentioned by Reference [75]. These results imply that selected 8 driving
factors on LULC change include elevation, slope, soil fertility, distance to road, distance to settlement,
distance to water bodies, population density at the sub-district level, and average household income at
the sub-district level are appropriate to apply for each LULC type allocation under CLUE-S model.
In addition, distance to settlement, which is the most common driving factor for all LULC types
allocation in the current study, is consistent with the previous study of References [31,76] who found
the most common driving factor for all LULC types (except paddy field) in 9 protected forest areas in
Phuket Island is distance to settlement.

Consequently, the CLUE-S model can be used as an efficient tool to predict LULC based on specific
policies as the scenario. In practice, the optimum derived multiple linear equation from the binomial
logit regression analysis for each LULC type allocation, land requirement of different scenarios (which
are assigned by policy transformation), and model parameters (elasticity and LULC conversion matrix)
are very important for predicting LULC under the CLUE-S model.

4.3. Water Yield Estimation

Dynamic pattern of water yield (runoff) in three different scenarios during 2018–2024 is dictated
by annual rainfall data (see Table 6). It was found that there is a simple linear relationship between
annual rainfall data during 2018–2024 as an independent variable and estimated water yield volume in
the same period of each scenario as dependent variable provide the R2 between 0.9992 and 0.9999.
The significant difference of annual water yield volume of three different scenarios depends on
predictive LULC change of three scenarios since annual rainfall data of three different scenarios are
similar. The contribution of LULC from Scenario II and III highly reflect on water yield (runoff) than
Scenario I. Reference [77] found that the conversion of an evergreen forest into rubber plantation and
oil palm plantation affects the local hydrological cycle by decreasing infiltration and increasing the
flooding frequency [77–79]. The evapotranspiration from evergreen forest in general generates lower
water yields per unit area compared to the less forested in watershed areas [29].

4.4. Sediment Retention Estimation

Sediment dynamics at the catchment scale are mainly determined by climate, soil properties,
topography, and vegetation, and anthropogenic factors, such as agricultural activities or dam
construction and operation. Main sediment sources include overland erosion (soil particles detached
and transported by rain and overland flow), gullies (channels that concentrate flow), bank erosion,
and mass erosion [45]. As results of the study, it reveals that the predictive LULC between 2018 and
2024 of Scenario II can retain the highest annual sediment retention than Scenario I and Scenario III
since it generates the lowest annual soil loss than other scenarios. This result indicates the influence
of dynamic factor under RUSLE model of scenario includes cover factor (C) and practice factor for
erosion control practice (P) from each LULC data scenario (see Appendix A Table A3). In this study,
Scenario II increases more evergreen forests than other scenarios. In fact, evergreen forest areas of
Scenario II with value of 254.01 km2 in 2017 will be 377.33 km2 in 2024, while the area of evergreen
forest of Scenario I and III will be 215.46 and 257.93 km2 in 2024, respectively.

4.5. Optimum LULC Scenario for Ecosystem Services

By considering average cumulative ESCI values of water yield and sediment retention ecosystem
services between base year (2017) and dynamic predictive LULC scenarios during 2018–2024, LULC
scenario II was chosen for optimum water yield (runoff) and sediment retention ecosystem services in
Khlong U-Tapao watershed.

However, when water yield and sediment retention ecosystem services were separately considered,
LULC of Scenario I generates the least runoff in every year during 2018–2024 and the cumulative ESCI
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values on runoff ecosystem service of this scenario was also the lowest with average ESCI value of
−0.0627. Thus, the LULC of Scenario I can be chosen for optimum water yield (runoff) ecosystem
service to mitigate flood risk in Khlong U-Tapao watershed. In the meantime, the LULC of Scenario II
retains the highest sediment retention in the same period and the cumulative ESCI values on sediment
retention ecosystem service of this scenario were also the highest with an average of 0.1478. Therefore,
LULC of Scenario II can be selected for the optimum sediment retention ecosystem service to reduce
sediment export into Songkhla Lake.

5. Conclusions

Assessing the status and change of LULC between 2010 and 2017 was successfully implemented
using digital image processing with the RF classifier and post-classification comparison change
detection algorithm. The derived overall accuracy and Kappa hat coefficient of both LULC maps were
more than 80%. In the meantime, the prediction of LULC change of three different scenarios during
2018–2024 was successfully simulated using the CLUE-S model. The predictive LULC data of three
different scenarios provided realistic results, as expected. Then, the actual LULC in 2017 and predictive
LULC during 2018–2024 and coupled with climate, soil and topography data were applied to evaluate
ecosystem service in term of water yield and sediment retention using the Water Yield model and SDR
models of InVEST. The validation results for water yield estimation with NSE of 0.81 and R2 of 0.87
and sediment export estimation with NSE of 0.66 and R2 of 0.82 were acceptable. Finally, the average
cumulative ESCI values of water yield and sediment retention ecosystem services between base year
(2017) and dynamic predictive LULC scenarios during 2018–2024 were calculated and compared to
identify an optimum LULC scenario. As a result, LULC scenario II was selected for optimum water
yield (runoff) and sediment retention ecosystem services.

In conclusion, the integration of remote sensing technology with advanced classification method
(Random Forests) and geospatial models (CLUE-S model, Water Yield, and SDR models of InVEST)
can be used as efficient tools to provide geospatial data on water yield and sediment retention
ecosystem services from different scenarios. This research methodology framework can be used as
a basic guideline for land use planners, land managers, or policymakers to evaluate the optimum
LULC scenario for specific ecosystem services. However, the costs and benefits of the scenarios and
implications in terms of a policy should be extensively considered in more detail.
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Appendix A

Table A1. Minimal root depth and plant evapotranspiration coefficient for each LULC type.

LULC Type Root Depth (mm) Kc References

Urban and built-up area 0 0.3 [45,80]
Paddy field 400 0.6 [81]

Rubber plantation 2500 0.9 [45,80]
Oil palm plantation 2000 0.9 [45,80]

Perennial tree and orchard 3000 0.95 [45,80]
Aquatic cultural area 0 0 [45,80]

Evergreen forest 7300 1 [45,80]
Mangrove forest 500 1 [45,80]

Marsh and swamp 200 0.7 [82]
Water body 0 0 [45,80]

Miscellaneous land 0 0 [45,80]

Table A2. Soil series and soil erodibility factor values [55].

Soil Series Erodibility
Factor Value Soil Series Erodibility

Factor Value

Ban Thon series 0.20 Rangae/Tha Chin association 0.14
Bang Klam series 0.12 Rangae series 0.20

Bang Nara/Kokiean association 0.30 Ranong/Hat Yai association 0.32
Bang Nara series 0.26 Ranong/Phato association 0.25

Chumphon/Sawi association 0.28 Ranong series 0.23
Chumphon series 0.28 Ranote series 0.14

Complex of well drained, levee soil 0.22 Rayong series 0.23
Hat Yai/Padang Baser association 0.27 Residential 0.11

Hat Yai series 0.27 Ruso series 0.22
Khlong Nok Kra Thung series 0.20 Sai Buri fine clayey variant 0.26

Khlong Thom series 0.25 Sai Buri, fine clayey variant/Ruso association 0.28
Kho Hong/Tha Sae, mottled variant association 0.27 Sai Kao, somewhat excessively drianed variant 0.25

Kho Hong series 0.24 Samut Prakan series 0.17
Khok Khian fine sand fraction variant 0.17 Sathon series 0.28

Khok Khian series 0.24 Sawi series 0.20
Klaeng series 0.27 Slope Complex 0.21

La Harn series 0.22 Songkla Lake 0.07
Lang Suan series 0.13 Swamp 0.24

Nam Krachai/Kho Hong association 0.23 Tha Sae, mottled variant 0.25
Nam Krachai series 0.23 Tha Sae, mottled variant/Klaeng association 0.27
Padang Besar series 0.28 Thung Wa series 0.21

Pawong/Rangae association 0.23 Tin mine land 0.20
Pawong series 0.14 Visai complex 0.29

Phato series 0.22 Visai series 0.24
Puket series 0.20 Yala series 0.27

Table A3. C and P factor corresponding to each LULC class [55].

LULC Type C Factor P Factor

Urban and built-up area 0 0
Paddy field 0.4 1

Rubber plantation 0.22 1
Oil palm plantation 0.3 1

Perennial tree and orchard 0.3 1
Aquatic culture area 0 0

Evergreen forest 0.001 1
Mangrove forest 0 0

Marsh and swamp 0.40 1
Water body 0 0

Miscellaneous land 0.6 1
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