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Abstract

:

WorldClim version 1 is a high-resolution, global climate gridded dataset covering 1961–1990; a “normal” climate. It has been widely used for ecological studies thanks to its free availability and global coverage. This study aims to evaluate the quality of WorldClim data by quantifying any discrepancies by comparison with an independent dataset of measured temperature and precipitation records across Europe. BIO1 (mean annual temperature, MAT) and BIO12 (mean total annual precipitation, MAP) were used as proxies to evaluate the spatial accuracy of the WorldClim grids. While good representativeness was detected for MAT, the study demonstrated a bias with respect to MAP. The average difference between WorldClim predictions and climate observations was around +0.2 °C for MAT and −48.7 mm for MAP, with large variability. The regression analysis revealed a good correlation and adequate proportion of explained variance for MAT (adjusted R2 = 0.856) but results for MAP were poor, with just 64% of the variance explained (adjusted R2 = 0.642). Moreover no spatial structure was found across Europe, nor any statistical relationship with elevation, latitude, or longitude, the environmental predictors used to generate climate surfaces. A detectable spatial autocorrelation was only detectable for the two most thoroughly sampled countries (Germany and Sweden). Although further adjustments might be evaluated by means of geostatistical methods (i.e., kriging), the huge environmental variability of the European environment deeply stressed the WorldClim database. Overall, these results show the importance of an adequate spatial structure of meteorological stations as fundamental to improve the reliability of climate surfaces and derived products of the research (i.e., statistical models, future projections).
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1. Introduction


Easy access to standardized climate data with global coverage is paramount for the advancement of many ecological studies and to understand future ecosystem services provided by forest systems [1,2,3] and productive lands in agriculture [4,5]. One of the main aims for researchers dealing with environmental resources has become to forecast possible impacts of climate change on organisms and to evaluate possible mitigation [6,7,8,9]. In the past few decades, many conservation strategies have been suggested in order to maintain human well-being and ensure an adequate level of welfare [10] from (relatively) simple management strategies [4,11], including “assisted migration” [12,13,14], a controversial protocol that includes translocating more adapted or resilient genotypes for conservation or to improve the resilience of ecosystems. Such efforts are often driven by statistical models [14,15,16,17] and management simulators [18,19], with both genetic variation and phenotypic plasticity included in the statistical models as covariates [20,21,22]. However, despite modelling efforts, such studies always require absolutely reliable climate data to be used as both baseline (e.g., 30-year average climate data) and for future predictions. Furthermore, while the uncertainty around GCMs and future trajectories is well known [23,24,25], information on current ecological limits of forest tree species has also been questioned [26]. In this context, the interest of researchers in gridded climate datasets has grown strongly.



The interpolation method, the spatial resolution and the coverage are the three main features that researchers use to select the most suitable datasets for their research [27,28,29,30]. The first release of the WorldClim dataset [31] is probably the most famous gridded climate dataset, widely used for ecological studies and freely available from (www.worldclim.org). Thanks to its high resolution (30 arc-second in the WGS84 reference system and approximately 1 km at the equator), global coverage, and availability, it has been used and cited more than 5200 times since publication [31]. The dataset is suitable for basic and applied studies in ecology, including forestry and ecological modeling [32,33,34], as well as to construct related datasets such as bio-geographical zones or environmental stratifications [35]. One of the main products of this database is “version 1”, representative of the 1961–1990 climate normal period for the whole globe, including Antarctica. This version 1 dataset was generated by interpolating weather station data with the ANUSPLIN software (version 4.3) using latitude, longitude, and elevation as independent variables. The software implements a thin-plate smoothing spline procedure, using every station as a data point. A second-order spline function was fitted by the Authors using the above three variables, which produced the lowest overall cross-validation errors [31]. Considering the ANUSPLIN program creates a continuous surface projection, the LAPGRD program was used to create a global grid of climate surfaces with 30 arc-seconds horizontal and vertical resolution commonly referred to as 1 km2 resolution. Raster maps for monthly precipitation amount and mean, maximum, and minimum air temperature were then provided. Raw data came from weather stations retrieved from various databases including GHCN, WMO climatological normals, FAOCLIM 2.0, CIAT, and regional databases and, where possible, restricted to the period 1950–2000. Quality control measures were taken to remove duplicate records, giving precedence to the GHCN database. After the quality control check and cleaning, the database consisted of precipitation records from 47,554 locations and mean air temperature from 24,542 locations [31]. Then elevation bias in weather stations was related to latitude and presence of mountain ranges. However, local records from many European countries were not easily accessible and WorldClim climate surfaces for Europe were constructed using 1263 records for air temperature and 2116 for precipitation.



WorldClim version 1 has recently been acknowledged to be representative of the 1961–1990 climate normal period. This time-slice has been widely used as the pre-industrial climate in many papers about the potential impact of climate change on ecosystems [1,3,26,28,36,37] and other ecological fields. Nevertheless, given the detailed description provided by the Authors in their paper, the question remains whether the quality of the WorldClim climate surfaces as a proxy of the climate baseline is adequate in complex environments such as, for instance, the European environment.



The present study aims to assess and quantify the reliability of WorldClim climate raster maps for Europe. We compared WorldClim with observed average values for mean annual temperature and total annual precipitation for the period 1961–1990. Data were retrieved for the whole of Europe building an independent dataset with data from many meteorological services. Then statistical analysis was run in order to evaluate the reliability of this dataset across the study area.




2. Materials and Methods


2.1. Construction and Description of the Database Used for Comparison


To investigate WorldClim’s reliability in predicting baseline climate conditions we compiled an independent climate dataset by collecting data from weather services across Europe which were already freely available or delivered upon request (Table 1). All data were specifically requested or downloaded as monthly averaged values over the 30-year normal period (1961–1990). Local monthly air temperature averages (MAT) and precipitation sums (MAP) were aggregated to calculate annual values. In total we retrieved data from 6659 meteostations across Europe, with 1759 records for temperature and 6526 records for precipitation (Figure 1). Most of the records were retrieved for Germany and Sweden with 4825 and 1391 meteostations, respectively, while for some countries, records were much fewer (e.g., Spain, France, Italy) or totally absent (e.g., Serbia, Poland, Romania).



Nevertheless, even if not equally distributed geographically, neither balanced concerning the ecological regions of Europe, we considered the distribution of the collected data as adequate for the purpose. Despite the lack of uniform coverage of both geography and ecological regions, we considered the data collected to be adequate for subsequent analysis.



Moreover we tested the random distribution of MAT and MAP with the randtest package of the R statistical language [38]. The database was carefully checked and cleaned to remove entries with missing data and to geo-reference each record. Very few points (112), corresponding to less than 1% of all the records, lay outside country borders or land masses due to coordinate uncertainties, which reflects the high-quality of the new database. Such records were removed completely from the database in order to avoid any influences on the calculations.




2.2. Comparisons and Statistical Procedures


The BIO1 (mean annual air temperature) and BIO12 (mean total annual precipitation) variables of WorldClim were used as proxies to evaluate the spatial accuracy of raster surfaces. The strata were first downloaded from the official WorldClim web portal. Then, using an overlay function, the corresponding values of the two climate variables were extracted for each meteorological station in our database. A linear regression analysis was then applied to analyze the relationships between the predicted WorldClim value and the observed value in our dataset. The adjusted R2 was used to measure the amount of environmental variability expressed by WorldClim. Then the difference between the WorldClim value and the observed value (30-years normal value from our database) was calculated for each location of our database. To avoid confusion and mathematical balancing between positive and negative values, which might seriously affect the analysis, both the raw discrepancy (BIAS) and its absolute value (ABIAS) were calculated. To study possible trends across the data, we looked at the relationships between BIAS and the predictors used by the authors of WorldClim during the spatial interpolation process (i.e., latitude, longitude, elevation). Then, we retrieved the complete database of meteorological stations used by the WorldClim authors from www.arcgis.com/home/item.html?id=7644c6e78c1644b4bde2edfc44787520) and clipped to the European environment (Table 2).



We calculated the average distance of each meteorological station in our database from the geographically closest five stations in the WorldClim dataset. We expected a smaller difference where WorldClim stations were denser. Finally, the spatial autocorrelation of BIAS was evaluated using geostatistical analysis implemented in R using the gstat package [44] and modelling the semivariance of BIAS as a function of the spatial distance between records.



The whole structure of the data collection and analysis procedure is graphically reported on Figure 2.





3. Results


The compiled database included 25 European countries, albeit with an unbalanced distribution. Overall, an average of 266 records per country (both MAT and MAP) was included in the database. However, the difference among countries was huge, with a standard deviation of ± 988.64 records per country. This large standard deviation was caused by the disproportionate number of records for Sweden and Germany. Temperature (MAT) values ranged from −5.8 °C to 21.2 °C, while precipitation (MAP) was between 104.8 mm and 3318 mm. The mean difference between the interpolated WorldClim values and the observed values was 0.22 °C for temperature and −48.7mm for precipitation (Table 3), with a high coefficient of variation (6.82 for MAT and 3.40 for MAP). BIAS ranged between −10.6 °C and 13.2 °C for MAT and between −1578.1 mm and 950.8 mm for MAP. Mean ABIAS was 0.76 for MAT and 98.56 for MAP.



Results of the regression analysis for MAT and MAP are shown in Figure 3. Residuals of linear models were randomly distributed for both of the analyzed variables and were highly significant (p < 2.2 × 10–16). Concerning MAT, the good correlation and adequate proportion of explained variance point to a low discrepancy between the two datasets; WorldClim explained 86% of the variance (adjusted R2 = 0.856) with a residual random standard error of 1.50°C, intercept of −0.202 °C and slope almost equal to 1 (0.996). The regression line and the expected regression line for a perfect match between the two datasets almost overlapped. For MAP, 64% (adjusted R2 = 0.642) of the variance of the precipitation dataset was explained by a linear regression model, with a residual standard error of 159.6 mm. The match between the two regression lines was considerably low (Figure 3, right) with the slope of the regression coefficient higher than 1. WorldClim was characterized by higher values than observed under 500 mm precipitation and lower values above this threshold. As overall, a general overestimation of MAP values was detected in dry areas (<500 mm) with an underestimation in the remaining zones.



No relationship was found between the modelling error (ER) detected for MAT and MAP and the environmental predictors used for spatial interpolation across Europe. Modelled linear regressions explained less than 5% of variation, with one exception (Table 4). This lack of correlation can also be observed in Figure 4 where ABIAS is plotted against the average spatial distance of the “observed” meteorological station from the five WorldClim stations.



The spatial distribution of BIAS in the two most represented countries is shown in Figure 5 for the two investigated variables. Spatial aggregation is especially evident in Sweden, where most of the “large dots” are clustered in the south of the country. For Sweden and Germany, variograms of the MAP variable were fitted by means of an exponential variogram model and revealed a clear spatial autocorrelation, especially for Germany (Figure 6).




4. Discussion


The quality of the reference baseline climate has a fundamental role in predictions of the potential impact of climate change on organisms and natural ecosystems. The stability and reliability of the estimated projections calculated from species distribution models [14,45,46], management simulators [18,47], or the estimation of the geographical shift of climate zones [48] rely on the differences between current and future climate. While the representativeness of WorldClim is adequate concerning air temperatures, large differences were found in the precipitation surfaces. Our results demonstrate a systematic difference of 0.76 °C between observed and interpolated values. According to the most recent IPCC report [49], the observed increase in temperature has been around 0.2 °C per decade. As a consequence such difference might affect future projections of WorldClim dataset adding uncertainties on the further modelling efforts [22,50]. In this case a likelihood analysis should be more adequate than deterministic ones and in order to include a sensitivity analysis and evaluate the probability of success of empirical models based on phenotypic plasticity and applied future projections [51]. Precipitation, by contrast, proved to be the main weakness of WorldClim surfaces in Europe. Despite its relatively small spatial extent, the European environment is characterized by many different forest systems that reflect broad climate variability, spanning from the Mediterranean to the Arctic.



The 1961–1990 baseline period is a fundamental dataset for ecological modelling because records from earlier periods were often affected by different instrumentation or changes in observational practice [30,37]. Therefore, numerous studies from climatology to biology, ecology and forestry [36,48,52] have used this baseline period, and WorldClim has been used extensively. We can expect a further warming trend in the next two decades at a rate of about 0.1 °C per decade, due mainly to the slow response of the oceans. As a consequence, even though the linear regression analysis showed a good match between observed and interpolated data (adjusted R2 = 0.856), the difference is higher than the expected rate of change, which could heavily affect model predictions, adding uncertainties on future projections and smoothing results (i.e., land suitability projections) in an uncontrolled way [14,53,54,55]. This issue is then amplified when analysing MAP, where higher differences were found in combination with a poor regression analysis result. As a consequence, important biases may be introduced when using WorldClim’s precipitation dataset. This is particularly true when WorldClim is used as the reference line and climate projections are locally downscaled and added to the WorldClim surfaces, as in the “Delta method” [56]. As a result, the calculation of climate indices might be difficult. For example, many studies used reference evapotranspiration [57,58,59] as the main predictor in statistical models [3,60,61]. In this case, the mathematical combination of differences in MAT and MAP might introduce uncontrolled biases through the study area. These biases could represent a critical issue, especially in the Mediterranean and anywhere else that moisture deficit is identified as the most relevant climate driver.



The main advantage of our compiled dataset might be its representativeness at small scale. The authors of WorldClim themselves warn that the high resolution of the climate surfaces does not imply high data quality in all places as this depends on local climate variability, quality and density of observations and the degree of the fitted spline [31]. In a similar study, when compared with PRISM and Daymet datasets for the continental United States, many concerns were expressed, especially regarding the quality of WorldClim’s precipitation grids in mountainous areas [34,35,62,63]. For this reason, several studies at regional or national scale at higher resolution (e.g., 100–250 m) preferred the use of meteorological variables obtained at nearby observational sites [28,64,65,66]. Regardless of the distances of the investigation sites from the locations where meteorological datasets were gathered, orography and land use, and the surrounding area and variable characteristics, must be considered. At small scale their variability may be a strong driver of frequently overlooked heterogeneities, leading to significant discrepancies in transferred datasets used for otherwise appropriate processing methods [67,68].



The lack of any relationship between BIAS and the main physiographic parameters (i.e., latitude, longitude, and elevation) does not allow for any statistical adjustment (e.g., downscaling, locally calibrated lapse rate, etc.) for either temperature or precipitation. However precipitation regimes are very difficult for meteorological stations to record properly and this issue has often been found in other databases [59,69]. Many more data are required, especially in the case of forest monitoring, as a result of the lack of temporal autocorrelation during the timeframe [70].



The need for a freely available and representative global climate dataset is large and growing, as evidenced by WorldClim’s citation statistics. These goals can be achieved with local up-to-date monitoring networks, which could play a key role in evaluating global grids at small scale [71] as well as providing data for the construction of additional global climate datasets. Harmonization efforts, as well as increased representativeness of the established networks, are paramount for construction of more accurate climate surfaces. Enhanced data recovery with regular spatial coverage may overcome the lack of dense environmental or climatological sampling [28,70,72,73]. Derived surfaces are fundamental in order to plan future management strategies. For instance, and concerning forestry, additional strata, such as homogeneous climate zones, are needed as a fundamental tool to plan the transfer of genetic resources and reproductive materials across specific geographic areas [74,75]. WorldClim grids were interpolated with spline functions, a fast method known to yield results similar to polynomial functions but without mathematical instability. Such methods do not consider the spatial autocorrelation between observations, only partially achieved by more complex models where latitude and longitude are included as predictive variables [28,76]. Therefore, the exhibited spatial aggregation of the BIAS in the case of denser observations of our dataset (i.e., Sweden and Germany) may be relevant for research activities and improvements of the climate surfaces.




5. Conclusions


A new updated beta version of WorldClim has recently been released for the 1971–2000 time period. This “Version 2” (http://worldclim.org/version2), along with the need for carefully evaluating the quality of records used for modelling and keeping climate databases up-to-date, is an essential requirement for the adequate development of tools and informative systems. The lack of reliability on MAP values can be seen as the main shortcoming of the WorldClim database in Europe and elsewhere. However, precipitation is much more difficult to interpolate, given its low spatial and temporal autocorrelation as well as the lack of statistical relationships with some of the main physiographic parameters, such as elevation. Further research should focus on this parameter, seeking more significant determinants of MAP, given its importance in climate change scenarios where drought stresses are predicted to be the most relevant issue.
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Figure 1. Spatial distribution of the compiled dataset for: (a) temperature records and (b) precipitation records. Each dot represents a meteorological station. The darker the area, the more data were retrieved. 
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Figure 2. Flowchart of the data collection and statistical analysis we made to test the reliability of WorlClim version 1 data. 
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Figure 3. Results of the regression analysis for: (a) temperature represented by Bio1 variable of WorldClim database on x-axis and (b) precipitation represented by Bio12 variable of WorldClim database versus observed values on the y-axis. Regression coefficients at top-left of each figure. The 1:1 line of a perfect match shown dashed. 
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Figure 4. Relationship between the detected differences (WorldClim value, observed) and the average spatial distance of the observed record (new database) from the five nearest WorldClim reference stations for (a) temperature and (b) precipitation. 
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Figure 5. Spatial distribution of ABIAS for temperature (a and b) and precipitation (c and d) across Sweden and Germany, the two most sampled countries in the database. The larger the gray dot, the greater the difference between WorldClim and the independent dataset. 
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Figure 6. (Semi)variograms for precipitation calculated by the gstat package in R for Sweden (a) and Germany (b). There is a rather clear spatial structure that might be used as input for further geostatistical procedures (i.e., kriging) in order to adjust WorldClim raster maps. 
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Table 1. Structure of the compiled database.
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Country

	
Total Meteostations

	
MAT Records

	
MAP Records

	
Data Source






	
Albania

	
3

	
3

	
3

	
[39]




	
Austria

	
23

	
21

	
23




	
Belgium

	
9

	
9

	
9




	
Bulgaria

	
18

	
18

	
18




	
Croatia

	
1

	
1

	
1




	
Czech

	
20

	
19

	
20




	
Denmark

	
4

	
4

	
4




	
Finland

	
18

	
17

	
18




	
France

	
76

	
75

	
76




	
Germany

	
4825

	
719

	
4733

	
[40]




	
Greece

	
26

	
25

	
26

	
[41]




	
Hungary

	
9

	
9

	
9

	
[39]




	
Ireland

	
6

	
6

	
6




	
Italy

	
30

	
30

	
30




	
North Macedonia

	
1

	
1

	
1




	
Montenegro

	
1

	
1

	
1




	
Netherlands

	
5

	
5

	
5




	
Norway

	
18

	
18

	
18




	
Portugal

	
18

	
18

	
18




	
Slovakia

	
14

	
14

	
14




	
Slovenia

	
42

	
42

	
42

	
[42]




	
Spain

	
51

	
51

	
51

	
[39]




	
Sweden

	
1391

	
604

	
1351

	
[43]




	
Switzerland

	
12

	
11

	
12

	
[39]




	
United Kingdom

	
38

	
38

	
37




	
TOTAL

	
6659

	
1759

	
6526

	




	
MEAN

	
266

	
70

	
261

	




	
ST. DEV

	
988.64

	
179.54

	
969.08
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Table 2. Number of meteorological stations per country used by Hijmans et al. [31] in Europe.
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Country

	
Temperature

	
Precipitation

	
Country

	
Temperature

	
Precipitation






	
Albania

	
0

	
7

	
Latvia

	
3

	
9




	
Andorra

	
0

	
0

	
Liechtenstein

	
0

	
0




	
Armenia

	
2

	
2

	
Lithuania

	
16

	
19




	
Austria

	
3

	
25

	
Luxembourg

	
1

	
6




	
Belarus

	
8

	
22

	
North Macedonia

	
7

	
7




	
Belgium

	
3

	
18

	
Malta

	
1

	
3




	
Bosnia and Herz.

	
7

	
10

	
Moldova

	
2

	
3




	
Bulgaria

	
4

	
15

	
Monaco

	
0

	
0




	
Croatia

	
13

	
13

	
Montenegro

	
5

	
2




	
Czech Republic

	
7

	
16

	
Netherlands

	
7

	
10




	
Denmark

	
19

	
41

	
Norway

	
8

	
54




	
Estonia

	
3

	
12

	
Poland

	
18

	
63




	
Faeroe Islands

	
1

	
1

	
Portugal

	
16

	
18




	
Finland

	
19

	
32

	
Romania

	
11

	
28




	
France

	
82

	
107

	
Russia

	
44

	
124




	
Georgia

	
1

	
20

	
San Marino

	
0

	
0




	
Germany

	
89

	
116

	
Serbia

	
23

	
12




	
Gibraltar

	
0

	
1

	
Slovakia

	
3

	
10




	
Greece

	
26

	
48

	
Slovenia

	
6

	
2




	
Guernsey

	
0

	
0

	
Spain

	
60

	
117




	
Hungary

	
8

	
20

	
Sweden

	
16

	
60




	
Ireland

	
16

	
51

	
Switzerland

	
8

	
20




	
Isle of Man

	
0

	
1

	
Turkey

	
513

	
548




	
Italy

	
133

	
151

	
Ukraine

	
22

	
81




	
Jersey

	
0

	
3

	
UK

	
29

	
188




	
Summary statistics

	
Temperature records

	
Precipitation records




	
TOTAL

	
1263

	
2116




	
MEAN

	
25

	
42




	
SD

	
74.86

	
84.89
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Table 3. Difference between local data and WorldClim’s surfaces.
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	Variable
	AVR
	SD
	CV
	MAX
	MIN
	ABSAVR





	MAT [°C]
	0.22
	1.50
	6.82
	−10.62
	13.21
	0.76



	MAP [mm]
	−48.70
	165.35
	3.40
	−1578.10
	950.80
	98.56







AVR = average value; SD = standard deviation; CV = coefficient of variation; MAX = maximum difference; MIN = minimum difference; ABSAVR = average of absolute values.
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