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Abstract: Hosting more than half of the world population, cities are currently responsible for two
thirds of the global energy use and three quarters of the global CO2 emissions related to energy
use. As humanity becomes more urbanized, urban systems are becoming a major nexus of global
sustainability. Various studies have tried to pinpoint urban energy use drivers in order to find
actionable levers to mitigate consumption and its associated environmental effects. Some of the
approaches, mainly coming from complexity science and industrial ecology disciplines, use city-scale
data to find power-laws relating to different types of energy use metrics with urban features at a
city-scale. By doing so, cities’ internal complexity and heterogeneity are not explicitly addressed.
Moreover, to our knowledge, no studies have yet explicitly addressed the potential scale dependency
of such drivers. Drivers might not be transferable to other scales and yield undesired effects. In the
present study, power-law relations are examined for 10 cities worldwide at city scale and infra-city
scale, and the results are compared across scales. Relations are made across three urban features for
three energy use intensity metrics. The results show that energy use drivers are in fact scale-dependent
and are city-dependent for intra-urban territories.

Keywords: urban energy drivers; urban metabolism; urban scaling; scaling; energy; power-law;
multiscale analysis; cross-city analysis

1. Introduction

Urban production and consumption activities are responsible for the greatest share of global
resources use and pollution. Cities account for 65% of global energy use and are responsible for 71–76%
of global CO2 emissions [1]. More than half of the global population already lives in cities, and by 2050,
cities are projected to host 80% of the global population [2,3]. If current consumption and production
patterns remain the same, the environmental impact of cities is likely to increase significantly. For
these reasons, cities are pointed to as both a future major problem and solution to global sustainability
challenges [4,5]. Therefore, it is urgent to reduce the environmental impact of anthropogenic activities
in order to remain within a safe operating and balance space for humanity [6] by setting the most
appropriate pathways for urban resource consumption mitigation.
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In this matter, Grubler et al. (Global Energy Assessment) [7] argue several points regarding the
selection of the best pathway for the mitigation of urban energy impact. Firstly, when considering
urban systems in an exergy analysis, they are far (<20%) from reaching their thermodynamic efficiency
frontier, which implies a theoretical improvement in energy demand. Secondly, due to the large
difference between the density of the energy demand in cities and the density of possible on-site
energy supply (10–100 W/m2 versus 0.1–1 W/m2 [7]), the local renewable energy harvesting might only
provide for a few percent of urban energy demand in the best cases (e.g., <1% for megacities and a few
percentage points for smaller cities). Thirdly, systemic changes in the management of urban energy
use usually have better leverage in the long run to reduce energy use than technological end-user
level improvements. This points towards a more holistic approach of the energy use in cities and
its mitigation.

Numerous researchers have looked for potential patterns in urban resource and energy use
(intensity) in the past years, in order to identify generalizable drivers and to propose mitigation
strategies, with great diversity in approaches. The following studies are not directly comparable
to the approach developed in the present paper (see “Section 2.2 Method”) but should however
be mentioned to give the reader an overview of other approaches with similar purpose. These
studies varied in scope and methodological and accounting approaches, and therefore resulted in
different policy recommendations. Publications identified drivers of final [8–10], primary, direct or
territorial-based [11–15], indirect or consumption-based energy uses [16–18] using top-down [19,20], or
other modelling [21,22] and accounting approaches [23]. Publications identifying final energy use [8–10]
via multivariate regressions and econometric forecasting show that, among other factors, urban form,
economic activity, and income can impact final energy use in residential and transport sectors. Other
studies [11,12] show growing trends in primary energy use via long term temporal comparative
quantitative analysis. The studies focusing on direct or territorial-based consumption [11–15] carry out
regression and correlation analysis including a multitude of factors in their methods (such as GPD,
land area, population, population density, heating degree days, floor space) to explain differences
in direct energy use. It appears from the literature [8–15] that different sets of drivers are found
depending on whether the energy use is measured in final, primary or direct accounting, even though
they are all representative of urban energy use. This underlines the importance of accurately defining
the energy use indicators that are examined before generalising about the drivers. Among those
studies, only two [13–15] use infra-urban data in their analysis and only for one city. Another set of
studies [16–18] give an estimation of the indirect (or consumption-based) energy uses across the global
hinterland. These figures are the result of combining household expenditure data with input-output
tables which are usually available at country-scale, and therefore often downscaled at a city-level. The
main limitation of this approach is that driver identification is heavily biased in regard to household
expenditure and therefore the energy use drivers are similar to income and expenditure drivers.
Top-down approaches [19,20] compute energy-use values by taking national energy use accounting
and downscaling them to city-scale based on urban population size compared to national population.
This limits greatly the soundness of driver identification as it assumes a linear relation between energy
use and population size, introducing once again an important bias. Other modelling approaches [21]
predict energy use by end-use (e.g., heating) at high resolution (i.e., block level) based on surveys
and disaggregation of zip-code level energy use data. The main limitation of such an approach lies
on the assumptions necessary to create the model (e.g., buildings’ function are the major factor of
energy use). Some other research has combined consumption based accounting and multivariate
regression analysis to determine the impact of urban sprawl (i.e., population density) on energy
use [22]. Finally, another study compares approaches between direct and indirect accounting [23] to
conclude that, although indirect accounting provides the global-level assessment of energy use along
the production chain, direct accounting is valuable to understand its relationship to urban systems
besides expenditure-related drivers. A table providing granularity, energy vectors and urban factor
studied, method and main findings of each previously mentioned article can be found in Supplementary
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Material, Table S1. Each of these approaches used various types of sources for their data (including
surveys, statistical reports, household budget surveys, input-output tables), targeting different levels
of analysis (from the household level to city or even country level) and therefore yielding results
with various levels of certainty on the identification of energy-use drivers. It can be argued that this
emerging research trend (partially covered by the industrial ecology discipline) has been fuelled by the
increasing availability of data at the urban level [24]. However, the above-mentioned literature either
relies on modelled data and a series of assumptions, or compares a great number of urban systems at a
city level while considering them as homogeneous entities, or, finally, compares intra-urban territories
but only for a specific city. A study comparing multiple cities worldwide across scales (infra- and
city-scale) and relying on metered data is still lacking.

A more recent research approach is being developed around what is sometimes called the new
science of cities, which strives to analyse cities all around the world as complex systems, driven
by universal laws shared by all cities, that emerge on a “macroscale” (city-scale) from local level
interactions [25,26]. Based on univariate correlations on real-world data, this research community
provides a theoretical framework capable of predicting the evolution of a series of urban characteristics
based on cities’ sizes. More specifically, these studies focus on analysing how urban infrastructure,
socio-economic or metabolic indicators change with either the population or the mean population
density (e.g., [14,27–45]). These studies suggest that, even though cities seem to be very complex,
different from one another and being located in very different regions of the world, they might share
common macroscale (city-scale) simple behaviours. Regarding the intensity of urban energy use
and scaling laws, Facchini et al. [14] show that the 27 megacities worldwide (with over 10 million
inhabitants) follow a power-law between urbanized population density and per capita (total) energy
consumption (R2 = 0.74). This result suggests that population density might be the (single) major
driver of the intensity of energy consumption in urban systems, regardless of their location on the
globe. Additionally, Lemoy and Caruso [34] show that European mono-centric cities display scaling of
their radian profile of population density, suggesting that cities’ density profiles are homothetic. These
two findings put together might suggest that the internal scaling of urban energy use can be found,
allowing to overcome the a-spatial approach of current “scaling laws” of cities.

Previous “scaling law” studies are generally based on data on a macroscale (city or metropolitan)
level. By doing so, cities are often considered as homogeneous and a-spatial [34] entities reducing
the complexity of their functioning [46]. Yet, cities are perhaps the most complex system that can
be observed [47], combining local and global challenges ranging from unemployment and housing
affordability on the one hand, and migration, resource depletion and climate change on the other [48,49].
Some studies acknowledge the complexity of urban systems energy use by identifying, for instance,
that the relationship between economic growth and energy use appears to be non-monotonic and
dependent on the dominant economic sectors [50,51]. Additionally, the average income per capita of
cities has been known for quite some time to increase with their size [52,53], and, more recently, is
known to scale super-linearly [39,54,55], while the average income itself seems to correlate with energy
consumption intensity (e.g., [24,56,57], even though those results are somewhat disputed [58,59]).
In addition, other studies found that not only do drivers of energy consumption appear to vary
across different urban regions, but also that indicators which vary at the suburban level show strong
correlations to energy use [60]. As a consequence, even if a number of studies (e.g., [13,14]) rooted in
a convincing theoretical framework [61] offer a macroscale understanding of cities’ indicators with
relation to their growth, it appears that cities should also be considered at a lower-scale level in order
to account for their internal heterogeneity [46,62] but also to see how different cities are to one another
at these more detailed scales.

Another shortcoming of previous studies looking at the relationships between urban energy
uses and different urban indicators to identify potential drivers, is that they are based on a relatively
small sample size. For instance, [13,63,64] are three outstanding examples that have successfully
gathered data for a great number of cities and managed to put together a sample of 27, 32, and
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10 cities, respectively. Even with this extensive number of case studies, there is still a danger that
the identified relationships could be not statistically significant enough and could therefore lead to
inaccurate driver identification. This could imply that policies based on such findings might trigger
undesired side-effects. The increasing availability of (open) data at a disaggregated urban scale has
motivated a small number of studies to look at correlations between urban energy use and different
urban indicators at smaller spatial scales, which generally translates into a larger sample size [65,66].

Aim

The general aim of this paper is to contribute to a better understanding of the drivers of the
intensity of urban energy use by considering the specificities and internal heterogeneity of cities which
are not yet explicitly taken into account in the urban scaling field. In particular, this paper has three
specific objectives which can be summarized as such:

1. To investigate whether power-laws for energy use intensity can be found between urban energy
flows—(residential) electricity and natural gas—and urban features associated with urban energy
consumption—population, population density, income. This is done by using larger dataset than
in previous studies, which includes megacities as well as smaller cities.

2. To examine if such power laws could be extended to scales smaller than city scale (municipalities,
ZIP codes, etc.), or in other words to investigate the scale (in-)dependency of urban energy power
laws. This is done by reviewing relations across 10 cities with data both at the micro-territorial
scale (MTU) and at the city scale.

3. To investigate if each city of the case study, when looked at infra-urban level, exhibits uniform
power laws—thus entailing shared internal processes between cities—regarding energy use
intensity and if these provide better information and prediction power than city-scale power-laws.

This is achieved by exploring the relationship between the intensity of urban energy use and
some urban indicators at both a city and sub-city level (increasing the sample size rather significantly).
By doing so, it is possible to discover whether trends and drivers identified at city level by some of
the above-mentioned studies are also true at smaller spatial scales, and thus showing whether energy
use drivers are scale invariant. In addition, analysing the energy use drivers at two different spatial
scales simultaneously enables us to explore whether urban energy use drivers found when comparing
different cities also hold for each city individually. In other words, this combined analysis will attempt
to clarify whether general policies that are proposed at a macro-level by comparing different cities,
would also yield the desired effects to smaller territorial spatial scales of cities. Exploring these
questions adds a layer of complexity in the identification of urban energy use and most importantly
provide more fine-grained analyses which are needed for urban policy-makers.

To achieve these objectives, a number of indicators for urban energy consumption are compared
to different urban indicators with data at the city level and at the micro-territorial unit level (MTUs).
Ten cities around the world are considered and further investigated: Glasgow and London, United
Kingdom; Brussels, Belgium; Milan, Italy; Cape Town, South Africa; Buenos Aires, Argentina; Chicago,
Los Angeles, San Francisco and New York City, United States. Energy use was further disaggregated,
when possible, by energy vectors (electricity and natural gas) and uses (residential and total).

The paper is structured as follows: the selected cities and the method of the analysis are presented
in the following section. Next, the findings of this analysis are presented, followed by a critical
discussion and some concluding remarks.

2. Materials and Methods

2.1. Presentation of the Case Studies and Data

The findings of this paper are based on data from ten cities located on four continents and in
six countries, with different economic development stages, as well as in different climatic zones as
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illustrated in Figure 1, and most importantly, wide distribution in studied urban features. Cities were
selected to reflect large variation of population sizes—from less than one to more than ten million
inhabitants—widely distributed population densities of different orders of magnitude and displaying
substantial difference in median income—from one to five. However, the selection of case studies
was largely limited by the data availability at infra-urban scale. This last criterion has largely shaped
the scope of the study and its limitation in cross-city analysis as explained and exemplified in the
next sub-sections. Data sources varied from open database platforms, national and local statistical
offices, grid operators, and scientific literature (for source of datasets, see Supplementary Material,
Table S2). To measure the energy use of these cities, we used indicators focusing on different energy
vectors (electricity and natural gas) and on different end uses (total use and residential use). Few cities
have available data for all the combinations of energy vectors and end uses. Regarding the quality of
data, it is also worth mentioning that, although all datasets used in this study come from a reputable
source (i.e., metered by grid operator, emitted by regional statistic institutes), metadata are sometimes
unclear. This is the case of “total electricity” and “total natural gas”, which in principle should include
all electricity or natural gas usage on the corresponding territory, but it is unclear if this the case. We
assumed in this study that it is the case, which may or may not affect the comparability between cities.
Finally, the data used span from 2010 to 2014, which is a limitation to the comparability between cities,
and no more recent data could be found.
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Figure 1. Map of the 10 selected case studies.

Energy data were compared to three main urban indicators: population size, population density,
and median income at purchasing power parity (PPP). The PPP median income used here is the
median income of the city translated to USD and multiplied by the ratio of purchasing power of the
USD and the currency of the country. This allows comparability of the purchasing power of citizens
instead of the differences in the values of the currencies. For all the selected cities, data on additional
urban indicators were available; however, these three were the indicators which were available for
most of the cities and are relevant regarding energy use driver identification (e.g., [14,24,56,57,67]).
For other indicators, the degree of overlap across the cities was too small to perform a meaningful
analysis. Table S3 in Supplementary Material provides an account of the data encountered for each of
the selected cities, such as other energy vectors and sectoral divisions.

2.1.1. Macroscale Data

The summary provided in Table 1 gives an overview of the case studies and alludes to some
of the challenges encountered in the data collection process. The main one is the unavailability of
certain data (e.g., electricity use for New York City), another one is the variation in the boundaries
definition for each city: some data cover geographical regions which include the city sprawl entirely,
sometime encompassing some non-urban area (e.g., Cape Town), while others are limited to a highly
urbanized core (e.g., Brussels). These differences can limit the comparability between case studies.
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For example, considering that the density of population is significantly higher in the city centres than
in suburbs [34], excluding the suburbs of cities or including territory beyond cities may significantly
alter some indicators used in this study (e.g., per capita energy use or density). However, these are
inherent limitations of the type of research conducted here, using data collected or provided by local
administrations within boundaries that make sense to them locally.

Table 1. Socioeconomic, demographic and energy data for the 10 selected global cities (N/A: Not
available data, for sources of dataset, see Supplementary Material Table S2).

Indicators
Europe North Am. Africa South Am.

Milan London Brussels Glasgow N.-Y.C. L.A. San
Francisco Chicago Cape

Town
Buenos
Aires

Macroscale

Population [Millions
cap.] 3.18 8.66 1.16 0.60 8.23 4.56 0.81 3.08 3.74 12.81

Area [km2] 1574 1572 161 172 775 1835 121 1477 2461 3209

HDD (15.5/15.5) 1840 1781 2080 2410 1958 306 754 2785 458 740

CDD (15.5/15.5) 918 349 362 105 1145 1413 439 986 1090 1423

Average income per
household (PPP)
[USD]

29,782 76,399 35,277 16,667 N/A 58,820 75,813 55,437 18,461 N/A

EU - Electricity use
[GWh] 61,247 40,957 5004 1279 N/A N/A 1412 11,610 N/A 34,170

EUpc - Electricity per
capita [MWh/cap] 19.28 4.73 4.30 2.13 N/A N/A 1.75 3.77 N/A 2.67

REU - Residential
electricity use
[GWh]

24,292 13,204 2226 1113 N/A 60,662 N/A N/A 5060 10,921

REUpc - Resid. Elec.
use per cap.
[MWh/cap]

7.65 1.52 1.91 1.85 N/A 13.30 N/A N/A 1.35 0.85

NGU- Natural gas
use [GWh] N/A 59,102 9732 1807 81,002 N/A 4355 31,792 N/A N/A

NGUpc - Natural gas
per capita
[MWh/cap]

N/A 6.82 8.36 3.00 9.84 N/A 5.41 10.32 N/A N/A

Microscale

MTU boundaries Munici-
palities Boroughs Munici-

palities

Interme-
diate
zones

Zip
codes

Zip
codes

Zip
codes

Zip
codes Wards Partidos

Number of MTUs 134 33 19 133 236 123 27 68 82 25

Average size of
MTUs [km2] 12 48 8 1 3 15 4 22 30 128

Overall the ten cities vary greatly in their consumption patterns on a macroscale. Milan is
the largest consumer of electricity in our dataset. Moreover, Milan with 19.28 MWh/cap is also the
largest consumer of electricity per capita and is ten times bigger than the figures of San Francisco
(1.8 MWh/cap). Los Angeles has the highest residential electricity use per capita (13.30 MWh/cap).
Chicago, being the third largest consumer of natural gas, is the largest consumer of natural gas per
capita in our dataset (10.32 MWh/cap).

2.1.2. Microscale Data

Considering sub-city level data, one of the issues with regards to the comparability, both within
and between cities, comes from the various definitions of micro territorial units (MTUs) found across
cities (see “MTU boundaries” in Table 1). MTUs usually follow administrative spatial divisions (e.g.,
municipalities) which can result in large disparities in sizes and land use coverages. One of the most
extreme cases is found in Brussels’ MTUs, defined by municipalities, where Saint-Josse-ten-Noode and
Ville de Bruxelles have areas of respectively 1.14 (<1% of the city’s area) and 32.61 km2 (~20% of the
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city’s area). The latter covers urban fabric and land use that are very heterogeneous, from the dense
city centre to the northern suburb of the city, while the former, due to its small size, covers a quite
homogeneous urban fabric. Therefore, the type of urban fabric and land-use averaged in the indicators
are of different levels of homogeneity, affecting in turn the comparability of indicators within the same
city. Additionally, data on urban indicators and on energy use were not always easy to find at the same
spatial unit, which implied a limited number of variables in the analysis. Furthermore, it was not
always possible to find energy-use data both by sources (electricity and natural gas) and by final uses
(residential and total). This implies that the relation found in the analysis could not be established
for all indicators (energies by sources, density of population, population, and income) for all cities.
This type of limitation related to data availability are inherent of this type of research and has limited
the reach of our analysis. Finally, some datasets were incomplete or censored by the data provider,
displaying values of “0” for specific MTUs. Theses MTUs were disregarded from the study.

Figure 2 illustrates the (kernel estimation of) probability density distribution for the studied
variables for each city, at microscale in a logarithmic scale. These continuous functions of probability
for each city and indicator are approximated from the finite numbers of observations (with n between
19 and 236) and provide an easy way to display the relative likelihood of values for the indicators for
each city.
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for each city and for the following urban variables: (A) population; (B) population density; (C) median
income at purchasing power parity; (D) electricity use per capita; (E) residential electricity use per
capita; (F) natural gas use per capita; (G) areas of micro territorial units (MTUs).

Figure 2A,G give the probability density function of the population and area of MTU across cities.
These distributions are displayed in absolute values and give a sense of how large the MTU and scale
of observation are within and across cities. Regarding population (Figure 2A), with the exception
of Milan, which spans across three orders of magnitude, three groups of distribution can be drawn:
first, Glasgow with the smallest mean and overall values of MTU’s population (between one and one
thousand people); then London and Buenos Aires with the largest values and maximum mode well
above a hundred thousand people and some MTUs over a million people; and finally, the remaining
six cities with their (maximum) mode around the same values, between 10 thousand and 100 thousand
people. Regarding uniformity of the population distribution, Glasgow, Cape Town and London have
very little skewness and small spread around their mode, displaying a rather uniform population size
across MTU’s, while having each largely different mean population sizes distributed across three orders
of magnitude. Milan, however, displays the most uniform distribution of population of all cities. The
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remaining cities, Brussels, Los Angeles, New-York City, Buenos Aires, Chicago, and San Francisco span
across two or less orders of magnitude. Figure 2G gives an overview of the distribution of MTU sizes
and scales of observation. The major observation that can be drawn from it is that the case studies span
across vastly different territorial scales. Glasgow and Buenos Aires have their respective means and
modes around 1 and 100 km2, and all other cities are well distributed between those extremes. In terms
of population density, Figure 2B data trends show substantially more overlapping in their distributions.
As illustrated, most cities exhibit relatively similar population densities across their MTUs. These
similarities in distributions are a remarkable result, all cities having vastly different metrics: area,
population size, MTU sizes, and, MTU divisions. In some—notably Milan, Cape Town, and New York
City—the distribution is more widely spread. This is mainly due to the different levels of sprawling in
these cities, but it can also be partially attributed to the variety of cities’ boundary definitions. Lastly,
Figure 2C displays the median income (PPP) distribution across MTUs. While the mean of the median
income at purchasing power parity is relatively similar across cities, the distributions are characterized
by very long tails, as is illustrated in Figure 2C. Only in the case of Milan, most MTUs appear to have a
similar median income.

In the case of total electricity use per capita displayed in Figure 2D, the MTUs of all cities appear to
have overlapping (probability density) distributions with most cities being clustered around a similar
mode and mean (except Milan), and exhibiting similar standard deviations (except Chicago). Chicago
displays a very large standard deviation for this indicator, although this city is not an outlier in terms
of population, population density or MTU size. Milan appears to be an outlier by showing significantly
higher median values than the other cities. After further investigation, no simple explanation could be
found as to why Milan is an outlier. The residential electricity use per capita (REUpc) displayed in
Figure 2E exhibits the greatest degree of disparity of all distributions in terms of mode, means and
standard deviation. Three groupings can be made. London, Glasgow, and Brussels have a similar mean
with very little standard deviation whereas Buenos Aires, Cape Town, and Los Angeles exhibit larger
disparities between MTUs and means of distributions. Finally, Milan displays larger mean values and
quite low disparity between MTU. Milan and Los Angeles have a similar residential energy use mean.
Natural gas use (NGU) per capita distributions show a remarkable overlapping in the distributions
between cities as displayed in Figure 2F. All cities exhibit a similar mean natural gas use per capita,
with some cities displaying quite different standard deviations (i.e., Chicago and London). In Chicago
however, the distribution is more homogeneously distributed across the use range than in the case of
the other cities.

2.2. Method

In order to determine whether trends, that can be identified by analysing data at city level, also
hold true when looking at data on a smaller spatial scale—such as the individual MTU—an exploratory
analysis was conducted in which a linear regression was performed between the variables measuring
per capita energy use and the selected urban indicators. The linear regressions on log-transformed urban
indicators have been successfully used in urban scaling studies [14,29,30,32,34,39,40,44,68,69] in order to
determine relations between urban indicators. Usually they have been used to determine how a certain
property, captured by an indicator, scales with cities’ size. Our method extends these linear relations to
other parameters than city population—namely, density and income, usually associated with urban
energy use [14,24,56,57]—examining linear relations beyond sub- or super-linearity. Our method also
extends relation identification to other scales of observations than city-scale—namely, micro-territorial
units. This, in turn, provides ways to investigate if there is evidence of scale dependency of urban
energy drivers.

These linear regressions are performed in three different configurations: (1) regressions “at the city
level”, in accordance to previous urban scaling studies and with each data point being an aggregate
indicator for the entire city; (2) by looking at data “at MTU level” where all MTUs are analysed at once
regardless of the city they belong to; and (3) by looking at data at the level of the MTUs for each city
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individually where each city has its own regression. In the first configuration, regression at city-scale
identifies the relations in the same method and framework as existing scaling law studies but with an
extension to smaller cities and other indicators. In order to have a greater data set for the investigation at
city scale, the data that are available in the paper by Kennedy et al. on material and energy metabolism
of megacities [13] have been added to have more observations at city scale, with the exception of four
cities (Buenos Aires, London, Los Angeles, New York), which were already present in the case studies.
However, additional data could not be found for median income at city level in this literature, limiting
the number of data points at city scale for this indicator. In the second configuration, similarly to
the first one, cities are also examined to see if they share similar behaviours, but by looking at infra
urban territories instead of the average indicator on the whole city. This provides a first examination of
whether drivers found at city scale can be extended to lower scales, suggesting scale independency for
these energy use drivers. To support scale independency, the slopes and predictive power at macro
and micro scales should be similar. Finally, with the third configuration, which looks at relations for
cities individually, it is possible to review whether or not cities have similar trends to one another, and
if those relations corroborate the ones found in the other two configurations. This analysis allows
us to explore whether the urban indicators that we are considering in this paper—population size,
population density, and median income—act as drivers of intensity of urban energy use, and whether
the relationship is different when looking at data at the aggregate level and at each city individually.

Finally, the originality of the approach does not reside in the technicality of univariate linear
regression (via least-squares approach) in logarithmic space to determine drivers of urban feature, as it
has been reviewed and successfully used in numerous previous studies [14,29,30,32,34,39,40,44,68,69].
However, the contribution lies in comparing relationship between energy use and urban indicators
both at city-scale and sub-city micro-territories for a significant number of cities worldwide.

3. Results

Following the main objectives of this article, the results are subdivided in sections for each urban
feature analysed (population size, population density, and median income), where the three sets of
configurations explained above are investigated and compared to one another.

3.1. Energy Use and Population Size

Figure 3 provides a visualization of the regressions performed in the three above-mentioned
configurations for the three intensity of energy use indicators and population size. Table 2 gives a
summary of some measures of performance of these regressions. When looking at the relationship
between population and the variables capturing intensity of energy use (per capita residential electricity
use, per capita total electricity use, per capita natural gas use) at the macro level, the correlations have
some significance. When it comes to total electricity use per capita (Figure 3A), the p-values are too
weak to assess significant correlation. However, for natural gas use per capita (Figure 3G), and for the
residential electricity use per capita (Figure 3D), the relation seems to be more significant but rather
weak (r2 ~ 0.3 & p ≤ 0.05 in both cases). This finding implies that at a macro scale it appears that cities
with a higher population consume relatively less energy per capita.
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achieve a relevant number of observations.

Table 2. Performance measures of population regression models.

EUpc vs. Pop. REUpc vs. Pop. NGUpc vs. Pop.

n slope (β) r2 n slope (β) r2 n slope (β) r2

City-scale 30 −0.09 0.02 26 −0.35 0.3 ** 26 −0.53 0.33 **
MTU aggreg. 425 −0.14 0.05 *** 535 −0.13 0.04 *** 580 −0.08 0.03 ***
Brussels 19 0.14 0.07 19 0.07 0.14 19 0.09 0.06
Milan 134 −0.02 0.01 134 −0.09 0.09 *** 134 −0.06 0.04 *
Cape Town NA NA 82 −0.24 0.02 NA NA
Buenos Aires 25 0.01 0 25 0.07 0.03 NA NA
Chicago 58 −0.97 0.85 *** NA NA 58 −0.79 0.71 ***
London 33 −1.04 0.76 *** 33 −0.16 0.64 *** 33 −0.63 0.8 ***
San Francisco 23 −0.12 0.24 * NA NA 23 0.43 0.34 **
Los Angeles NA NA 109 −1.1 0.78 *** NA NA
Glasgow 133 −0.27 0.06 ** 133 −0.29 0.23 *** 133 −0.15 0.02
New York City NA NA NA NA 180 −0.3 0.18 ***

p-values: *** for p ≤ 0.001; ** for p ≤ 0.01; * for p ≤ 0.05.

At the level of the MTUs aggregated for all cities simultaneously (Figure 3B,E,H), the correlations
seem to be more significant than at city scale. There is a dominant negative correlation between
population size and per capita energy use for all energy indicators, although in the case of natural
gas use, it appears to have less influence, as is illustrated in Figure 3H and Table 2. This indicates
the same direction of dominant relation if compared to the correlations at the city level. However, at
the MTU scale, much less of the variance (see Table 2) of residential electricity and natural gas use
could be attributed to a change in population size. It is also important to mention that the p-value is
affected by the sample size, with smaller p-value for larger samples. This could partially explain why
correlations of aggregated MTU across cities (with n = 425 to 580) exhibit significantly lower p-value
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than of city-scale (with n = 26 to 30). However, the sample size effect can be considered low for R
between 0.17 and 0.22 [70] for the all regressions of aggregated MTU.

At the MTU level for individual cities, which are depicted in Figure 3C,F,I, the picture is more
contrasted. For total electricity use per capita (Figure 3C), London and Chicago exhibit a remarkably
strong negative correlation (slopes of β = −1.04 and −0.97 respectively) with population size with a
very low p-value (both being under 0.001) and high r2 values (0.76 and 0.85 respectively). San Francisco
also displays a significant correlation with population (p ≤ 0.05, r2 = 0.24). The statistical power of the
regression for Glasgow is not strong enough to determine a relation, even with its low p-value (p < 0.01,
r2 = 0.06). Brussels, Milan and Buenos Aires exhibit almost no meaningful correlation (p > 0.05). For
this energy indicator, cities either have non-significant correlations or display a negative one following
the same trend as Figure 3B. It seems that the validity of the correlation found across all cities at MTU
scale could be questioned (Figure 3B) or even interpreted as a Yule–Simpson [71] effect given that not
all cities, taken individually, follow the same trends. Rather, there is a great variability of responses
from each city concerning the population size, while some have a very strong correlation (namely
Chicago and London).

When looking at residential electricity use per capita (Figure 3F), the majority of cities would
exhibit a negative correlation when they are significant. Los Angeles and London display a strong
correlation with a large percentage of variance that could be attributed to population variation (both
with p ≤ 0.001 with r2 = 0.78, and β = −1.1 and r2 = 0.64, and β = −0.16 resp.). Glasgow displays a
weaker (r2 = 0.23, and β = −0.29) but significant correlation as well, while the statistical power of
the regression for Milan is too low to be relevant. The other cities (Brussels, Cape Town, and Buenos
Aires) exhibit non-significant correlations. All significant regressions for residential electricity use
seem to follow the same trend, but for cities individually, the correlation seems to be stronger than in
the other configurations.

For natural gas use per capita (Figure 3I), Chicago, London and San Francisco exhibit strong
to moderate correlations (r2 = 0.71, 0.8, and 0.34 resp.). However, San Francisco seems to have the
opposite trend (β = +0.43) than the other two cities (β = −0.79, −0.63). New York exhibits a weak but
significant correlation (r2 = 0.18, β = −0.3). Other cities do not have significant trends.

Overall, it appears that the majority of cities seem to share the same negative trend when
correlations are significant, and with the exception of San Francisco for natural gas use per capita.
When significant, the correlations for cities individually (Figure 3C,F,I) seem to have better predicting
power while presenting variations in trends. Indeed, the importance of this driver varies from city to
city with both r2 and β ranging from nil to very strong. At city scale, as displayed on Figure 3D,G, the
population does not appear to be a strong driver at a city scale (r2

≤ 0.33) when significant, at least not
with the linear model used in this analysis, and it does not seem to affect the intensity of electricity use
(Figure 3A). This driver is therefore inconsistent and could not be generalized. Furthermore, the scaling
of those energy indicators with the population size, both at city and MTU scales, is not exhibited in
these results. In extension to this analysis, it is not possible to conclude that bigger (or more populated)
cities are more efficient, but rather that each city appears to respond very differently to population size,
or even that population could not be considered as a driver in some cases.

3.2. Energy Use and Population Density

In this section the correlations of the population density with the three indicators of the intensity
of energy use are examined. Figure 4 displays the regressions in the three configurations while Table 3
gives the performance of the regressions.
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Figure 4. Regressions of population density with electricity use per capita, residential electricity use
per capita and natural gas use per capita at city scale (A,D,G), MTU scale aggregated (B,E,H) and MTU
scale per city (C,F,I). At city scale level (first column), solid black circles correspond to the data from
our sample, whereas hollow white circles are drawn from literature on energy use in megacities [13] in
order to achieve a relevant number of observations.

Table 3. Performance measures of population density regression models.

EUpc vs. Density REUpc vs. Density NGUpc vs. Density

n slope (β) r2 n slope (β) r2 n slope (β) r2

City-scale 28 −0.15 0.06 26 −0.09 0.03 24 −0.31 0.11
MTU aggreg. 425 −0.49 0.33 *** 535 −0.37 0.2 *** 580 −0.17 0.13 ***
Brussels 19 −0.06 0.02 19 −0.06 0.13 19 −0.18 0.3
Milan 134 −0.05 0.02 134 −0.1 0.09 *** 134 −0.09 0.09 ***
Cape Town NA NA 82 −0.13 0.23 *** NA NA
Buenos Aires 25 0.09 0.09 25 0.06 0.04 NA NA
Chicago 58 −0.42 0.17 *** NA NA 58 −0.65 0.52 ***
London 33 −0.03 0 33 −0.06 0.07 33 −0.19 0.05
San Francisco 23 −0.02 0.01 NA NA 23 0.29 0.12
Los Angeles NA NA 109 −0.61 0.35 *** NA NA
Glasgow 133 −0.06 0.01 133 −0.06 0.04 * 133 −0.12 0.05 *
New York City NA NA NA NA 180 −0.27 0.21 ***

p-values: *** for p ≤ 0.001; * for p ≤ 0.05.

It appears that the regressions for this driver are not statistically significant at city scale. At this
scale, Figure 4A,D,G and Table 3 show that all three regressions have low coefficients of determination
(r2 = 0.06, 0.03, and 0.11, respectively) and too high p-values to be considered relevant (p ≥ 0.05).
However, even if not significant, all three trends seem to display more of a negative impact of density
increase on the intensity of energy use. These results at city scale (Figure 4A,D,G) are surprising and
do not corroborate with the literature of driver of megacities energy use [14] where energy use per
capita and population density seem to correlate (r2 = 0.74) following a power-law (β = −0.75). This can
be explained as this literature takes into account only megacities and investigates only the total energy
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use per capita. Therefore, it appears that, when extending the sample to smaller cities and looking at
individual energy indicators, those power-laws do not hold.

When looking at the data at the level of the individual MTUs across all cities, the negative
correlations between population density and energy use appear to be significant (p < 0.05) and
encompass all the energy use indicators, as is illustrated in Figure 4B,E,H. Again, the density of
population seems to have a negative relation with all energy indicators. However, these correlations
are moderate and do not explain much of the variation of any energy indicator (with r2 = 0.33, 0.2, and
0.13 respectively). When looking at data for each city individually (Figure 4C,F,I), the relations are
clear and significant for few cities. For the per capita electricity use, almost none of the regressions
are meaningful, with only Chicago having a weak (r2 = 0.17) but statistically significant correlation
(p < 0.001). For the residential electricity use, Los Angeles and Cape Town (r2 = 0.35, and 0.23 resp. and
β = −0.61, and −0.13 resp.) display meaningful relations. In case of natural gas use per capita, Chicago
and New York City display statistically significant correlations (r2 = 0.52, and 0.21 with β = −0.65, and
−0.27 respectively). For all other non-significant relations, the direction of the slope stays substantially
unchanged between cities.

Overall, it appears that density is a consistent driver of intensity of energy use only when looking
at MTU scale across cities. In other cases, the driving power of this urban feature seems to be variable
from cities to cities, and non-existent at city scale. This last result does not corroborate with previous
studies made for megacities.

3.3. Energy Use and Median Income (PPP)

In this section the regressions between energy use and median income are investigated and
displayed in Figure 5 and Table 4. At city scale, as shown in Figure 5A,D,G, the number of data points
for the median income (PPP) is lower than for the other urban features analysed here because no
additional data could be found in the same literature. The small number of data points limits the
conclusion to whether the median income is a potential driver of energy use at city scale. However,
the correlations between income and energy seem to be quite spurious when looking at regressions
at the city level (Figure 5A,D,G), with none of the relations being significant (p ≥ 0.05 and r2

≤ 0.1).
When looking at data at the MTU level across cities (Figure 5B,E,H), it seems that only the residential
electricity per capita is (moderately) positively correlated with the median income (p ≤ 0.05, r = 0.23
and β = 0.45), the intensity of electricity and natural gas use being almost unaffected. Moreover, the
relationships look very discontinuous for electricity use, and residential electricity use, and they do not
seem to follow a linear pattern. The natural gas use however seems to follow a more linear but very
weak trend.

Table 4. Performance measures of median income (PPP) regression models.

EUpc vs. Income REUpc vs. Income NGUpc vs. Income

n slope (β) r2 n slope (β) r2 n slope (β) r2

City-scale 6 −0.31 0.08 6 0.33 0.07 6 −0.1 0.07
MTU aggreg. 400 0.25 0.06 *** 510 0.45 0.23 *** 579 0.12 0.04 ***
Brussels 19 −0.21 0.02 19 0.23 0.17 19 0.46 0.17
Milan 134 0.4 0.02 134 −0.02 0 134 0.14 0
Cape Town NA NA 82 0.19 0.26 *** NA NA
Buenos Aires NA NA NA NA NA NA
Chicago 58 1.67 0.34 *** NA NA 58 1.18 0.22 ***
London 33 1.72 0.38 *** 33 0.39 0.69 *** 33 1.12 0.47 ***
San Francisco 23 0.28 0.42 *** NA NA 23 −0.2 0.02
Los Angeles NA NA 109 0.93 0.27 *** NA NA
Glasgow 133 0.02 0 133 0 0 133 0.07 0.04 *
New York City NA NA NA NA 180 0.12 0.01

p-values: *** for p ≤ 0.001; * for p ≤ 0.05.
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scale per city (C,F,I).

When looking at individual cities (Figure 5C,F,I), there are significant relations (p ≤ 0.001) showing
positive correlation with median income. In particular, the electricity use of Chicago, London, and
San Francisco are moderately correlated (r2 = 0.34, 0.38, 0.42, respectively) with their median income.
Cape Town, Los Angeles and London’s median incomes correlate (moderately and strongly) with
residential energy use (r2 = 0.26, 0.27, 0.69, respectively). Finally, the regressions for natural gas use
per capita are significant only for Chicago and London (r2 = 0.22, and 0.47 respectively). It is also
interesting to see that Brussels, Milan, and Glasgow do not display any correlation for median income
with any of the energy use indicators, while London displays correlations for all energy use indicators
and San Francisco does correlate with energy use per capita but does not correlate with natural gas use
per capita.

Overall, when correlations are significant between the median income and the three indicators of
energy use, the trends show positive relations. However, these relations only exist at MTU scale, and
more importantly, only strongly for some cities. This shows again that cities respond differently to the
same urban features, and differently for each energy indicator.

4. Discussion

Some major findings can be highlighted from this investigation and subsequent results. First,
the scaling law of the intensity of energy consumption [14] is not corroborated for cities other than
megacities and for other energy use metrics. Indeed, we found only two potentially meaningful
relations at city scale: the population size seems to correlate negatively with both residential electricity
and natural gas use per capita (see “Energy use and population size” section). However, only a fraction
of the variation in those energy intensity indicators can be predicted by population size with r2 ~ 0.3
in both cases. The density of population was found not to be a good predictor of any of the three
indicators of energy use intensity, contrary to what has been found in previous study [14]. The median
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income (PPP), while being sometimes highlighted as a driver or energy consumption (e.g., [9,10] and,
sometimes in larger scales like nation-wise [57]) appears to not be a good predictor of energy use
intensity. Regarding power-law across cities at MTU level, two out of nine relations are relevant: the
density of population with the energy use per capita, and the median income (PPP) with the residential
energy use, although only a small portion of variance is predicted based on these urban features (r2 ~
0.33, and 0.23 resp.). Despite a large sample (400 to 579 observations) no shared behaviour could be
found otherwise.

Secondly, while there is no major contradiction in trends across scales (city scale or MTU scale) and
scopes (across cities or city by city), the exploratory analysis has shown that the relationship between
urban indicators and urban energy use is not in all cases scale invariant, showing that intensity of energy
use could be an intensive feature of urban systems. Indeed, correlations observed at the city level
substantially change at the MTU level, especially when studied for each individual city. When looking
at data aggregated at the city level, a tendency towards a negative correlation between population
densities and energy use can be observed, this trend could not be observed systematically when looking
at data for the individual cities at the MTU level. This echoes previous findings which state that the
relation between density of urban fabric and residential energy use remains unclear [72], and that
density as a driver is less relevant at infra-urban scale where other factors come into play [13,73]. In
the case of the relationship between income and urban energy use, when looking at data aggregated at
the city level, there seemed to be a roughly linearly increasing relationship between the two variables.
However, when looking at data at the MTU level, some cities exhibit either nil correlations or strong
positive ones, which corroborates previous findings at infra-urban scale which exhibit weak correlation
between those variables [13]. A significant number of deviations from the city level correlation were
also observed in the relations between population size and urban energy use.

Lastly, when a relation exists between one of the urban features analysed and intensity of energy
use indicators, the regressions of individual cities usually give better predictions than predictions
across cities. However, not all cities respond to the same drivers, with some being unaffected by
population, density, or income variations, while others vary almost linearly with them.

This investigation offers several points of discussion subsequent to findings. Firstly, previously
found city-scale power-laws of intensity of energy use do not seem to hold when taking into account
smaller cities and looking at indicators of intensity of energy use other than total energy use per capita.
This relativizes and gives new perspectives to the previous researches on scaling laws of urban energy
use [13,14] for megacities. Indeed, none of the evidence and data collected for this study contradicts
previous research: the overall tendencies are that intensity of energy consumption increases with
income and decreases with population density and population size. However, no evidence clearly
supports previous findings either. On the contrary, the relations seem to be more complex when
extending the case studies. In order to take other cities into account, better indicators of the intensity of
energy use or more complex relations might be necessary. Future research should therefore investigate
how those relations could be extended to more cities, using more complex regression methods, larger
sets of case studies and features.

Secondly, the regressions across cities at MTU scale correlate, with statistical significance, for all
urban indicators and intensity of energy use indicators, suggesting the existence of power-laws for
this scale. However, this result needs to be put in perspective since the slopes and r2 for city-wise
regressions are vastly different and do not corroborate this result. For these reasons, the power-laws at
MTU scale across cities, might by interpreted as Yule–Simpson effect. Therefore, these results should
be considered as inconclusive.

Thirdly, the relationships between different urban indicators and variables measuring urban
energy use are not the same when looking at data aggregated at the city level, or data at the level
of individual MTUs. This inconsistency of drivers points towards a scale dependency of energy
drivers. The intensity of energy use might be an intensive feature of urban system, and its value
will change depending on the scale of observation. This has implications for both identification of
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energy drivers in future researches and policy making. These “scale effects” should therefore be
considered for the samples that are observed or the territory that are regulated. More importantly,
this raises a more fundamental question: if urban features act differently on the intensity of urban
consumption depending on the scale of observation, how do these drivers interact with each other?
Future research should investigate this further to better define the relation between drivers and the
scale of observations. However, with present results, the scale-dependency of the drivers of energy use
suggests that the urban planning regulation may need to be designed to reflect the different behaviour
at different scale, and therefore should propose multi-scale strategies to tackle energy-use reduction at
all potential levels.

Fourthly, city-scale regressions have lower predictive power than city-wise regressions. More
specifically, the drivers that are statistically significant are usually present for cities individually.
Furthermore, this study also shows that, when looking at data at the level of the MTUs for each
city individually, there is a great heterogeneity across the different cities regarding the nature of
the relationship between urban indicators and per capita energy use. This result weights in favour
of city-specific power-laws and drivers and indicates that there are factors that differ across cities,
which confounds this relationship. The fact that at infra-urban scale drivers of energy use seem to be
city-specific should encourage local decision makers to explore and determine the specific features
of their city where actions can be made to seek best result, as two different cities may respond very
differently to the same driver. It points towards the importance of local drivers, which are not taken
into account when looking at data at the aggregate level. Such observations expose the limitations of
analysing cities as homogenous wholes. If we want to make cities more sustainable, and act on their
energy consumption, it is important to take into consideration such local-level drivers.

Like most studies relying on large amounts of data, this study is also subjected to some important
limitations regarding the comparability of the data across different cities. One of these limitations is
the way cities are bounded. The definitions of a “city” in the case studies investigated here depend on
the administrative boundaries which may or may not include the entire continuous urban fabric of the
cities. In some cases (Milan for example), the boundaries of the city include all of the extensions and
suburbs of the city; while in other cases, some of the urban fabric is left outside of the administrative
boundaries (Brussels for example). The differences in periods of time between cities in our dataset,
ranging from 2010 to 2014, is also a factor limiting the comparability. By doing so we assume that
relationships between variables, expressed in the power-law regression performed, are constant over
the four years of our dataset. We consider that this assumption can be made as the large demographical,
technological, and behavioural changes needed to impact the relationships between these variables are
unlikely to happen over a 4-year period. However, this limitation is common in this type of study
and demonstrates again that it is crucial for researchers and city planners that urban energy data are
annually produced.

Another important element is that the way in which MTUs are delimited in different cities varies
largely. These variations exist both across cities and within individual cities. This results in the MTUs
corresponding to different spatial units, differing in sizes and characteristics. For instance, Glasgow as
a city is roughly the same size as some of Buenos Aires’ MTUs, and MTUs of Brussels cover anything
between 1% and 20% of the area of the city. Another limitation is that the purpose of the final energy
use is not clearly known and can vary a lot from city to city. For instance, in some cities, natural gas is
used for heating, domestic hot water, and cooking, whilst in other cities, the latter two are provided
by electricity. This may affect the comparability between cities since certain energy vectors might
cover different uses which in turn might be driven by other sets of drivers. As mentioned in the
literature [24], larger incomes can correlate with larger housing and therefore heating demands which
might be related to different energy vectors depending on the city that is analysed. Furthermore, the
number of sectors considered as final users of energy also varies across the different cities, where some
cities name three—residential, commercial, and industrial—and others up to five. This shows that
future research should look in more detail into the end-purpose of energy spending, rather than simply
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by sectors or vectors. It should also be recommended to include urban indicators beyond the ones
used for this study—population size, population density, and median income—in order to explore
other potential drivers of urban energy consumption, notably at a local scale.

5. Conclusions

In this study we have examined 10 cities worldwide, across three energy use intensity indicators
(electricity use per capita, natural gas use per capita, residential electricity use per capita) and
three urban features (population, population density and PPP median income). The power-law
relationship between energy use indicators and urban feature are examined at city scale and at
sub-city scale (micro-territorial unit, MTU). The main goals of the study were: (1) to investigate
if power-laws relationship could be found for smaller cities (in population) than previous studies
and disaggregated energy flows; (2) to see if such power-law could be extended to sub-city scale
suggesting scale independency of these drivers; (3) to investigate if cities observed individually would
exhibit comparable power-law when examined at MTU scale. This investigation has shown that:
(1) it is unlikely that power-law found in previous study [14] could be extended to smaller cities
and disaggregated energy flows; (2) there is a scale dependency of drivers regarding the intensity of
urban energy use; and (3) that there is heterogeneity regarding the nature of the relationships found
city-wise across the different cities. These results have several limitations, mainly related to various
definitions of MTU and energy indicators across cities. However, the presented findings show some of
the limitations of considering cities as homogeneous wholes. Instead, local drivers and local context
should be taken into greater consideration in policy making in order to more effectively assist cities into
their sustainable transitions. Future research should explicitly take into account the scale dependency
of energy use drivers and should seek to provide multiscale analysis and modelling of urban systems.
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