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Abstract: The valorization of orange peel waste (OPW) is sought worldwide mainly via anaerobic
digestion. A common problem encountered during the biological treatment is the seasonality of
its production and the presence of d-Limonene. The latter is a typical anti-microbial compound.
This work aims to evaluate the effect of the use of granular activated carbon (GAC) combined with
alkaline pretreatment to enhance methane generation during semi-continuous anaerobic digestion
of OPW. The experimental design consisted of two groups of experiments, A and B. Experiment A
was designed to verify the maximum OPW loading and to assess the effect of pH and nutrients on
the process. Experiment B was designed to study the effect of alkaline pretreatment alone and of
alkaline pretreatment aided by biochar addition to the process. Apart from the methane yields, the
d-Limonene contents were measured in all experiments. The preliminary results showed that OPW
alkaline pretreatment after the addition of a moderate amount of GAC can render anaerobic digestion
of OPW sustainable as long as the organic loading does not exceed 2 gVS·L−1

·day−1 and nutrients are
supplemented. The experiment in which GAC was added after alkaline pretreatment resulted in the
highest methane yield and reactor stability.

Keywords: alkaline pretreatment; anaerobic digestion; d-Limonene; granular activated carbon;
orange peel waste

1. Introduction

Orange peel waste (OPW) is produced in large quantities in many parts of the world [1–3] but a
fully sustainable solution for its valorization has not been found until now.

Currently, part of OPW produced is used as animal feed. However, in many parts of the world,
uncontrolled dumping near production sites is common, leading to malodors and water and soil
pollution [4–7].

A promising solution is to use OPW as a substrate for anaerobic digestion. However, problems
linked to the seasonality of its production and to the presence of d-Limonene, a well-known
anti-microbial agent, must be resolved first. A conventional solution is to co-digest OPW with
other substrates. However, this option is not practical when large quantities of this residue must
be managed.

Although the potential for the application of anaerobic digestion of OPW is high, literature is
not abundant, especially for experiments carried out in continuous/semi-continuous mode and in
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mesophilic conditions [4,8–10]. As previously reported, citrus peel has an inhibitory effect on anaerobic
digestion due to the presence of essential oils and in particular to d-Limonene. Indeed, Zema et al. [4]
employed orange peel waste for semi-continuous mesophilic tests and found that the process was stable
at a loading of 1 gVS·L−1

·d−1. Increasing loading, a partial inhibition was detected at 2 gVS·L−1
·d−1,

while the process stopped at 2.5 gVS·L−1
·d−1. Methane yield was 0.46 NL·gVS−1 with sludge retention

times (SRTs) between 23 and 70 days.
According to the review of Ruiz and Flotats [11], analysing existing literature has found that

the maximum dosage of limonene for a stable anaerobic digestion process ranges from 24 to 192 mg
of citrus essential oil per liter of digester and day. Zema et al. [4], in the experiment already cited,
found that the inhibition begun when essential oil (EO) loading was increased from about 48 to about
90 mg·L−1

·d−1. Calabrò et al. [1], in batch experiments, found that slight inhibition occurred when
250–500 mg·L−1 of d-Limonene were added in the reactor and that a significant degradation of it was
detected after 15–18 days of digestion. Several approaches have been investigated in order to overcome
this issue, namely: acclimation of bacterial cells, adopting thermophilic operating conditions and
reducing the concentration of the inhibitors either by dilution or co-digestion with other substrates [11].
However, since the inhibitor is not removed from the process, the destabilization of the anaerobic
digestion (AD) system can occur [11] due to its accumulation and eventually due to the presence of
metabolic intermediates of the substrate (such as long chain fatty acids, ammonia, limonene, heavy
metals and phenols [12]) that are as inhibitory to microbial activity as d-Limonene itself [10–12].

Other methods for sustainable OPW digestion (e.g., steam distillation [9]) focusing on d-Limonene
reduction have also been studied [3,13,14]. Martin et al. [9] working using treated OPW (d-Limonene
removal 70%) observed process stability up to loadings of 3.0–3.5 gVS·L−1

·d−1 and registered a methane
yield of 0.23 NL·gVS−1 with an SRT of 25 days. However, pretreatment methods are often expensive,
thus making the overall process not economically sustainable. Another option consists of the reduction
of contaminants or toxic compounds by using carbonaceous sorbents [15], such as graphite, graphene,
biochar, activated carbon, carbon cloth and nanotubes, maghemite and magnetite carbons capable of
adsorbing chemicals onto their surface [16].

Biochar is produced during thermal treatment (mainly by pyrolysis process) of lignocellulosic
biomass in the partial or total absence of oxygen. During this process, the volatilization of the organic
matter increases, the pore sizes enlarge and the structure of the biomass is rearranged [17]. These pores
(distinguished in micropores, mesopores and macropores [15]) allow the adsorption of contaminants
thus reducing the mobility and bioavailability of potential toxic chemicals [14].

Biochar is structurally similar to activated carbon [14], which has been used in this study.
Compared to activated carbon, biochar is produced at a lower temperature (<700 ◦C) without any form
of activation [18]. This means that the production on activated carbon is more expensive. On the other
hand, the surface area of the biochar is less efficient (less porous) than that of activated carbon [19].

Due to these characteristics, the use of granular activated carbon (GAC) during anaerobic digestion
of citrus peel waste could be a suitable approach for the stabilization of the process [14].

GAC, similarly to biochar, could have a positive impact on the operational stability of the AD
process [20] because there are indications that it can adsorb monoterpene compounds [21], heavy
metals and other organic compounds like pesticides, furfural and limonene [21–23]. From this point of
view, the application of an adsorbent such as GAC represents an innovative way to remove and to
reduce the effect of the inhibitory compounds during AD [15].

Moreover, the surface of adsorbent materials may be colonized by microorganisms [24] able to
metabolize the material trapped within the pores of the adsorbent [15]. The immobilization of microbial
communities (i) facilitates interspecies electron transfer [25], (ii) allows for the acclimation of the
microbial cell [13,15,26] and (iii) reduces the distance between syntrophic bacteria and methanogens,
increasing the oxidation of volatile fatty acids (VFAs) and hydrogen production [27,28]. The electron
transfer also promote VFAs conversion to CH4 [29].
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From an energetic point of view, Fagbohungbe et al. [14] observed an enhancement of methane
production from 163.9 to 186.8 mL CH4·g VS−1 when biochar was added during the AD of citrus peel
waste. Peng et al. [30] found that CH4 yield increased by 13.1% and 20% through the additions of
GAC and magnetic GAC, respectively. Martínez et al. [31] observed an increase in methane yields
of approximately 33% when 10 g·L−1 of biochar was added and 56% when 30 g·L−1 was added.
Under semi-continuous digestion, an improvement in methane yields of approximately 60% was
observed at a hydraulic retention time (HRT) of 30–20 days (reaching methane production values
above 500 LCH4·kgVS−1 at an organic loading rate (OLR) of 1.49 kgVS·m−3

·d−1).
In summary, the use of adsorbent leads to a reduction of the lag phase [20] and to a higher

production of methane [14] by the sorption of inhibitors, the increasing of the buffering capacity of the
system [15] and other phenomena.

In this paper, semi-continuous anaerobic digestion experiments, designated as Experiments A, B1
and B2, respectively, are presented. In Experiment A, the effect of pH and nutrients on the sustainable
OPW loading is analysed. In Experiments B1 and B2, the effect of granular activated carbon (GAC) use
and of alkaline pretreatment on OPW digestion is assessed.

2. Materials and Methods

2.1. Semi-Continuous Reactor Setup

Semi-continuous reactors (three-neck bottles, volume 1.1 L, WTW-Germany, equipped with valves
allowing biogas collection and feeding/sludge withdrawal, Figure 1) were placed in a thermostatic
cabinet at 35 ± 0.5 ◦C and mixed by a magnetic stirrer throughout the test period.

Two or three times per week, a biogas measurement was carried out by a water displacement
method [1,5,32] adapted to this specific experimental setup. The produced biogas was slowly transferred
into a second bottle (alkaline trap) containing 0.8 L of a 3M NaOH solution using a 100 mL syringe.
Through a side opening of the second bottle, a tube allowed the transfer of biogas via the syringe.
The carbon dioxide present in the biogas was absorbed into the alkaline solution. The pressure increase
in the alkaline trap provoked the displacement of a certain volume of that alkaline solution that was
transferred by a tube connected to another side opening of the bottle to a graduated volumetric cylinder.
The total volume of the alkaline solution displaced by the gas was considered equal to the volume
of methane present in the biogas. The volume of carbon dioxide was, therefore, calculated by the
difference of the methane volume from the total biogas volume [1,2].
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2.2. Substrates, Inocula and Additives

The substrate used was a lyophilized OPW collected from an orange processing industry in Sicily
(Table 1). Lyophilization allows to preserve as much as possible the characteristics of OPW and thus to
ensure the stability of the substrate for the whole experiment. In Experiments B1 and B2 (Table 2), in
order to reduce d-Limonene concentration and to increase buffering capacity [2], lyophilized OPW was
subjected to an alkaline pretreatment using NaOH (5% TS, 50% NaOH solution, Sigma-Aldrich) at
room temperature for 24 h [33–35].

Table 1. Substrate and inocula characteristics.

TS (%) VS (%TS) pH d-Limonene (mg/g)

Inoculum (Exp. A) 4.8 71.9 7.9 -
Inoculum (Exp. B) 4.1 64.6 8.1 -

Raw lyophilized OPW 93.2 96.9 - 0.37 *
Pretreated OPW 12.6 * 77.6 * 10.7 * 0.15 *

* Value measured on rehydrated OPW.

Table 2. Experimental design.

Reactor Substrate GAC Substrate
Pretreatment

HRT
[day]

Regime OLR
[gVS·L−1·day−1]

A Lyoph. OPW NO NO 46.3 *–23.1 ** 1 *–2 **
B1 Lyoph. OPW NO Alkaline 13 2
B2 Lyoph. OPW YES Alkaline 13 2

* Days 14–81; ** Days 81–101.

D-Limonene was extracted from substrates by mixing for two hours 0.3 g of lyophilized
sample with 3 mL of a solution of Toluene (Sigma-Aldrich, St. Louis, MO, USA) and cyclohexane
(0.1 M, Sigma-Aldrich) used as internal standard. The liquid obtained was then injected into a gas
chromatograph (Agilent 6890, Santa Clara, CA, USA) equipped with a wide-bore capillary column
and a flame ionization detector (FID). The capillary column was a J&W DB-WAXetr 50 m × 320 mm
× 1 mm and the gas carrier was nitrogen with a flow rate of 10 mL/min. The injector was settled at
250 ◦C. The temperature program started at 50 ◦C, held for 8 min, the temperature was raised to 230 ◦C
at 5 ◦C/min, held for 2 min, raised to 240 ◦C and held for 4 min during the post run [35].

In Experiment B2, GAC was also added (CARBOSORB 2040-20 × 40 mesh, Comelt srl, Milan, Italy)
at the beginning of the experiment (2% of the operational volume, 8.0 g) and then with the substrate.

The inoculum used in the experiments was a liquid digestate obtained from a full-scale plant
treating manure and various residues from the agro-industry. It was sieved to remove fibrous materials
(e.g., straw) and then kept in anaerobic conditions in an oven at 35 ◦C before the experiments to reduce
as much as possible of the non-specific biogas production. In Experiment A, NaHCO3 was added
several times during the experiment to increase the pH and to provide buffering capacity. Since the
C/N of the OPW was about 51, a nutrient solution compliant with the UNI/TS 11703:2018 norm recently
introduced in Italy was periodically added to reduce the C/N ratio. The norm includes the use of three
different nutrients solutions defined as Solutions A, B and C. Solution A contains specified quantities
of KH2PO4, Na2HPO4·12H2O, NH4Cl and distilled water. The amount to be used was assessed to
supplement nitrogen present in OPW so as to reach a C/N in the feed of about 30. Solution B contains
CaCl2·2H2O, MgCl2·6H2O, FeCl2·4H2O and distilled water and the amount to be used is the same as
Solution A. Solution C contains MnCl2·4H2O, H3BO3, ZnCl2, CuCl2, Na2MoO4·2H2O, CoCl2·6H2O,
NiCl2·6H2O, Na2SeO3 and distilled water and the amount to be used is 1/5 of the volume of Solution A.
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2.3. Experimental Design

During Experiment A, designed to verify the maximum OPW loading applicable to the process,
after 14 days of acclimation, the substrate loading (Table 1, Figure 2) was set to 1 gVS·L−1

·day−1

(corresponding to an HRT of 46.3 days and to about 3.1 mgd-Limonene·L−1
·day−1) and then to

2 gVS·L−1
·day−1 (HRT equal to 23.1 days, 6.2 mgd-Limonene·L−1

·day−1). Due to pH reduction, 2 g and
4 g of NaHCO3 were added on days 52 and 56, respectively. Since pH stabilization and the biogas
production achieved were unsatisfactory, nutrients Solutions B and C were added on day 63 and
Solution A on day 70. The experiment was terminated due to excessive pH reduction on day 100.

Experiment B was designed to assess if, reducing HRT to 13 days, whether the adoption of a
chemical (alkaline) pretreatment at a higher loading was sustainable and if GAC addition could aid
the process. During this experiment, two bottles (B1 and B2) were prepared. The only difference was
the presence of 2% GAC in bottle B2. GAC was supplied with the substrate at each loading so as to try
keeping its concentration constant. In this experiment, due to the necessity of preparing pretreated
substrate, feeding was reduced to twice a week. HRT was kept equal to 13 days, similar to that used in
many full-scale plants fed with agro-industrial residues.

The loading (Figure 3) was gradually increased from 0.5 gVS·L−1
·day−1 for days 1–3 to

1 gVS·L−1
·day−1 (days 4–11, corresponding to about 1.3 mgd-Limonene·L−1

·day−1) and finally to
2 gVS·L−1

·day−1 (corresponding to about 2.6 mgd-Limonene·L−1
·day−1). In this case, days 1–11 were

also considered an acclimation period to allow the adaptation of the inoculum to the substrate. On day
45, feeding was suspended for the summer closing of the laboratory and for 11 days reactors worked
as batches. Nutrient solutions were added every two weeks.

Total, volatile solids, buffering capacity and pH were measured according to standard methods [36].
During Experiment B, total volatile fatty acids (VFA) were measured by a three points titration
method [37].

3. Results and Discussion

During Experiment A, pH slowly decreased from the initial value (7.9) down to 6.7 during the
first 46 days, then it decreased to 6.1 (day 52, Figure 2), probably due to an accumulation of VFA. The
addition of NaHCO3 and of nutrients solutions raised pH to about 7 (until day 81). In this period, it is
possible that nutrients addition helped to stimulate bacterial activity, thus consuming accumulated
VFA, and to stabilize the process. Then, in correspondence to OLR increase (to 2 gVS·L−1

·day−1), pH
decreased and neither sodium bicarbonate nor nutrients solutions addition were able to successfully
raise it. The experiment was terminated at day 100 (pH = 4.9).

Methane yield (Figure 4) was fairly stable during days 18–81 and remained between
0.35–0.43 NL·gVSadded−1 (average 0.38 NL·gVSadded−1, %CH4 in biogas, 63% on average), then
it decreased almost steadily down to 0.3 NL·gVSadded−1 on day 100. However, daily methane
production and the percentage of methane in biogas observed a partial instability of the reactor that
was remedied after the addition of nutrients (on days 63 and 70). These findings confirm that nutrients
and micro-nutrients supplementation is essential for a successful AD of this type of substrate [38,39].

Loading increase led to a reduction of pH, daily methane production and presence in biogas until
the experiment was terminated.

Data on methane yield were in agreement with those present in scientific literature for this specific
substrate [4,6]. According to this experiment, the maximum organic loading rate for untreated OPW
is about 1–2 gVS·L−1

·day−1, thus in the lower end of the range present in scientific literature [40,41].
If optimal conditions (i.e., sufficient nutrients availability, days 44–70 in this experiment) are not kept
or if accumulation of d-Limonene [1] occurs, which is likely what happened when OLR was increased,
the process becomes unstable, VFAs accumulate, buffering capacity reduces and pH tends to decrease
(compare Figures 2 and 5).
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Figure 2. Substrate loading and pH trend, Experiment A.
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During Experiment B, pH (Figure 3) started from a value above 8, then sharply decreased to about
7.4 at day 4 and then begun a slow and steady decrease (6.6 at day 28 for both reactors). From day 28
onward, reactor B2, the one where GAC was added, performed better, both in terms of a more stable
pH and a higher methane production. In fact, in reactor B1 between days 28 and 32, pH decreased
sharply to 5.2 and then more slowly to 4.8 in day 45. In reactor B2, the decrease was more limited and
pH was equal to 6.1 on day 45. Figure 6 shows that VFA tended to accumulate in reactor B1, reaching
6000 mg/L after about one month from the beginning of the experiment and up to about 9400 mg/L
at its end. In weeks VI and VII, it was impossible to measure VFA in reactor B1 due the low pH (<5,
incompatible with the titration method used), while week VIII corresponds to the period of laboratory
closure. In reactor B2, the presence of GAC allowed to keep VFA concentration at a maximum value of
3000 mg/L, only when loading was resumed and the VFA concentration in this reactor increased up to
about 4000 mg/L.



Sustainability 2019, 11, 3386 7 of 11
Sustainability 2019, 11, x FOR PEER REVIEW 7 of 11 

  
(a) (b) 

Figure 4. Experiment A: (a) Methane yield and % CH4 in biogas; (b) daily production. 

 

Figure 5. Buffering capacity, Experiment A. 

According to [1], d-Limonene degradation for the adopted hydraulic residence time (HRT) can 

be considered unlikely, therefore, under the hypothesis that no degradation at all occurs in the 

reactor, the concentration of this compound after the reactor start-up should have been in the order 

of 33.5 mg·L−1. According to the review of Ruiz and Flotats [11], inhibition of anaerobic digestion of 

OPW by d-Limonene is possible if the concentration is higher than 10 mg·L−1 and it is therefore 

possible that the accumulation of VFA due to the partial inhibition of methanogenesis was likely due 

to d-Limonene.  

At day 28, accumulated methane production (Figure 7) was identical in the two reactors, while 

at day 57 (end of experiment), that of reactor B2 was 65% higher than reactor B1. Average methane 

content in biogas (Figure 8) was practically the same between days 11 and 28 (57% for B1 and 55% 

for B2, respectively), while in days 28–57 it was 45% in B1 and 57% in B2. 

During the 11 days that the reactors operated in batch conditions (feeding was suspended on 

day 45 due to the summer closure of the laboratory), pH increased similarly in both reactors (from 

4.8 to 5.4 in reactor B1 and from 6.1 to 6.9 in reactor B2) and methane was produced (average daily 

production during this period was significantly lower than that in the preceding week, Figure 8). 

0%

20%

40%

60%

80%

100%

0

100

200

300

400

500

0102030405060708090100

M
et

h
an

e 
yi

el
d

 
[N

m
L/

gV
Sl

o
ad

ed
]

Day

Methane yield - A % CH4 - A

0

100

200

300

0 50 100

D
ai

ly
 m

et
h

an
e 

p
ro

d
u

ct
io

n
 

[N
m

L/
d

]

Day

Daily methane production - A

0

50

100

150

200

250

300

350

0 10 20 30 40 50 60 70 80 90 100B
u

ff
er

in
g 

ca
p

ac
it

y 
[m

m
o

l/
L]

Day

Buffering capacity - A

Figure 4. Experiment A: (a) Methane yield and % CH4 in biogas; (b) daily production.

Sustainability 2019, 11, x FOR PEER REVIEW 7 of 11 

  
(a) (b) 

Figure 4. Experiment A: (a) Methane yield and % CH4 in biogas; (b) daily production. 

 

Figure 5. Buffering capacity, Experiment A. 

According to [1], d-Limonene degradation for the adopted hydraulic residence time (HRT) can 

be considered unlikely, therefore, under the hypothesis that no degradation at all occurs in the 

reactor, the concentration of this compound after the reactor start-up should have been in the order 

of 33.5 mg·L−1. According to the review of Ruiz and Flotats [11], inhibition of anaerobic digestion of 

OPW by d-Limonene is possible if the concentration is higher than 10 mg·L−1 and it is therefore 

possible that the accumulation of VFA due to the partial inhibition of methanogenesis was likely due 

to d-Limonene.  

At day 28, accumulated methane production (Figure 7) was identical in the two reactors, while 

at day 57 (end of experiment), that of reactor B2 was 65% higher than reactor B1. Average methane 

content in biogas (Figure 8) was practically the same between days 11 and 28 (57% for B1 and 55% 

for B2, respectively), while in days 28–57 it was 45% in B1 and 57% in B2. 

During the 11 days that the reactors operated in batch conditions (feeding was suspended on 

day 45 due to the summer closure of the laboratory), pH increased similarly in both reactors (from 

4.8 to 5.4 in reactor B1 and from 6.1 to 6.9 in reactor B2) and methane was produced (average daily 

production during this period was significantly lower than that in the preceding week, Figure 8). 

0%

20%

40%

60%

80%

100%

0

100

200

300

400

500

0102030405060708090100

M
et

h
an

e 
yi

el
d

 
[N

m
L/

gV
Sl

o
ad

ed
]

Day

Methane yield - A % CH4 - A

0

100

200

300

0 50 100

D
ai

ly
 m

et
h

an
e 

p
ro

d
u

ct
io

n
 

[N
m

L/
d

]

Day

Daily methane production - A

0

50

100

150

200

250

300

350

0 10 20 30 40 50 60 70 80 90 100B
u

ff
er

in
g 

ca
p

ac
it

y 
[m

m
o

l/
L]

Day

Buffering capacity - A

Figure 5. Buffering capacity, Experiment A.

According to [1], d-Limonene degradation for the adopted hydraulic residence time (HRT) can
be considered unlikely, therefore, under the hypothesis that no degradation at all occurs in the
reactor, the concentration of this compound after the reactor start-up should have been in the order of
33.5 mg·L−1. According to the review of Ruiz and Flotats [11], inhibition of anaerobic digestion of OPW
by d-Limonene is possible if the concentration is higher than 10 mg·L−1 and it is therefore possible that
the accumulation of VFA due to the partial inhibition of methanogenesis was likely due to d-Limonene.

At day 28, accumulated methane production (Figure 7) was identical in the two reactors, while
at day 57 (end of experiment), that of reactor B2 was 65% higher than reactor B1. Average methane
content in biogas (Figure 8) was practically the same between days 11 and 28 (57% for B1 and 55% for
B2, respectively), while in days 28–57 it was 45% in B1 and 57% in B2.

During the 11 days that the reactors operated in batch conditions (feeding was suspended on day
45 due to the summer closure of the laboratory), pH increased similarly in both reactors (from 4.8 to 5.4
in reactor B1 and from 6.1 to 6.9 in reactor B2) and methane was produced (average daily production
during this period was significantly lower than that in the preceding week, Figure 8).
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At the end of the experiment (day 57), methane yield was 0.13 NL·gVSadded−1 for reactor B1 and
0.22 NL·gVSadded−1 for reactor B2 (about 70% higher). The value of methane yield in B2 was about
42% lower than that recorded during Experiment A when, however, HRT was set at about 46 days,
about 4 times the value set in Experiment B.

Daily methane production in reactor B was fairly stable between days 14 and 45 (Figure 8). This is
probably a result of a higher process stability for the reactor supplemented with GAC.

The different behaviour observed in reactors B1 and B2 after the necessary acclimation of the
microbial community (the first 28 days) and consisting in a higher cumulated methane production
(+65%), higher amount of methane in biogas (+27%) and higher methane yield (+68%) can be
attributed to GAC addition. It is highly probable that the most important benefits are d-Limonene
adsorption [21–23] and the immobilization of microbial community [15] with the already mentioned
linked benefits.
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Figure 8. Experiment B: (a) Methane yield and %CH4 in biogas; (b) daily production.

4. Conclusions

These preliminary results demonstrate that OPW pretreatment with the addition of a moderate
amount of GAC can render anaerobic digestion of pure OPW sustainable in terms of a fairly good
process stability and applicable loading (up to 2 gVS·L−1

·day−1 if an alkaline pretreatment is adopted).
Both experiments clearly indicate that the supplementation of nutrients is necessary which can be
achieved either by the direct addition of nutrients (in the form of an N salt) or by the addition of an
appropriate N rich co-substrate. At the end of the experiment, GAC addition (reactor B2) increased
methane yield of pretreated OPW by 65%. However, in the first 30 days, methane production was
practically the same in reactors B1 and B2, indicating that most probably GAC induced some effect in
term of biomass selection.
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