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Abstract: Since 2013, a series of air pollution prevention and control (APPC) measures have been
promulgated in China for reducing the level of air pollution, which can affect regional short-term
electricity power demand by changing the behavior of power users electricity consumption. This
paper analyzes the policy system of the APPC measures and its impact on regional short-term
electricity demand, and determines the regional short-term load impact factors considering the impact
of APPC measures. On this basis, this paper proposes a similar day selection method based on the best
and worst method and grey relational analysis (BWM-GRA) in order to construct the training sample
set, which considers the difference in the influence degree of characteristic indicators on daily power
load. Further, a short-term load forecasting method based on least squares support vector machine
(LSSVM) optimized by salp swarm algorithm (SSA) is developed. By forecasting the load of a city
affected by air pollution in Northern China, and comparing the results with several selected models,
it reveals that the impact of APPC measures on regional short-term load is significant. Moreover,
by considering the influence of APPC measures and avoiding the subjectivity of model parameter
settings, the proposed load forecasting model can improve the accuracy of, and provide an effective
tool for short-term load forecasting. Finally, some limitations of this paper are discussed.

Keywords: air pollution prevention and control policy; short-term load forecasting; BWM-GRA
approach; SSA-LSSVM technique

1. Introduction

With increasing economic development and rapid promotion of urbanization, the industrial
development mode characterized by heavy chemical industry and the coal-based energy consumption
structure has made China’s environmental pollution problems increasingly serious. Among them,
regional composite air pollution characterized by PM2.5 is the most prominent [1]. China’s main air
pollutant emissions have leapt to the top in the world, not only causing serious air pollution, but
also posing a certain threat to public health [2]. In addition, the air pollution is also an inevitable
problem of economic development, the impact of which on the macro economy is mainly reflected
in the adjustment of industrial structure. Therefore, many scholars have investigated the correlation
between air pollution and industrial structure, and obtained a rich series of outcomes [3–5].

In September 2013, the China State Council issued a series of policies such as the “Air Pollution
Prevention and Control (APPC) Action Plan” to improve air quality and protect public health [6].
Relevant scholars explored the main contents of APPC measures [7,8], finding that APPC measures
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affecting regional power demand can be summarized as cutting overcapacity, electric energy
substitution, industrial transfer and temporary shutdowns. The implementation of these measures
will affect the electricity demand by affecting the electricity consumption behavior of the power
users. Therefore, the relationship between the APPC measures and the regional electricity demand
is concerned by relevant scholars. Generally, many scholars’ research regarding the relationship
between APPC measures and electricity demand mainly focus on long-term electricity demand.
For instance, Mi et al. examined the relationships between air pollution, industrial transfer and
power consumption, and verified that the implementation of APPC measures will lead to changes
in industrial structure, thus affecting regional power consumption [9]. Yuan and Zhang forecasted
the growth rate of electricity consumption during the “13th Five-Year Plan” period considering the
cutting overcapacity policy on coal-fired power industry, obtaining an average annual growth rate
of 4.2% [10]. Further, Yuan et al. found that under the constraints of APPC measures, the power
demand is generally greater than the unconstrained power demand, and the forecasted increase of
power demand is consistent with the mid-to-high-end expectations in the “13th Five-Year Plan for
Power Development” [11]. Sun et al. forecasted the potential of electric energy substitution in China
employing the particle swarm optimization support vector machine method, whose results reflected
the influence of electric energy substitution policy on regional electricity demand [12]. Moreover, some
scholars have adopted different methods and samples to explore the relationship between regional
electricity demand and APPC measures like cutting overcapacity, industrial transfer, electric energy
substitution, and achieved rich results [13–16].

The above research mainly focuses on the impacts of APPC measures on the regional annual
electricity consumption, and less on the regional short-term electricity demand like daily power load.
In fact, when serious air pollution incidents occur in the region, APPC measures will be initiated, such
as temporary shutdowns of heavy polluting enterprises [17,18], which will have major impacts on
regional short-term power demand. Therefore, using quantitative methods to analyze the impact of
APPC measures on regional short-term electricity demand can assist short-term power dispatching,
effectively control short-term load fluctuations, and provide support for stable operation of power
systems, which has significant practical significance.

However, there are many factors affecting the regional short-term load, such as meteorological
factors and date types [19–21]. Besides, some scholars found that policy factors could affect power
load significantly, like the development of a smart grid [22,23]. Similarly, APPC measures have
significant policy characteristics, resulting that their impacts on load are difficult to quantify [24].
Thus, the introduction of APPC measures as an influencing factor into the short-term load forecasting
framework makes it difficult to construct a short-term load impact factor set. In addition, the daily
load has stochastic fluctuation characteristics, and traditional forecasting methods like multi-factor
regression, time series analysis and trend fitting are difficult to deal with such issues [25–27]. Hence,
relevant scholars have proposed the forecasting method based on intelligent machine learning, and
applied it to forecast the random objects, such as renewable energy output forecasting [28,29] and
short-term power load forecasting [30–32]. Commonly used forecasting methods based on intelligent
machine learning include the support vector machine (SVM) [33,34], neural network [35] and so on.

When forecasting the short-term load, in order to ensure the accuracy of the prediction, it is
necessary to select daily samples whose features are similar to those of the day to be predicted to
construct the training sample set [36], and the commonly adopted methods include gray relation
analysis (GRA) [37] and clustering [38]. The clustering method can construct the training sample sets
of all the days to be predicted at one time, but the disadvantage is that the clustering result is not
easy to control, that is, the training sample set capacity may be insufficient or too large, which will
reduce the prediction accuracy [38,39]. The GRA method can effectively control the training sample set
capacity within a suitable range, but the disadvantage is that it is impossible to construct the training
sample sets of all the days to be predicted at one time [37,40]. In addition, when using the traditional
GRA method to construct the training sample set, it is usually assumed that all the daily characteristic
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indicators have the same impact on the daily load [40], but this is not the case. Therefore, it is necessary
to distinguish the importance of different daily features in the construction process of the training
sample set.

In line with the above discussions, this paper needs to solve two problems when forecasting
the regional short-term power load considering the impact of APPC measures. The first is to select
appropriate indicator reflecting the policy impact of APPC measures so as to construct the influencing
factor set, and the second is to select appropriate forecasting model including the construction method
of the training sample set and the load forecasting method to improve the forecasting accuracy.
In order to solve the above problems, this paper analyzes the impact mechanism of APPC measures
on short-term load and constructs a short-term load influence factor set accordingly. On this basis,
a hybrid forecasting model, based on BWM [41] improved GRA and SSA-LSSVM [42] techniques,
is proposed, and the effectiveness of the proposed model is verified by comparing with several selected
load forecasting models. On the whole, the contributions of this paper mainly include:

(1) This paper focuses on the impacts of APPC measures on regional short-term load, and incorporates
APPC measures’ policy impact as a variable into the short-term load forecasting framework
to construct a short-term load influence factors set including APPC measures. In areas with
serious air pollution problems in China, this factor set is more in line with the actual situation of
short-term load forecasting, and has good practical significance.

(2) This paper adopts the BWM method to improve the training sample set construction process
based on traditional GRA, which enhances the similarity between training samples and the day
to be predicted by considering the distinguishing impacts of different characteristic indicators on
the regional daily load.

(3) This paper employs the LSSVM technique to forecast the regional daily load, which can take
into the nonlinear interrelationships between influencing factors and daily load. The SSA
approach is adopted to optimize the parameters of LSSVM, avoiding the subjectivity of parameter
determination, thus ensuring the credibility of the forecasting results.

The rest of this paper is organized as follows. Section 2 introduces the policy system of APPC
measures and its impact mechanism on short-term power load. Section 3 introduces the constructed
short-term load forecasting model, including modeling ideas and variable selection, training sample
set setting and the load forecasting technique. Section 4 reports the empirical results taking a city
affected by air pollution in Northern China as an example. Section 5 summarizes the whole paper and
provides a brief, conclusive discussion.

2. The APPC Policy System and Its Impact Mechanism on Short-Term Load

2.1. The APPC Policy System

Since 2013, the number of air pollution incidents in China has been frequent, and the air quality
has been getting worse [43]. Normally, air pollutants consist of primary particles directly discharged
from coal, motor vehicles, dust and biomass burning, and secondary particles obtained by complex
chemical reactions of pollutants such as sulfur dioxide, nitrogen oxides, volatile organic compounds
and ozone in the air [44]. The main sources of air pollutants in China are coal-fired power plants,
industrial production processes and motor vehicles. In the past a long time, the main pollutant affecting
China’s air quality is sulfur dioxide. However, with the in-depth implementation of energy-saving and
emission reduction reforms for large-scale coal-fired power plants and the rapid increase in motor
vehicles, ozone has replaced sulfur dioxide as the primary air pollutant in China [45]. In 2016, almost
all air pollutants emissions in China ranked first in the world [46]. In this context, China has introduced
a series of APPC policies aiming at reducing the level of air pollution.

As a policy system, the APPC policy contains a number of policy branches centered on solving the
air pollution problem [47]. The various policy instruments are crisscrossed to form a complex network
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structure. The policy branches form a transfer or collaboration relationship directly or indirectly
according to a specific logical relationship. It is difficult to directly reduce pollution by the APPC policy
at the legal level. It is necessary to guide the allocation of resources through economic, technical and
social supporting policies, specifically like energy development policies, fiscal and taxation policies,
and industrial policies. Moreover, it is also needed to count, supervise and constrain the pollutant
discharge behavior of polluters, which can finally achieve the purpose of controlling air pollution.
The complex network structure formed by the APPC policy is shown in Figure 1.
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From the above network structure of China’s APPC measures, the “APPC policy” at the core
position is usually presented in the form of comprehensive programmatic documents such as “action
plan”, “guidance opinion” and “planning”. Actually, each type of APPC measure does not work alone,
but requires the cooperation with other types of policies, resulting that various policies may have direct
or indirect links with each other.

It is worth noting that many countries and international organizations have also promulgated
many similar policies for prevention and control of air pollution. At the national level, in the late 1970s,
the United States successively promulgated and implemented the National Environmental Policy
Act and the Clean Air Act, and made major changes in 1977 and 1990. By taking the air pollution
control measures, the national air quality standard (NAAQS) was achieved. In addition, the United
States has also issued a number of initiatives to reduce air pollution, such as encouraging further
investment in clean technology research and development, levying environmental taxes, and increasing
fiscal expenditures on APPC. EU countries have signed a series of transnational agreements on the
transboundary transport of atmospheric pollutants, stipulating the reduction of atmospheric pollutants
transported by countries such as sulfur oxides and nitrogen oxides within a certain period of time.
Japan has promulgated a series of APPC policies against fixed air pollution sources since 1949. After
1960, a series of policies were issued for the prevention and control of mobile air pollution sources,
which significantly reduced the air pollution level in the Tokyo metropolitan area.

From the perspective of global action, in September 2015, the United Nations (UN) Sustainable
Development Summit adopted the “2030 Agenda for Sustainable Development”. As an important part
of promoting human well-being and building a healthy environment, air quality is fully reflected in
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the sustainable development goals that the international community needs to achieve. At the second
UN Environment Conference, the UN Environment Program released the report entitled “Healthy
Environment and Healthy Humans”, stating that air pollution has become the biggest environmental
threat to human health worldwide, and that it is urgent to take action in order to improve air quality.
In 2016, World Health Organization (WHO) countries adopted the “Roadmap to Enhance Global
Response to Air Pollution” at the 69th World Health Assembly, proposing actions to be taken by WHO
countries in response to the negative impact of air pollution on public health in the next three years
(2016–2019).

Generally speaking, the APPC policy is a comprehensive system formed by a combination of
multi-field and multi-type measures. From the perspective of the policy field, in addition to the
environmental policy at its core, APPC measures also involve energy, industry, fiscal, financial, insurance,
technology and environmental and social policies. From the perspective of policy types, APPC measures
include regulations, departmental regulations, and regulatory documents, as well as environmental
standards, air quality monitoring standards, environmental planning and technical standards and
norms. Meanwhile, for different sources of pollution, there are also different policy requirements. These
policies are based on departmental functions, important levels, professionalism and technicality, and
are formulated or published by different policy bodies. The network structure relationship presented by
the APPC policy system essentially reflects the inevitable trend of diversification of policy subjects and
policy instruments in its development process. Since this paper aims to forecasting China’s regional
short-term load considering the impact of APPC measures, the impact mechanism of APPC measures
on short-term load will be analyzed mainly based on the actual situations in China in the next section.

2.2. The Impact Mechanism of APPC Measures on Short-Term Load

Generally speaking, APPC measures mainly affect the regional short-term power demand by
affecting industrial production methods. APPC measures mainly include temporary shutdowns,
cutting overcapacity, electric energy substitution and industrial transfer. The impact of different policy
measures on short-term load is also different.

Specifically, when serious air pollution incidents occur in the region, APPC measures will be
initiated, such as prohibiting construction, temporary shutdowns of heavily polluting enterprises,
and prohibiting muck trucks going on the road, of which temporary shutdowns of heavily polluting
enterprises has the most impact on regional short-term power load. Therefore, under the influence of
APPC measures, the temporary shutdowns of heavily polluting enterprises will cause a short-term
downward trend in the regional short-term power load.

At the same time, the implementation of APPC measures will also lead to significant industrial
restructuring in the region, mainly reflected in the accelerated development of emerging industries and
cutting overcapacity of traditional industries [48]. Among them, cutting the overcapacity of traditional
industries will reduce the demand for electricity in the region, and the accelerated development
of emerging industries will drive the electricity demand of emerging industries. In addition,
the implementation of electric energy substitution measures will increase the electricity demand
of residents. Although the above-mentioned changes in power demand due to industrial restructuring
and electric energy substitution mainly reflect the long-term effects of APPC measures on electricity
demand, it is undeniable that the formation of long-term effects is essentially the result of the short-term
effects. Therefore, the implementation of the above APPC measures will also affect the level of
short-term power demand to some extent.

In summary, the APPC measures are a comprehensive policy system, and the impact mechanisms of
different APPC measures on short-term electricity demand are also different, but temporary shutdowns
measure has the most significant impact on short-term electricity demand. Considering the long-term
changes in power demand caused by industrial restructuring and electric energy substitution is not
obvious in the short term, when analyzing the impact of APPC measures on regional short-term load,
this paper mainly considers the impact of temporary shutdowns measure.
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3. Short-Term Load Forecasting Model Considering the Influence of APPC Measures

3.1. Model Construction Ideas and Variable Selection

In this paper, the basic idea of constructing short-term load forecasting model considering the
impact of APPC measures is that based on the traditional short-term load forecasting framework,
the APPC measures are introduced as a policy impact variable to construct the mapping relationship
between APPC measures and regional short-term load, so as to forecast the regional short-term load.

Considering that the APPC policy has characteristics that are difficult to quantify, this paper takes
the factor that most influences APPC measures, namely the air quality indicator, as the policy impact
variable, which is based on the following assumption: when the regional air quality indicator reaches a
certain level, different levels of air pollution warning will be triggered, and different levels of APPC
measures will be initiated accordingly. By acting on different power users, the electricity consumption
behavior of these users will be affected, thus affecting the short-term power load in this area.

Commonly used air quality indicators include air quality index (AQI) value, PM2.5 concentration
and PM10 concentration. According to the meaning of different indicators and the conditions for
air quality warning starting [49], this paper uses AQI, an indicator that can comprehensively reflect
regional air quality as a policy impact variable for APPC measures. According to the correspondence
between the air pollution warning level and the AQI value, this paper classifies the AQI value, and
then analyzes the changes of short-term load in different air quality levels, which reflects the impact of
APPC measures on regional short-term load.

In line with the research results of traditional short-term load forecasting [31,37,38,40], and
combined with the above-mentioned analysis of the impact mechanism of APPC measures on short-term
power load, the short-term power load influencing factors in this paper including temperature and
meteorological indicators, date type indicators, and APPC impact indicator, and each variable and
the valuing rules are shown in Table 1. Taking the above-mentioned influencing factors as the input
variables, and the regional daily load as the output variable, according to the characteristics of the day
to be predicted, the BWM-GRA method is used to select the similar day to construct training sample
set from the historical day, and the SSA-LSSVM technique is adopted to train and obtain the short-term
load forecasting model that can reflect the quantitative relationship between each influencing factor
and the regional short-term load. Finally, an actual example is used to verify the validity of the model.

Table 1. Variables and valuing rules.

Variable Name Unit Valuing Rule

Daily average load MW Daily data, actual values

Daily air quality level /
0 for 0 ≤ AQI < 100, 1 for 100 ≤ AQI < 150,
2 for 150 ≤ AQI < 200, and 3 for AQI ≥ 200

Daily average air pressure kPa Daily data, actual values
Daily average temperature ◦C Daily data, actual values

Daily average humidity g/m3 Daily data, actual values
Daily rainfall mm Daily data, actual values

Daily average wind speed m/s Daily data, actual values
Date type / 1 for normal working days, and 2 for legal holidays

3.2. Similar Day Selection Based on BWM-GRA

Considering the characteristics of the days to be predicted, if use all the daily data in the historical
sample set as the training samples, there may be a bias in the forecasting result due to the difference
between characteristics of the historical sample days and the days to be predicted. Therefore, it is
necessary to select days which have similar daily characteristics to the predicted days from the historical
sample set as the training sample set. In this section, the indicators that reflect the characteristics of
the days are the input variables including AQI, meteorological indicators and date type, as shown in
Table 1.
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Because the data in the sample set is characterized by high dimensionality, numerical type, and no
markup, this paper employs the GRA method to classify the training sample set according to relevant
references [37,40,42]. However, the traditional GRA method assumes that each feature variable in the
sequence is equivalent, that is, the similarity degree of each feature variable has the same effect on the
overall gray relation degree of the sequence. In fact, when selecting similar days for short-term load
forecasting, the indicators that constitute similar day characteristics have different effects on short-term
loads. For example, the effect of temperature on the daily load is usually large, while the influence
degree of wind speed on the daily load is less than temperature. Therefore, when GRA is used to select
similar days, the sample days with similar temperatures should be more similar to the sample days
with similar wind speeds, that is, have higher closeness.

According to the above discussion, this paper improves the similar day selection method based
on traditional GRA by introducing the index weighting method, and proposes a similar day selection
method based on BWM-GRA, of which BWM is the best and worst method, and its advantages
are [41,50,51]:

Firstly, the BWM method requires less information on the object to be evaluated. The basic idea
of determining the weight based on BWM is to judge the importance according to the nature of the
indicator. Therefore, the actual value of each indicator is not needed, revealing that it can be applied to
the indicator system with qualitative indicators, and also to the issue where only one evaluation object
is involved.

Secondly, the BWM method is simple and logically rigorous. Compared with AHP, BWM greatly
simplifies the process of comparing indicators by setting best and worst indicators. In addition,
by turning the indicator weighting problem into an optimization problem, the reliability of the
weighting result is improved.

The similar day selection steps based on BWM-GRA proposed in this paper are as follows:
Step 1: Construct a similar daily sample set. Based on the valuing rule of the indicators in Table 1,

the values of the seven daily characteristic indicators of all historical sample days are collected to form
a total similar daily sample set.

Step 2: Characteristic indicator weighting. The BWM method is used to determine the weight w j
of each characteristic indicator, which reflects the influence degree of each characteristic indicator on
the similar day selection result.

Step 3: Use the GRA method to select similar days. Firstly, it is assumed that the characteristic
vector X is composed of the values of the daily characteristic indicators, the daily characteristic vectors
of the day to be forecasted is X0 = [x01, x02, . . . , x0m], and the daily characteristic vectors in the similar
daily sample set are X1, X2, . . . , Xn, where m is the dimension of the feature vector, n is the number of
similar days, x0 j represents the j-th characteristic indicator value of the day to be predicted, and xi j
represents the j-th characteristic indicator value of the i-th sample day in the similar daily sample set.

Secondly, the characteristic indicator is normalized by the following method:

x′i j =
xi j − xminj

xmaxj − xminj
(1)

where, xminj = min
i

xi j, xmaxj = max
i

xi j, i = 0, 1, 2, . . . , n.

Thirdly, considering the determination of the resolution coefficient in the traditional GRA method
is subjective, this paper uses a gray relational construction method based on the differential and
exponential operation to define the comprehensive gray relational degree. Specifically, the difference
between each day characteristic indicator of the day to be forecasted and the day in a similar daily
sample set is calculated by:

∆xi j = |x0 j − xi j| (2)
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Furthermore, according to ∆xi j, the indicator similarity gray relational degree is constructed by:

γ1 j
(
x0 j, xi j

)
= 1/e∆xi j (3)

Finally, the gray relational degree of indicator similarity is integrated with the indicator weight to
obtain the comprehensive gray relational degree, that is:

γ0i =
n∑

j=1

w jγ1 j
(
x0 j, xi j

)
(4)

Step 4: For each day to be predicted, set a gray relational threshold of the day, and select the
similar day sample whose gray relational degree value is greater than the given threshold to constitute
the training sample set for the day to be predicted.

3.3. Short-Term Load Forecasting Model Based on SSA-LSSVM

The least squares support vector machine (LSSVM) [52] is a form of SVM under the quadratic
loss function. It is a model that uses the statistical learning theory of small sample data to find the
optimal linear regression hyperplane to retrieve data in high dimensional feature space. The basic
idea of the LSSVM is derived from the optimal separation hyperplane, the method of maximizing
interval and adopting nuclear learning, which is a concrete realization of the principle of structural
risk minimization on statistical learning. It replaces the quadratic programming solution optimization
problem by solving linear equations, and has the advantages of simplifying model, solving quickly
and without losing precision [53].

For a training sample set: S = (xi, yi)
L
i=1, where xi ∈ X ⊂ Rn is the input vector and yi ∈ R is the

output value, the following decision function can be constructed as a learning machine:

f (x) = ωϕ(x) + b (5)

where ϕ(x) is a linearly separable nonlinear high-dimensional mapping relation that xi ∈ X ⊂ Rn maps
into high-dimensional space; ω is the weight and b is the offset value.

The structural risk function is:
R =

1
2
||ω||2 +

1
2

c·Remp (6)

where ||ω||2 is the complexity of the control model; c is the regularization parameter; Remp is the
empirical risk.

In the LSSVM modeling process, Remp =
∑L

i=1 ζ
2
i , then the optimization problem of minimizing

structural risk can be expressed as:

minR =
1
2
ωTω+

1
2

c·
∑L

i=1
ζ2

i (7)

s.t. yi = ωiϕ(xi) + b + ζi (8)

where ζi is the error relaxation variable, i = 1, 2, . . . , L.
The Lagrange multiplier and dual transformation method are employed to transform the above

planning problems. According to the KKT condition, the following normal equations are collated:

ωi − λi·ϕ(xi) = 0
L∑

i=1
λi = 0

λi = c·ζi
ωiϕ(xi) + b + ζi − yi = 0

(9)
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where λi is the dual variable of the planning problem. Construct a kernel function that satisfies the
Mercer theorem as follows [54]:

K
(
xi, x j

)
= ϕ(xi)·ϕ

(
x j

)
(10)

Then the optimization problem shown in Equations (7) and (8) can be expressed as [42]:[
0 IT

v
Iv Ω + c−1I

][
b
λ

]
=

[
0
y

]
(11)

where Iv = [1, 1, . . . , 1]T, Ωi j = K
(
xi, x j

)
.

The kernel functions available for the LSSVM model include the Sigmoid kernel function,
the Polynomial kernel function, and the Radial Basis Function (RBF) kernel function. The RBF kernel
function has fewer preset parameters and thus can be well adapted to practical problems. Therefore,
this paper adopts the RBF function as the kernel function of the LSSVM model, that is [55]:

K
(
xi, x j

)
= exp (−

∥∥∥xi − x j
∥∥∥2

σ2 ) (12)

After selecting the appropriate kernel function K
(
xi, x j

)
to solve the nonlinear regression problem,

Equation (11) can be solved and the following decision function can be obtained:

f (x) =
L∑

i=1

λiK(xi, x) + b (13)

In Equation (13), there are two parameters needed to be determined, that is, the regularization
parameter c and the kernel function parameter σ2. In order to avoid the influence of subjective
factors, this paper uses the salp swarm algorithm (SSA) to automatically find the optimal values of the
two parameters.

The salp is a kind of deep-sea animal that usually exhibits collective action, forming a group
called the salp chain, so as to achieve better movement by quickly coordinating with the location of
the food. Based on this, Australian scholar Mirjalili S proposed a new heuristic optimization method,
entitled the salp swarm algorithm (SSA) [56]. In the SSA method, the initial population is divided into
leaders and followers, and the leader leads the chain of the salp, followed by the followers. Assuming
that there is a food source in the search space which is the salp chain target, called F, according to the
behavior of the salp chain, the specific optimization steps are as follows [42,56,57]:

(1) Set the parameters. SSA mainly includes five parameters, namely, the initial number of
population, the number of variables, the maximum number of iterations, the lower bound of the
variable and the upper bound of the variable.

(2) Population initialization. In the SSA algorithm, the initial population of the salp group is
initialized at random locations, and the position matrix is as follows:

S =
[
si j

]
n×d

(14)

where si j is the value of the j-th variable of the i-th salp, i = 1, 2, . . . , n, j = 1, 2, . . . , d, and si j is calculated
by Equation (15):

si j = rand(i, j) × [ub(i) − lb(i)] + lb(i) (15)

where rand(i, j) is a random matrix whose all elements are distributed in the [0,1] interval. ub(i) and
lb(i) represent the upper and lower bounds of the i-th salp, respectively.
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(3) Construct a fitness function. The fitness function is used to calculate each salp’s fitness value
determined during the optimization process, and all values are stored in the matrix OS as follows:

OS =


OS1

OS2
...

OSn

 =


f
[(

s11 s12 · · · s1d
)]

f
[(

s21 s22 · · · s2d
)]

...
f
[(

sn1 sn2 · · · snd
)]


(16)

In the matrix OS, the position of the salp with the best fitness value is considered as the food
source F, and its position is tracked by the salp chain, so that the global optimum value can be obtained
by moving the food source F.

(4) Iterative process. In order to perform a global search and avoid local optimization, all of the
salps will update their positions through specific steps in the SSA method. Among them, the way the
leader updates the location of the food source is:

x1
j =

 F j + c1
[(

ub j − lb j
)
c2 + lb j

]
, c3 ≥ 0

F j − c1
[(

ub j − lb j
)
c2 + lb j

]
, c3 < 0

(17)

where x1
j represents the position of the leader (the first salp) in the j-th dimension, F j is the location of

the food source, ub j and lb j represent the upper and lower bounds, respectively, and c1, c2 and c3 are all
random numbers. Specifically, c2 and c3 are randomly generated in the interval [0,1] to determine the
step size and direction of the j-th dimension moving to the next position, and c1 is defined as follows:

c1 = 2e−(
4l
L )

2

(18)

where L is the maximum number of iterations and l is the current number of iterations. The follower’s
location can be updated as follows:

xi
j =

1
2

(
xi

j + xi−1
j

)
(19)

Except for initialization, all steps are performed during the iteration until the end standard of the
SSA iteration is reached.

4. Empirical Results and Interpretation

4.1. Data Sources and Pre-Processing

This paper takes the data of a city which is seriously affected by air pollution in Northern China
as an example, to verify the scientific nature of the proposed short-term load forecasting model
considering the impact of APPC measures. The date period is 98 days from 1 September to 7 December
in 2018, of which 91 days from 1 September to 30 November in 2018 are training samples, and seven
days from 1 to 7 December in 2018 are test samples.

The input variables of the short-term load forecasting model in this paper include daily air quality
level, daily average air pressure, daily average temperature, daily average humidity, daily rainfall,
daily average wind speed and date type, and the output variable is the daily average load. Among
them, the load data is from the city power company, the meteorological data are collected through the
meteorological website, and the air quality level and date type are collated by the author according to
the valuing rules shown in Table 1.

Firstly, the relevant data of the above eight variables of the city from 1 September to 7 December
in 2018 are collected, and the descriptive statistics of the data are shown in Table 2.
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Table 2. Descriptive statistics of sample data.

N Max. Min. Mean S.D.

Daily average load 98 3859.6258 2315.0776 2922.2208 270.7487
Daily air quality level 98 3.0000 0.0000 0.4286 0.8582

Daily average air pressure 98 1018.1583 983.7583 1000.1516 5.9333
Daily average temperature 98 26.6583 −4.8958 14.9207 6.6357

Daily average humidity 98 97.4167 24.2917 58.1798 17.4024
Daily rainfall 98 3.4083 0.8792 1.9854 0.5465

Daily average wind speed 98 19.0000 0.0000 0.9560 3.1773
Date type 98 2 1.0000 1.3297 0.4727

Before performing similar day selection and load forecasting, it is first necessary to normalize the
data using Equation (1) to eliminate the influence of the dimension. The descriptive statistical results
after standardization of variables are shown in Table 3.

Table 3. Descriptive statistics of standardized sample data.

Variable Name N Max. Min. Mean S.D.

Z-daily average load 98 0.8959 0.0625 0.3901 0.1461
Z-daily air quality rating 98 0.9524 0.0000 0.1361 0.2724

Z–daily average air pressure 98 0.6215 0.3657 0.4876 0.0441
Z–daily average temperature 98 0.9598 0.0074 0.6055 0.2003

Z- daily average humidity 98 0.9385 0.0153 0.4432 0.2197
Z-daily rainfall 98 0.9379 0.0160 0.4192 0.1992

Z- daily average wind speed 98 0.9524 0.0000 0.0479 0.1593
Z-date type 98 0.9130 0.0435 0.3301 0.4110

4.2. Training Sample Set Construction Results

In this paper, the BWM-GRA method is used to select the similar day of the day to be predicted,
so as to construct the training sample set required for load forecasting. Firstly, the BWM method
is used to determine the weights of the characteristic indicators. According to the expert opinion,
the daily average temperature is set as the optimal indicator, and the daily average wind speed is the
worst indicator. Through an expert questionnaire survey, the preference degrees of each characteristic
indicator relative to the optimal and worst indicators were obtained, as shown in Table 4.

Table 4. Preference degrees of each indicator relative to the best and worst indicators.

Index S1 S2 S3 S4 S5 S6 S7

AB 2 4 1 5 4 8 3
AW 6 4 7 5 3 1 6

According to Table 4 and Liu Y et al. [51], the weight of each characteristic indicator obtained by
using Lingo11 is as shown in Table 5:

Table 5. Weights and rankings of each characteristic indicator.

Index S1 S2 S3 S4 S5 S6 S7

w j 0.1937 0.1288 0.2575 0.0859 0.1119 0.0286 0.1936
Ranking 2 4 1 6 5 7 3

According to the Equations (2)–(5) and the weighting results of the characteristic indicators,
the gray relational coefficient between the normalized daily characteristic indicator sequences of the
day to be predicted and each similar sample day can be calculated. For example, for the 1 December,
2018, the normalized sequence is X12.1

0 = (0.9524, 0.4926, 0.4760, 0.6655, 0.1103, 0.1071, 0.9130), and for
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a similar sample day in the similar day sample set (e.g., 1 September 2018), the normalized sequence
is X1 = (0.3175, 0.4118, 0.9398, 0.4835, 0.0000, 0.6417, 0.9130). According to the BWM-GRA method
proposed in this paper, the grey relational coefficient of the two sequences is calculated to be 0.7656.
Similarly, the gray relational coefficient between other similar sample day sequences and the 1 December
sequence can be calculated. On this basis, according to the Delphi method [58], considering that the
capacity of the training sample set should be characteristic indicator, the gray relational threshold of
1 December is set to 0.8, and a total of 13 similar days of 1 December are obtained, which constitute a
set of training sample set used to forecast the load on 1 December.

Similarly, the gray relational degrees between other to-be-predicted day characteristic indicator
sequences and all similar sample days’ characteristic indicator sequences can be calculated. On this
basis, the threshold of the gray relational of each to-be-predicted day is set using the Delphi method,
and the similar sample day whose grey relational value is greater than the given threshold is selected
to constitute the training sample set of the day to be predicted. The results of similar sample day
selection are shown in Table 6.

Table 6. Results of similar sample day selection.

Forecasted Day
Grey Relational

Threshold Similar Sample Days * Sample Set
Capacity

1 December 0.8 1014, 1020, 1021, 1110, 1111, 1117, 1118, 1124, 1125, 1127–1130 13
2 December 0.8 1110, 1111, 1118, 1124, 1125, 1127–1130 9
3 December 0.8 1016, 1105–1108, 1112-1116, 1123, 1126–1130 16
4 December 0.85 1016, 1025, 1105–1108, 1112, 1113 1114, 1116, 1123 11

5 December 0.85 0918, 0928, 1009–1011, 1017–1019, 1026, 1029–1031, 1105–1109,
1112, 1115, 1116, 1122 21

6 December 0.8 1008–1012, 1015, 1017–1019, 1026, 1029–1031, 1105–1109, 1115,
1116, 1122 21

7 December 0.8 1009–1012, 1017–1019, 1026, 1029–1031, 1105–1109, 115, 1116, 1122 19

Note: * The similar sample days in Table 6 are expressed in the form of "month-day", for instance, 0918 is September
18, 1014 is October 14, 1105 is November 5, and 1127–1130 is from 27 November to 30 November.

4.3. Forecasting Results

This section takes the 1 December load forecasting process as an example to demonstrate the
specific application of the proposed load forecasting model.

Firstly, the 13 similar sample days corresponding to 1 December are used as training sample
sets. After standardizing the data, the parameters of the LSSVM optimized by SSA are calculated
by using the MATALB software, and the regularization parameter C = 123.7584, the kernel function
parameter σ2 = 86.253. At this time, the fitness function value of the SSA-LSSVM model is 0.0282,
that is, the model fitting accuracy can reach over 97% [42]. The process of optimizing the LSSVM
parameters using SSA is shown in Figure 2.
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By substituting the optimized LSSVM model parameters and the relevant data of the training
sample set into the model, the LSSVM model is trained, and the model fitting effect after training is
shown in Figure 3.Sustainability 2018, 10, x FOR PEER REVIEW  13 of 21 
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Input the load influencing factor data of 1 December into the trained model, and the normalized
load value of the day can be obtained. Then, the forecasted load value can be calculated according to
Equation (1), and the forecasting accuracy of the model can be obtained by comparing the forecasted
result with the actual load value, as listed in Table 7.

Table 7. Short-term load forecast results of 1 December based on SSA-LSSVM.

Forecasted Day Standardized Value Predictive Load (MW) Actual Load (MW) Prediction Error (%)

1 December 0.4772 3083.6590 3129.3984 −1.4616

Similarly, using the similar day samples of forecasted days from 2 December to 7 December listed
in Table 6 as the training sample set, based on the standardized data, the SSA-optimized LSSVM
parameters and model fitness function value for each to-be-forecasted day can be obtained using the
MATALB, which are shown in Table 8. Meanwhile, the processes of optimizing the LSSVM parameters
using SSA for other to-be-forecasted days are shown in Figure 4.

Table 8. Training results of the SSA-LSSVM model.

Forecasted Day Regularization Parameter Kernel Function Parameter Fitness Function Value

2 December 91.5913 97.2283 0.0474
3 December 2612.4822 150.3338 0.0372
4 December 547.5528 24.1424 0.0382
5 December 1245.0968 991.9393 0.0750
6 December 4948.321 1503.3384 0.0888
7 December 12098 56.3885 0.0193
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The load influencing factors data of six to-be-forecasted days from 2 December to 7 December are
input into the respective trained models to obtain the standardized load value for the six days, and
then the predicted load values are calculated and compared with the actual load values to obtain the
prediction accuracy of each model, as shown in Table 9, from which it can be seen that the forecasting
accuracy of each to-be-forecasted day is less than 2%, revealing that the proposed model has good
applicability in forecasting the regional daily power load considering the impacts of APPC measures.

Table 9. Short-term load forecasting results based on SSA-LSSVM.

Forecasted Day Standardized Value Predictive Load (MW) Actual Load (MW) Prediction Error (%)

2 December 0.3953 2931.9244 2978.5803 −1.5664
3 December 0.5336 3188.2900 3147.4415 1.2978
4 December 0.6066 3323.5832 3279.0715 1.3574
5 December 0.7353 3562.0894 3599.4933 −1.0391
6 December 0.7932 3669.4233 3717.9822 −1.3061
7 December 0.8666 3805.3264 3859.6258 −1.4069

4.4. Comparison of Results

In this paper, considering the influence of APPC measures, a short-term load forecasting model is
constructed based on BWM-GRA and SSA-LSSVM techniques. In order to verify the validity of the
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model, this paper compares the proposed model with selected short-term load forecasting models
using the same data samples. The comparison models are set as follows:

Model 1: Short-term load forecasting model proposed in this paper considering the impact of
APPC measures;

Model 2: Short-term load forecasting model based on BWM-GRA and SSA-LSSVM, regardless of
the impact of APPC measures;

Model 3: Considering the influence of APPC measures, use traditional GRA method to select
similar day samples, and use SSA-LSSVM for short-term load forecasting;

Model 4: Considering the impact of APPC measures, a short-term load forecasting model is
constructed based on BWM-GRA and PSO-LSSVM [59].

Similarly, the related data of the same city from 1 September to 30 November in 2018 are used
as training samples, and those from 1 December to 7 December are used as test samples. The above
model is used for prediction, and the results are shown in Table 10.

Table 10. Forecasting results of each model.

Forecasted Day Model 1 Model 2 Model 3 Model 4 Actual

1 December 3083.659 3235.04 3215.65 3183.53 3129.3984
2 December 2931.9244 3162.81 3122.4 3043.85 2978.5803
3 December 3188.29 3334.16 3293.26 3249.27 3147.4415
4 December 3323.5832 3448.2 3349.06 3220.62 3279.0715
5 December 3562.0894 3699.98 3643.76 3507.19 3599.4933
6 December 3669.4233 3842.45 3870.98 3815.77 3717.9822
7 December 3805.3264 3947.51 3723.2 3778.31 3859.6258

According to the actual load, the prediction error of each test sample day and the average error
of each model are calculated, as shown in Figure 6, where MAPE is mean absolute percentage error,
calculated by:

MAPE =
1
N

N∑
i=1

∣∣∣∣ yi − ŷi

yi

∣∣∣∣ (20)

where N is the number of the day to be forecasted, yi and ŷi are the actual and forecasted loads of i-th
to-be-forecasted day.
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According to Table 10 and Figure 6, combined with the selected model scheme settings, several
findings can be concluded: (1) Considering the influence of APPC measures can improve the prediction
accuracy of the model. According to the comparison of models 1 and model 2, the prediction error of
model 1 for each sample day to be predicted is smaller than that of model 2, and the average error of
model 2 is the largest among the four models, indicating that the short-term load forecasting results
of the city have significantly affected by APPC measures. Therefore, considering this impact can
effectively improve the accuracy of short-term load forecasting.

(2) Using BWM-GRA to construct training samples can avoid the subjectivity of training sample
construction and improve prediction accuracy. Through the comparison of Model 1 and Model 3, using
the traditional GRA method to construct the training sample set does not consider the difference of
the importance degree of each influencing factor, so that the training sample set has certain deviation.
In model 1, the traditional GRA is improved by using BWM, revealing that the importance of each
influencing factor is considered in the process of constructing the training sample set, which makes the
construction result of the training sample set more realistic, helping to improve the prediction accuracy.

(3) The forecasting model based on LSSVM method has high accuracy, and using SSA to optimize
parameters can reduce subjectivity and improve model prediction effect. Compared with SVM, the
LSSVM-based prediction method simplifies the calculation process and has the advantage of fast and
accuracy. In addition, according to the comparison between Model 1 and Model 4, although the PSO
and SSA parameter optimization can both reduce the subjectivity of the model, compared with PSO,
SSA can reduce the computational complexity of parameter optimization and improve the optimization
efficiency by setting the leader and followers in the parameter optimization process.

5. Conclusions and Discussions

5.1. Conclusions

The implementation of APPC measures will affect the electricity consumption behaviors of
power users, thus affecting the regional electricity load. However, the previous researches had less
consideration on the APPC measures’ impacts on short-term load. Therefore, this paper first analyzed
the background of APPC measures, and then examined the policy system of APPC measures and its
impact on short-term load. Furthermore, this paper incorporated the impact of APPC measures into the
load forecasting framework, and proposed a short-term load forecasting model based on BWM-GRA
and SSA-LSSVM techniques. Specifically, the BWM method was adopted to improve the traditional
GRA that ignores the importance difference of different characteristic indicators, so as to select similar
day sample to construct the training sample set for forecasting the selected daily power load. The SSA
approach was employed to optimize the parameters used in LSSVM to reduce the subjectivity of the
model parameter setting process, which can reduce the computational complexity of optimization and
improve the optimization efficiency.

To verify the effectiveness of the proposed model, an empirical analysis was performed based
on the data of a city affected by air pollution in Northern China from 1 September to 7 December
in 2018. Moreover, three selected models are employed to forecast the daily power load of the city
using the same samples, and their results are compared with the proposed model’s result, which can
present the performance of the proposed hybrid forecasting model. Specifically speaking: (1) The
MAPE of Model 1 is less than that of Model 2, indicating that APPC measures have significant impacts
on the short-term load of the city affected by air pollution, and considering this impact can effectively
improve the prediction accuracy. (2) A comparison of Model 1 and Model 3 reveals that after using
BWM to improve the traditional GRA method, the obtained training sample set can better reflect the
characteristic similarity of the to-be-forecasted days and the training sample days, thus helping to
improve the accuracy of load forecasting. (3) Using the SSA to optimize the parameters of LSSVM
has the characteristics of low computational complexity, avoidance of subjectivity of model parameter
setting, and thus has high prediction accuracy, as suggested by the comparison of Model 1 and Model 4.
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5.2. Discussions

Although the proposed short-term load forecasting model considering the impact of APPC
measures based on BWM-GRA and SSA-LSSVM techniques can be well applied to forecast the daily
power load of the city affected by air pollution in Northern China, there is still room for improvement
in this paper.

(1) The selection of indicators to characterize the impact of APPC measures needs further
investigation. In this paper, the factor that causes APPC measures, namely the AQI is considered as a
as a variable reflecting the impact of APPC measures, which is mainly based on the assumption that
the value of AQI and the implementation of APPC measures have a clear and unique correspondence.
However, the correspondence between AQI value and APPC measures may be ambiguous and
non-unique, so how to select or construct corresponding indicators to reflect this relationship is one of
the alternative directions to further improve the accuracy of short-term load forecasting under APPC
measures, and is also the direction that this paper can be further improved in the future.

(2) The universality of the proposed short-term load forecasting model needs further discussions.
The empirical analysis and model comparison results verify the applicability of the proposed regional
short-term load forecasting model based on BWM-GRA and SSA-LSSVM techniques, and provide
ideas and framework for similar forecasting problems. However, for other forecasting problems,
such as renewable energy output forecasting and time-point load forecasting, the applicability of
the proposed forecasting model needs to be discussed. (1) The set of influencing factors needs to be
adjusted according to the forecasting object. The influencing factors of daily load forecasting in this
paper include the influence of APPC measures, meteorological indicators and date types. For other
forecasting problems, it is necessary to construct corresponding sets of influencing factors according to
the characteristics of the objects to be forecasted. (2) There is still room for improvement in the training
sample set construction method. In the proposed BWM-GRA based training sample set construction
method, the method of judging the importance of factors is the BWM method, which needs to give
the judgment of the importance of all indicators relative to the best and worst indicators, and thus
is a weighting method under the classical set. However, for the cases where the judgment result of
the indicator importance is difficult to clearly predict, the fuzzy BWM method [60] can be considered.
Moreover, the threshold value of each day to be predicted in the GRA is determined based on the
Delphi method, which has a certain subjectivity, so the fuzzy Delphi [61] method can be used to reduce
the subjectivity of the expert experience through multiple rounds of expert feedback. (3) The choice of
forecasting methods under large samples remains to be discussed. The forecasting model based on SSA
optimized LSSVM has better adaptability under small samples [42,62]. When the training sample set is
too large, the method may have a good fitting effect on the training samples, but the deviation of the
forecasting results of the test samples may be large, indicating that the method is prone to over-fitting
under large samples. Therefore, the applicability of SSA is debatable in large-sample-based forecasting
issues such as renewable energy output forecasting and time-point load forecasting.

In summary, the short-term load forecasting model based on BWM-GRA and SSA-LSSVM
proposed in this paper fully considers the impacts of APPC measures on regional short-term load,
enriching and expanding the short-term load forecasting theory, which can provide an effective tool for
short-term load forecasting. In addition, this paper uses the factor that most influences APPC measures
as the policy impact variable of APPC measures, namely the air quality index; thus providing a new
idea for similar research that considers policy shocks, i.e., when it is difficult to find an indicator that
can characterize the policy impact, it can be considered to adopt the indicator that triggers the policy
as an alternative variable to complete the analysis. Finally, there are still some improvements to be
made in the construction of the influencing factors set and forecasting models in this paper, which can
provide future directions for the study of forecasting issues considering policy impacts.
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