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Abstract: This paper presents a super-efficiency network data envelopment analysis (SE-NDEA)
model for 11 cities in China. The model focuses on measuring the performance of public transit
system by integrating multiple stakeholders involved in the public transit system with the exogenous
environment in which they operated. Thus, local authority, bus operators, passengers, uncontrollable
environmental factors, and the externality of the public transit are all taken into account in
the measurement framework and are both interrelated inputs and outputs. The measurement
framework can simultaneously capture each public transit system’s production efficiency, service
effectiveness, and operational effectiveness. Meanwhile, undesirable outputs, uncontrollable factors,
and boundary-valued variables are considered. The paper evaluates the performance of public transit
system of 11 Chinese cities from 2009 to 2016. The results reveal that the exogenous environment
has a marked impact on the performance measurement of the public transit system. Super cities
tended to perform better than mega cities, and mega cities tended to perform better than large cities.
Furthermore, service effectiveness has a significantly positive correlation with production efficiency,
and transit rail tends to perform better than the conventional bus. These findings have an important
implication for China’s bus priority implementation and more general managerial insights for public
transit development.

Keywords: public transit system; performance measurement; exogenous environment; data
envelopment analysis (DEA); efficiency and effectiveness

1. Introduction

According to the recent statistical data, provided by the National Bureau of Statistics (NBS),
the total volume of passenger and freight flows was 6.65 million in 2017, which is almost 50% more
compared to the total passenger and freight volumes in 2007. However, such a significant increase in
passenger and freight flows has led to a series of problems to cities, including traffic congestion and
environmental pollution. In such circumstances, all transport modes, whether by sea, air, or land, have
to operate more efficiently to serve the growing demand and achieve sustainable development [1–4].
Among the transport modes in cities, public transit is an effective mode for relieving the pressure of
traffic congestion, especially during rush hours [5]. Therefore, from the perspective of the city, proper
management and good performance of public transit is beneficial to alleviating urban problems and
achieving the sustainable development of cities [6].

In order to encourage people to use public transit, the Chinese government put forward the bus
priority policy in 2004, i.e., it has been implemented for over ten years. During this time, governments
at all levels have poured a large number of investments and financial support into the public transit
system. It should be noted that the public transit system in this paper refers to buses, trolleybuses,
and rail transit in the municipal districts at the city level, excluding public bicycles and taxis. With
strong support, certain achievements have been made. Taking Shenzhen as an example, in the period
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of 2008–2016, the subsidies to buses have risen from 1 billion to 5.103 billion RMB, and the annual
operating kilometers have increased by 362%. However, the increased investments and financial
support in successive years have caused a great burden on local governments, and seriously restricted
the sustainability of the bus priority development. Given that capital is a relatively scare resource in
developing countries, such as China, it is quite important to operate the public transit system efficiently
and effectively to obtain its own sustainable development [7]. Thus, a reasonable performance
evaluation of the public transit system is needed to measure the performance of public transit system
objectively, and identify the bottleneck in the public transit system operation.

In terms of the public transit performance measurement, most papers have focused on the bus
operators’ performance measurement [8–11]. However, some researchers recognized the significant
influence of other factors on the performance of public transit and began to expand the measurement
framework from different perspectives. For example, Sheth et al. [12] assessed bus route performance
by taking bus operators, passengers, and societal perspectives into consideration. The societal variables
referred to the externality of public transit to the exogenous environment and included air quality, noise
pollution, natural resources, and safety. Kang et al. [13] also confirmed the impact of environmental
pollution on the efficiency evaluation of bus transit firms. Zhao et al. [14] considered three stakeholders,
namely, service providers, passengers, and community. They are interrelated intermediate inputs or
outputs. Yu and Fan [15] addressed the limitation with regard to uncontrollable environmental factors
(i.e., population density and car ownership). However, there has been no research to evaluate transit
system performance by integrating all relevant roles, i.e., taking into account both three stakeholders
in the transit system and the interaction between the transit system and its exogenous environment.
The interaction includes both the influence of uncontrollable environmental factors on public transit
performance and the externality of transit system to the exogenous environment. Besides, with the
expansion of measurement framework, some papers modified the traditional model to apply to various
settings, such as the consideration of uncontrollable factors [16] or undesirable inputs/outputs [17,18].
However, output variables with boundary values—such as passenger satisfaction, whose maximum
is 100—have not received attention yet. It should be noted that this neglect may overestimate the
efficiency score and result in misleading projections which should have contributed to efficiency,
especially for output-oriented models. Finally, most previous literature focused on the public transit
systems’ efficiency scores and rankings, while little attention was paid to find operational deficiencies
of inefficient systems and project them to efficiency. This is another important role that should be
considered in the performance evaluation.

Consequently, the research questions to be answered in this paper are as follows: (1) How
to measure the performance of public transit by integrating multiple stakeholders involved in the
public transit system with the exogenous environment in which they operated? (2) Technically, how
to construct a measurement model by simultaneously considering uncontrollable environmental
factors, undesirable outputs, and boundary-valued variables? (3) In the case study, how to identify
operational deficiencies of the inefficient public transit system and propose feasible projections to
improve its performance? In a nutshell, this paper focuses on measuring the public transit system
more comprehensively and applicably.

The remainder of this paper is organized as follows. Section 2 reviews the existing literature
with respect to the public transit performance measurement. Section 3 presents the performance
measurement framework of the public transit system, introduces the corresponding methodology, and
selects measurement variables. The first two research questions are answered in this section. Section 4
describes a case study and answers the last research question through this case. Section 5 summarizes
the conclusions, limitations, and future research directions.

2. Literature Review

A wide variety of methods has been put forward by scholars and practitioners to measure
the performance of the public transit system [19–21]. In terms of the public transit efficiency, the
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measurement methods are divided mainly into parametric analysis represented by the stochastic
frontier approach (SFA) [22–24], and nonparametric analysis represented by the data envelopment
analysis (DEA) [25–29]. Although one method is not strictly preferable to the other, the DEA method
has been more widely acknowledged and applied for the strength of avoiding subjective weight
determination and capturing the interplay between multiple inputs and outputs [30].

The DEA, which is introduced by Farrell [31] and popularized by Charnes et al. [32], is an
analytical method that uses a linear programming technique to evaluate the relative performance of
decision-making units (DMUs). This method for evaluating public transit system is constantly ongoing
and affluent. This affluence mainly arises from multiple perspectives and diverse measurement models.
As discussed in Zhao et al. [14], the operation of public transit involves three stakeholders, namely,
bus operators, passengers, and local authority. Different stakeholders are concerned about different
issues, so different measurement perspectives can be obtained when considering different stakeholders.
More concretely, bus operators strive to minimize the operating inputs and maximize their economic
benefits and, thus, production efficiency is proposed to evaluate the service provision capacity of
bus operators by using production-oriented variables (e.g., vehicle-km or seat-km) [33]. Passengers
expect superior public transit service to meet their daily travel requirements and, accordingly, service
effectiveness is proposed to evaluate the service consumption capacity of passengers by employing
service-oriented variables (e.g., passengers or passenger-km) [27,34]. Governments focus on both their
own financial investments and the whole public transit system, so operational effectiveness is proposed
to evaluate the performance of public transit system by combining production efficiency and service
effectiveness [35–37] or by adding government input variables (e.g., the amount of subsidy) [38,39]. In
addition to three stakeholders within the public transit system, some researchers expanded public
transit performance measurement to a broader perspective. For example, Yu and Fan [15], and Karlaftis
and Tsamboulas [40] considered uncontrollable environmental factors (e.g., population density, car
ownership, and area) in the measurement model in order to eliminate the effects of the operating
environment on the performance of public transit. Kang et al. [13] found that bus transit firms’ technical
efficiency was affected by their environmental pollution. These studies showed that the performance
of public transit was impacted by the exogenous environment. However, none of the abovementioned
literature has taken all perspectives (i.e., local authority, bus operators, passengers, uncontrollable
environmental factors, and the externality of public transit) into account. Therefore, it is necessary to
integrate all perspectives to measure the performance of the public transit system at the city level.

The multiple perspectives and settings have derived kinds of measurement models. Some papers
used the original CCR (Charnes-Cooper-Rhodes) and BCC (Banker-Charnes-Cooper) that respectively
assume constant return to scale (CRS) and variable return to scale (VRS) to measure public transit
performance [25,40], but most papers paid more attention to improving the measurement approach
by modifying DEA or combining DEA with other models. For example, given that transit firms may
generate both desirable and undesirable outputs while some of which may only take integer values,
Chen et al. [18] proposed an integer DEA model with undesirable inputs and outputs. Boame [26]
used a bootstrap DEA to estimate technical efficiency for Canadian transit systems from 1990 to 1998.
The bootstrap method may estimate bias and confidence intervals for the efficiency scores in order to
assess their precision. Zhang et al. [39] combined the information entropy theory and super-efficiency
DEA to evaluate 13 transit operators in Yangtze Delta of China. All model improvements were
aimed at enhancing measurement models’ applicability and discrimination capability. Nevertheless,
existing studies ignored the consideration of measurement variables with boundary values, such as
passenger satisfaction. This neglect may overestimate the efficiency score for output-oriented models.
Furthermore, an important purpose of public transit performance measurement is to find operational
deficiencies and propose feasible projections to improve the performance of inefficient transit systems,
but only a few studies have carried out efficiency frontier analysis [16,41].

In a nutshell, most previous studies evaluating the public transit system have considered one or
just a few perspectives, and have not included all the perspectives thought to influence public transit
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system evaluation. Second, it cannot be ignored that the measurement variables with boundary values
may lead to overestimating of the efficiency score, and no studies have addressed this issue. Third,
inefficient public transit systems have rarely been further investigated. These considerations represent
significant gaps in the literature. Therefore, this study attempts to address these gaps found in previous
research by (1) integrating all relevant perspectives into the public transit system evaluation, namely,
local authority, bus operators, passengers, uncontrollable environmental factors, and the externality of
public transit; (2) constructing a measurement model by simultaneously considering boundary-valued
variables, uncontrollable environmental factors, and undesirable outputs; and (3) projecting inefficient
transit systems to efficiency in a case study.

3. Research Design

3.1. Measurement Framework

The measurement framework in our study mainly expands on several major existing studies.
First, public transit system operation is a complex process involving multiple stakeholders, i.e., bus
operators, passengers, and local authority [14]. These three stakeholders participate in the public
transit system in different ways. For example, from the bus operators’ point of view, they input labor,
fuel, and capital to produce public transit service, and obtain economic benefits after the process of
passengers’ consumption. From the passengers’ perspective, they consume the public transit service to
meet their daily travel requirements. From the local authority’s point of view, they decide whether or
not to expand or abolish the transit infrastructure [22]. Moreover, they may provide financial subsidies
to bus operators to ensure the regular production of transit service. The subsidy and investment are
involved as local authority’s input in the production process.

Second, it is worth noting that the exogenous environment in which the public transit
system operated may impact the performance of the transit system. For example, population
or population density are positively correlated with transit ridership, while car ownership has a
negative impact [42–44]. According to Banker and Morey [45], the comparison among DMUs should
be conducted in a similar or harsher environment. On the other hand, the public transit system, in
turn, may have feedback or externality to the exogenous environment, such as accidents, emissions,
and others. The externality of public transit also has a significant influence on the performance
evaluation [13]. Therefore, measuring the performance of the public transit system should not only
investigate the underlying structure of three different stakeholders in the public transit system but
also pay attention to the interaction between the public transit system and its exogenous environment.
Figure 1 presents the structure of a public transit system with respect to the three perspectives and its
interaction with the exogenous urban environment.
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Finally, unlike ordinary manufacturing enterprises’ production and consumption process, the
consumption process of public transit service occurs simultaneously with the production process.
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More concretely, the public transit service cannot be stored. Once the public transit service is produced,
it ceases to exist regardless of whether it was consumed [35]. Therefore, it is quite essential to identify
the fact that only a portion of transit service is consumed in general. The consumed service may differ
greatly from the produced service. To solve this issue, Yu and Fan [15] proposed production efficiency,
service effectiveness, and operational effectiveness to measure the public transit system’s production
performance, consumption performance, and overall operational performance, respectively. Note that
the operational effectiveness is obtained by combining production efficiency and service effectiveness.

To sum up, according to Zhao et al. [14], the operation of public transit involves three stakeholders,
i.e., the local authority provides investment and financial support to the public transit system, bus
operators produce the public transit service, and passengers then consume the public transit service.
According to Yu and Fan [15] and Karlaftis and Tsamboulas [40], in order to eliminate the effects
of the operating environment on the performance of public transit, it is necessary to incorporate
uncontrollable environmental factors into the measurement model. According to Kang et al. [13], the
feedback from public transit to exogenous environment, namely, externality, also has a significant
impact on the performance measurement. Therefore, we take all perspectives (i.e., local authority,
bus operators, passengers, uncontrollable environmental factors. and the externality of public transit)
into account. Consistent with the discussion above, our measurement framework contains five parts,
i.e., inputs (the local authority’s inputs X1, the bus operators’ inputs X2), the intermediate outputs
(public transit service Z), outputs (the number of passengers Y1, bus operators’ economic benefits Y2),
uncontrollable environmental factors E, and the externality of public transit system U. Meanwhile,
the measurement framework can simultaneously capture each public transit system’s production
efficiency, service effectiveness, and operational effectiveness. Finally, the measurement framework of
the public transit system is shown in Figure 2.
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3.2. Methodology

3.2.1. SE-NDEA Model

Due to the network structure of the above measurement framework, we adopt the network DEA
method, proposed by Färe and Grosskopf [46], as the fundamental model in this paper. Meanwhile,
given that the advantage of super-efficiency DEA for ranking efficient DMUs further by excluding
the DMU itself from the sample set [47], we combine these two models and generate super-efficiency
network DEA (SE-NDEA). Moreover, there may be zero inputs in the measurement, for example,
governments do not always provide subsidies to bus operators, so we choose an output-oriented model.

Assume that there are N DMUs and the jth DMU (j = 1, 2, . . . , N) uses input quantities Xj =

{X1
j, X2

j} to produce intermediate output quantities Zj and final output quantities Yj = {Y1
j, Y2

j}.



Sustainability 2019, 11, 3555 6 of 21

We also assume that X = (xij)∈RM×N, Z = (zrj)∈RS×N and Y = (yoj)∈RL×N are non-negative. Then, the
output-oriented SE-NDEA model can be described as

DSE−NDEA



max(w1β1 + w2β2)
n∑

j=1, j, j0
X jλ

1
j ≤ X j0

n∑
j=1, j, j0

Z jλ
1
j ≥ β1Z j0

n∑
j=1, j, j0

Z jλ
2
j ≤ β1Z j0

n∑
j=1, j, j0

Y jλ
2
j ≥ β2Y j0

λ1
j ,λ

2
j ≥ 0, j = 1, 2, . . . , N

(1)

where β1 and β2 denote the optimal efficiency score of the production process and consumption process,
namely, production efficiency and service effectiveness, respectively. If β1 ≤ 1, this indicates the DMU
is production-efficient. Otherwise, it is production-inefficient. Similarly, if β2 ≤ 1, this indicates the
DMU is service-effective, otherwise, it is service-ineffective. Note that the larger the β, the lower the
efficiency. λ1 and λ2 are positive intensity variables related to the production process and consumption
process. w1 and w2 are weight coefficients to define the relative importance of the two processes and,
thus, w1 + w2 = 1.

3.2.2. SE-NDEA Model with Undesirable Outputs

The SE-NDEA presented above assumes that all inputs and outputs are desirable, and means that
the more inputs, the more outputs, and more is always preferred to less [18]. However, the performance
measurement of the public transit system does not always abide by this assumption, due to different
measurement contents. For example, the outputs from public transit system operation may include the
number of accidents, noise pollution, and CO2 emissions, all of which are undesirable [12]. To solve this
issue, some other studies have introduced undesirable outputs by using their reciprocals or opposite
number to transform negative outputs into positive ones [38,48,49]. Nevertheless, according to Liu
and Sharp [50], the numerical transformation may distort the results, i.e., the evaluation reference and
the ranking results may depend on the transformation approach adopted. Thus, in this paper, we use a
more general and simpler alternative method proposed by Berg et al. [51], i.e., treating the undesirable
outputs as inputs, namely [INP]. The inequalities for dealing with undesirable outputs are given by

n∑
j=1, j, j0

ZU
jλ

1
j ≤ ZU

j0 (2)

n∑
j=1, j, j0

YU
jλ

2
j ≤ YU

j0 (3)

where ZU and YU are the quantities of undesirable intermediate outputs and undesirable final outputs,
respectively. If there are undesirable intermediate outputs in the process of production, we use
an inequality constraint (2) to compare the production efficiency by maintaining the undesirable
intermediate outputs of the j0th DMU as no less than those of the samples. Based on the same idea, if
there are undesirable final outputs in the consumption process, the inequality constraint (3) is used to
compare the service effectiveness.
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3.2.3. SE-NDEA Model with Uncontrollable Constraints

As discussed in Section 3.1, uncontrollable environmental factors may have a significant impact
on the performance of public transit systems, such as population and car ownership [43]. Therefore,
in order to overcome limitations, we consider the exogenous factors by imposing constraints on the
consumption activity as follows:

n∑
j=1, j, j0

EP
jλ

2
j ≤ EP

j0 (4)

n∑
j=1, j, j0

EN
jλ

2
j ≥ EN

j0 (5)

where EP and EN are the quantity of two types of exogenous factors. According to Yu and Fan [15],
if exogenous factors have a positive correlation with the service effectiveness, we can compare a
public transit system’s service effectiveness in the case of keeping the exogenous factors equal to or
better than the circumstance they face by employing the inequality constraint (4). On the contrary, if
exogenous factors have a negative influence on the service effectiveness, an inequality constraint (5)
can be adopted to maximize the potential increase of the final outputs (e.g., the number of passengers)
for public transit system j0 while keeping the exogenous factors no better than the current circumstance
it faces.

3.2.4. SE-NDEA Model with Boundary-Valued Variables

It is worth noting that one may select ratio variables to measure the performance of public transit,
such as the error rate of average headway and passenger satisfaction [11,39]. However, previous studies
do not consider the presence of boundary on these ratio variables. This neglect may overestimate the
efficiency score for output-oriented models and result in misleading improvement projections which
should have contributed to efficiency. To solve this issue, we introduce additional constraints to Model
(1) by taking the following forms:

n∑
j=1, j, j0

ZB
jλ

1
j ≤ 100 (6)

n∑
j=1, j, j0

YB
jλ

2
j ≤ 100 (7)

where ZB and YB are the quantities of boundary-valued intermediate outputs and boundary-valued
final outputs, respectively. In the process of production, we apply an inequality constraint (6) to ensure
intermediate outputs with a ratio value of the j0th DMU no more than 100, and the inequality constraint
(7) applies to the consumption process.

Ultimately, we develop the final SE-NDEA model as follows. We use ZD, ZU, ZB, YD, YU,
and YB to respectively represent desirable intermediate outputs, undesirable intermediate outputs,
boundary-valued intermediate outputs, desirable final outputs, undesirable final outputs, and
boundary-valued final outputs, where ZD covers ZB and YD covers YB. It can be seen that constraints
(8)–(11) are the constraints of the original SE-NDEA model represented in Section 3.2.1, and constraints
(12)–(17) are added on the basis of the original model. Specifically, Constraint (8) is used for local
authority and bus operators’ inputs. Constraints (9) and (10) are applicable for desirable intermediate
outputs, such as vehicle kilometers. Constraint (11) applies to desirable final outputs, such as
ridership. Constraints (12) and (13) are used for undesirable outputs. More concretely, Constraint
(12) applies to undesirable intermediate outputs, such as CO2 emissions, death tolls, and Constraint
(13) applies to undesirable final outputs, such as passenger complaints. Constraints (14) and (15) are
used for boundary-valued outputs. Among them, Constraint (14) is applicable for boundary-valued
intermediate outputs, such as punctuality, and Constraint (15) is applicable for boundary-valued final
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outputs, such as passenger satisfaction. Constraints (16) and (17) are adopted to eliminate the impacts
of uncontrollable environmental factors. Furthermore, Constraint (16) is applicable for exogenous
factors that have a positive correlation with public transit system patronage, such as urban population,
whereas Constraint (17) is applicable for exogenous factors that have a negative correlation, such as
car ownership.

It should be noted that the network DEA and super-efficiency DEA are both linear programs [46,47],
and the constraints we added are a series of linear inequality constraints, familiar from DEA. Therefore,
the following SE-NDEA model is also a linear program. The added constraints do not increase the
complexity of the model solving. Regarding the linear programming problem, the software of MATLAB
(R2018b, The MathWorks, Inc., US) is a powerful tool due to its ready-made linear programming solver.
Thus, in this paper, we adopted the R2018b version of MATLAB to solve this model.

max(w1β1 + w2β2), s.t :
n∑

j=1, j, j0

X jλ
1
j ≤ X j0 (8)

n∑
j=1, j, j0

ZD
jλ

1
j ≥ β1ZD

j0 (9)

n∑
j=1, j, j0

ZD
jλ

2
j ≤ β1ZD

j0 (10)

n∑
j=1, j, j0

YD
jλ

2
j ≥ β2YD

j0 (11)

n∑
j=1, j, j0

ZU
jλ

1
j ≤ ZU

j0 (12)

n∑
j=1, j, j0

YU
jλ

2
j ≤ YU

j0 (13)

n∑
j=1, j, j0

ZB
jλ

1
j ≤ 100 (14)

n∑
j=1, j, j0

YB
jλ

2
j ≤ 100 (15)

n∑
j=1, j, j0

EP
jλ

2
j ≤ EP

j0 (16)

n∑
j=1, j, j0

EN
jλ

2
j ≥ EN

j0 (17)

λ1
j ,λ

2
j ≥ 0, j = 1, 2, . . . , N (18)

Finally, in order to be consistent with previous literature, i.e., the larger the efficiency score, the
higher the efficiency, we introduced the reciprocal of β, namely, θ1 = 1/β1 and θ2 = 1/β2, to respectively
measure the production efficiency and service effectiveness. Moreover, in this paper, we considered
the production process to be as important as the consumption process, so we set w1 = w2 = 0.5, then
the overall performance of public transit system, i.e., operational effectiveness, is 0.5θ1 + 0.5θ2.
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3.3. Variables Selection

We should not ignore the fact that the DEA scores are highly sensitive to the selection of input
and output variables [37]. Therefore, for the purpose of measuring the performance of the public
transit system more accurately and realistically, we selected inputs and outputs variables based on
the following principles: (a) the acceptance by the national and local department in charge of public
transit, (b) the application in previous studies, and (c) the availability of practitioners and researchers.

Regarding input variables of the local authority, the length of bus lines and subsidies have
often been used in previous literature [22,38,39]. Moreover, the bus prior line is a major measure for
governments to improve transit service (e.g., bus speed), so we used the length of bus prior lines as
the third input variable of the local authority. Regarding input variables of bus operators, we select
employees and vehicles to measure bus operators’ labor and capital. Regarding intermediate output
variables related to transit service, the conventional variable used in the previous network DEA is
vehicle kilometers [15,52]. However, vehicle-km only measures the quantity of public transit service
and does not consider the quality of the transit service. Thus, in addition to vehicle-km, we also
adopt average speed and punctuality to measure the public transit service quality. Regarding output
variables, bus ticket revenue and annual ridership respectively represent the bus operators’ economic
benefits and the number of passengers. In addition, from the passengers’ perspective, ridership
represents the passengers’ objective behavior, so we concurrently capture passenger satisfaction as
another final output for measuring the passengers’ subjective perception [53]. Note that the punctuality
and passenger satisfaction are both variables with boundary values. Regarding externality variables,
because public transit has the positive externality of reducing traffic accidents, we choose the death toll
for measuring the feedback of the public transit system on the external environment. This externality
variable needs to be minimized. At last, regarding uncontrollable environmental variables, population
and car ownership were considered, referring to earlier literature [42–44]. All descriptions and sources
of variables used in this paper are shown in Table 1.

Table 1. Variables used in the super efficiency network data envelopment analysis (SE-NDEA) model.

Variables Description Sources

Subsidies (million RMB), X1 Total annual government subsidies Municipal Bureau of Finance
Bus lines length (km), X2 The length of operating bus lines Local Statistical Yearbook

Bus prior lines length (km), X3
The length of operating bus prior
lines Local Statistical Yearbook

Employees (one), X4 The number of employed workers Municipal Transport Commission

Vehicles (one), X5
The number of vehicles in
operation Local Statistical Yearbook

Vehicle-km (10,000 km), ZD
1 Total annual operating kilometers Local Statistical Yearbook

Speed (km/h), ZD
2 Average speed in peak hours Municipal Transport Commission

Punctuality (%), ZB The ratio of punctual trips to all
trips Municipal Transport Commission

Revenue (10,000 RMB), YD
1 Annual bus ticket revenue Municipal Transport Commission

Ridership (10,000), YD
2 Annual ridership Local Statistical Yearbook

Passenger satisfaction (%), YB Average score of specified
questionnaires Municipal Transport Commission

Death toll (one), ZU
1 The number of traffic accidents Municipal Transport Commission

Population (10,000), EP The number of habitual residents Local Statistical Yearbook
Car ownership (10,000), EN The number of private cars Local Statistical Yearbook

4. Empirical Study

4.1. Data

In this study, the unit of analysis is the public transit system. Thus, annual data at the city level
are used. Although bus priority policy was put forward in China in 2004, most cities have not been
implemented until 2008. Therefore, we will perform an empirical study with the data corresponding
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to an eight-year period, from 2009 to 2016. Measure the performance of the public transit system in
this period is meaningful for China.

We collected a set of empirical data from 11 Chinese cities: Shenzhen, Guangzhou, Shijiazhuang,
Suzhou, Jinan, Hangzhou, Hefei, Taiyuan, Urumqi, Haikou, and Yinchuan. These are all exemplary
cities of transit metropolis construction in China. Their public transit performance is representative
to a certain extent. According to the “Notice on Adjusting the Standard of Urban Size” proposed by
China’s State Council in 2014, these cities are divided into three categories based on the populations of
habitual residents, as shown in Table 2. One year in each city is considered as a DMU. Table 3 provides
the variables’ descriptive statistics for the dataset.

Table 2. Decision-making units (DMUs).

Urban Size Population City Name

Super city Equal to or more than ten million Shenzhen, Guangzhou, Shijiazhuang, Suzhou
Mega city Between five million and ten million Jinan, Hangzhou, Hefei
Large city Between one million and five million Taiyuan, Urumqi, Haikou, Yinchuan

Table 3. Descriptive statistics.

Variables Max Median Min Mean Std. Deviation

Subsidies, X1 5190 260.64 26.91 993.62 1425.27
Bus lines length, X2 21462.2 4122.5 420 6526.81 6223.72
Bus prior lines length, X3 957 79.5 10 142.05 199.92
Employees, X4 68562 12505 6730 19111.49 15883.39
Vehicles, X5 17075 5100 1346 6625.23 4740.71
Vehicle-km, ZD

1 130450.6 19627.34 5792.67 34425.06 35365.93
Speed, ZD

2 99.25 71.79 50.6 73.44 11.34
Punctuality, ZB 32.71 20.07 10 21.09 5.09
Revenue, YD

1 871151 82254 13381.06 193245.38 245771.75
Ridership, YD

2 495646 73116 17378 122485.03 124229.47
Satisfaction, YB 94.02 76.68 65.5 77.9 6.77
Death toll, ZU

1 27 7 2 8.36 4.75
Population, EP 1404.35 759 187.85 721.12 367.85
Car ownership, EN 277.58 63.46 11.42 86.47 66.56

4.2. Results

4.2.1. Performance Review

After running the SE-NDEA model using the software of MATLAB, we obtain 11 cities’ production
efficiency, service effectiveness, and operational effectiveness from 2009 to 2016. All scores are presented
in Tables A1–A3 in the Appendix A. Note that if the score of efficiency or effectiveness is equal to or
greater than unity, it is considered “efficient”. If the score is between 0.8 (inclusive) and 1, it is “fairly
efficient”. If the score is less than 0.8, it is “inefficient”. Table 4 summarizes the overall performance
results of all cities and their ranking order. It is worth noting that the overall performance of a city is
calculated by the average score from 2009 to 2016.
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Table 4. The average efficiency and effectiveness score for all DMUs.

Urban Size DMUs
Production
Efficiency

Service
Effectiveness

Operational
Effectiveness

Score Rank Score Rank Score Rank

Super city

Shenzhen 1.01 2 0.97 3 0.99 2
Guangzhou 1.06 1 1.04 1 1.05 1

Shijiazhuang 0.76 5 0.7 10 0.74 10
Suzhou 1.01 2 0.83 8 0.92 3
Mean 0.96 I 0.89 II 0.93 I

Mega city

Jinan 0.73 6 0.94 4 0.84 6
Hangzhou 0.85 4 0.85 7 0.85 4

Hefei 0.73 6 0.76 9 0.75 9
Mean 0.77 II 0.85 III 0.81 II

Large city

Taiyuan 0.6 11 0.70 10 0.65 11
Urumqi 0.72 9 0.93 5 0.83 8
Haikou 0.74 8 0.93 5 0.84 6

Yinchuan 0.70 10 0.99 2 0.85 4
Mean 0.69 III 0.89 I 0.79 III

As can be seen, these operational effectiveness scores are between 0.65 and 1.05. This shows that
there are great differences in the public transit operation among cities. There was only one city whose
public transit operation was considered effective—Guangzhou. Moreover, Guangzhou was also the
only city that achieved efficient production and effective service at the same time. Meanwhile, nearly
two-thirds of cities have a fairly effective public transit system. They are Shenzhen, Suzhou, Hangzhou,
Yinchuan, Jinan, Haikou, and Urumqi. Finally, public transit operation in Hefei, Shijiazhuang, and
Taiyuan were ineffective. Taiyuan, in particular, had the worst public transit performance among all
cities. This is due to the fact that Taiyuan’s outputs are insufficient compared with other cities. For
example, the passenger satisfaction of Taiyuan is relatively low according to its operational data.

From the overall perspective, super cities tended to perform better than mega cities, and mega
cities tended to perform better than large cities. It is interesting to find that some cities tend to
perform well on one measure and perform badly on the other. For example, Yinchuan has relatively
high service effectiveness (0.99) and low production efficiency (0.70). Further, Figure 3 presents
the service effectiveness versus production efficiency of all DMUs. For super cities, the service
effectiveness was generally lower than the production efficiency, whereas, for large and mega cities,
the service effectiveness was generally higher. These results suggest that, for a number of exogenous
and operational reasons, a city with a large population is more likely to be production-efficient
than service-effective.

The above conclusion raises the question: How are production efficiency and service effectiveness
related? Using the scores of production efficiency and service effectiveness of all DMUs, the correlation
coefficient between the two variables was calculated. The value of Pearson correlation is 0.386, and the
p-value equal to 0.000 is smaller than 0.05 (2-tailed). This implies that service effectiveness has a
significantly positive correlation with production efficiency, i.e., a city that performs well in production
process tends to also perform well in consumption process. This is consistent with the findings by
Karlaftis [35].

From the time dimension, Figure 4 shows the operational effectiveness trends from 2009 to 2016.
In particular, the proportion of operational effectiveness less than 0.7 remains constant (9.09%), and the
operational effectiveness between 0.7 (inclusive) and 0.9 decreased by 18.18%, and the corresponding
operational effectiveness which is equal to or greater than 0.9 increased by 18.18%. Clearly, there has
been a steady increase in the performance of public transit system. This indicates that the bus priority
policy has had a positive effect in China.
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In addition, compared to conventional bus, transit rail has the advantage of large capacity, high
speed, greater punctuality and energy saving, and is gradually shouldering the backbone of urban
public transit systems. Hence, an important question needs to be answered: Is transit rail’s operational
effectiveness higher than that of conventional bus? Figure 5 exhibits a comparison between the two
modes in the four cities that have put transit rail into operation. The figure clearly reveals that transit rail
has surely more operational effectiveness than conventional bus. However, even with this superiority,
the transit rail does not always have the ability to improve the operational effectiveness of the whole
public transit system. For example, Suzhou’s average operational effectiveness of the whole system is
equal to that of conventional bus (0.92). This implies that Suzhou’s operational effectiveness has not
improved since the transit rail opened. Hangzhou’s operational effectiveness has even descended (0.89
to 0.85). It is remarkable that Shenzhen and Guangzhou have respectively put eight and nine rail lines
into operation by the time of this study, and Suzhou and Hangzhou have opened two and three lines,
respectively. We infer that the transit rail network scale in a city may determine whether the transit rail
has a positive effect on the overall operational effectiveness of the urban public transit systems. That is
to say, in a city with a large-scale transit rail, the transit rail may improve the city’s overall operational
effectiveness; otherwise, this is not the case.
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4.2.2. Exogenous Environment Analysis

To eliminate the impact of exogenous environment on the performance of the public transit
system, we integrated uncontrollable environmental factors and the externality of public transit into
the measurement framework. However, any differences resulting from introduction of these two types
of environmental variables has not yet investigated. Therefore, based on the panel data of 11 cities
from 2009 to 2016, we further calculated other operational effectiveness scores without considering
environmental variables, as shown in Tables A4–A6 in Appendix B. Furthermore, to test whether the
two operational effectiveness scores are significantly different, i.e., Table A3 vs. Table A6, we conducted
a nonparametric test (the Mann-Whitney U test). The Z value of the test is −3.372, and the p-value
equal to 0.001 is smaller than 0.05 (2-tailed). Thus, we reject the null hypothesis at a significance level
of 0.05, suggesting that the operational effectiveness under the two considerations are significantly
different. The exogenous environment has a marked impact on the performance measurement for the
public transit system.

4.2.3. Projecting to Efficiency

An important objective of performance evaluation of the public transit system is to identify
the deficiency in inefficient systems and propose feasible measures to improve their performance.
Specifically, each inefficient DMU needs to be projected onto the efficiency frontier derived from the
SE-NDEA model either by (a) decreasing the current level of inputs while maintaining outputs, or
(b) increasing outputs while maintaining the inputs [18]. Regarding public transit, because of the
great support by central and local governments due to its positive externalities, strategies that involve
decreasing inputs are always inapplicable. Thus, we chose strategies addressing (b) as our primary
measures. That is also one of the reasons why the output-oriented SE-NDEA was adopted in this paper.

Technically, an output-oriented DEA model obtains outputs’ movement quantities by efficiency
scores and slacks generated from the model. The efficiency scores represent the increased proportion
of outputs needed to move onto the efficiency frontier, namely, proportionate movement. The slacks
represent how much the outputs need to be increased before they come to affect their efficiency, namely,
slack movement [41]. In other words, the outputs with slacks equal to zero are the primary “short slabs”
which need to be projected. Based on this idea, we proposed projections that can make inefficient
transit systems achieve efficiency and effectiveness by proportionally increasing outputs whose slacks
are equal to zero and maintaining the current level of inputs. Table 5 presents the projections for seven
cities with an operational effectiveness in 2016 of less than 0.9.
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Table 5. Projections to efficiency.

Variables Shijiazhuang Jinan Hefei Taiyuan Urumqi Haikou Yinchuan

Original data
Vehicle-km, ZD

1 21594.38 25000 22914.06 16896 14319.63 8595.67 10353.67
Speed, ZD

2 19.58 16.7 19.5 19.2 21.49 21.99 24.19
Punctuality, ZB 64.8 69.8 71.6 55.3 73.67 74.67 70.94
Revenue, YD

1 69102 80000 73325 58657 114557 25787 31061
Ridership, YD

2 57354.66 78400 84323.75 35194.2 104246.87 24755.52 20500.26
Satisfaction, YB 71.8 94.02 80.1 71.6 75.68 76.18 83.8

Projection
Vehicle-km, ZD

1 28700.89 30840.90 32002.88 27948.22 19437.53 11511.54 14594.97
Speed, ZD

2 19.58 16.7 19.5 19.2 21.49 21.99 34.10
Punctuality, ZB 64.8 69.8 100 91.47 100 100 100
Revenue, YD

1 69102 80000 73325 81923.18 114557 25787 31061
Ridership, YD

2 57354.66 78400 84323.75 35194.2 104246.87 27115.92 20500.26
Satisfaction, YB 100 100 100 100 75.68 83.44 83.8

Movement (difference between projection and original data)
Vehicle-km, ZD

1 7106.51 5840.9 9088.82 11052.22 5117.9 2915.87 4241.3
Speed, ZD

2 0 0 0 0 0 0 9.91
Punctuality, ZB 0 0 28.4 36.17 26.33 25.33 29.06
Revenue, YD

1 0 0 0 23266.18 0 0 0
Ridership, YD

2 0 0 0 0 0 2360.4 0
Satisfaction, YB 28.2 5.98 19.9 28.4 0 7.26 0

It is clear that the movements required for Taiyuan to achieve operational effectiveness are
substantially larger than those for other six cities. Consistent with the previous analysis, this is basically
due to the fact that Taiyuan is the most inefficient and ineffective of all DMUs. The vehicle-km,
punctuality, revenue, and passenger satisfaction of Taiyuan’s public transit all need to be improved.
Further, in most cities, the projection values of speed, revenue, and ridership have the same level as
their original data, but other variables, i.e., vehicle-km, punctuality, and passenger satisfaction, are
frequently projected. This illustrates the fact that these Chinese cities, with inefficient and ineffective
transit system, have a scarcity of transit service and a relatively bad subjective impression regarding
the passengers’ perspective.

Figures 6–8 describe the relationships between production efficiency for all public transit systems
and their inputs. We can see the trend that the efficiency scores experience a process of first rising, then
declining with the increase of subsidies, bus line lengths, and employees. Such a relationship suggests
the efficiency suffers from negative impact due to an excess in public transit system inputs. Specifically,
the seven DMUs with operational effectiveness in 2016 of less than 0.9 are also shown in Figures 6–8
as red points. As can be seen, the inputs of these cities are much less than the maximum peak value
derived from the 11 Chinese cities, revealing the fact that a great deal of support and investment in
public transit are still required for these Chinese cities.
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5. Conclusions

This paper proposes a super-efficiency network DEA (SE-NDEA) model to evaluate the
performance of the public transit system. A case study of 11 cities in China was investigated
using the SE-NDEA model. This study contributes to the existing literature on public transit evaluation
in three ways. First, we have integrated all relevant perspectives into the performance evaluation,
namely, local authority, bus operators, passengers, uncontrollable environmental factors, and the
externality of public transit. Second, the evaluation model allows us to evaluate a public transit
system with boundary-valued variables, such as passenger satisfaction, and does not overestimate the
efficiency score. Finally, we identify operational deficiencies in inefficient transit systems by projecting
them to efficiency. The main results are summarized as follows:

1. A city with a large population is more likely to be production-efficient than service-effective,
whereas a city with a small population is more likely to be service-effective than
production-efficient. Moreover, service effectiveness has a significantly positive correlation
with production efficiency. With respect to the overall operational effectiveness, super cities tend
to perform better than mega cities, and mega cities tend to perform better than large cities.
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2. Transit rail has more operational effectiveness than conventional bus. Moreover, it has the ability
to improve a public transit system’s operational effectiveness when developed to a large scale,
due to economies of scale.

3. By comparing efficiency scores with and without considering exogenous variables, we found that
exogenous environment had a marked impact on the performance measurement of the public
transit system.

4. By projecting inefficient and ineffective transit systems to efficiency and effectiveness, we found
that there is a shortage of investment in public transit by both local authority and bus operators
in some Chinese cities. Meanwhile, these Chinese cities have a scarcity of transit service and a
relatively unsatisfactory impression from passengers.

Several policy implications can be obtained from the results above. First, a city with a large
population should pay more attention to service effectiveness, while a city with a small population
should be concerned with the production efficiency. Second, with the background of serious air
pollution and traffic congestion in China, the large-scale construction of transit rail is a good choice for
Chinese large cities. Third, for the inefficient and ineffective transit systems in China, a great deal of
support and investment in public transit from local authority and bus operators is still required to
increase the supply of public transit services and improve passenger satisfaction.

This paper has some limitations. First, this paper only included specific input and output variables
due to problems regarding the availability of high-quality data. For example, regarding input variables,
we did not consider bus operators’ fuel consumption, which is a conventional input variable in
previous literature [9,26,29]. Second, only several cities have been investigated, and studying more
cities may provide more insights. Third, we simply set the consumption process as important as the
production process, and did not investigate how the different weighting coefficients would impact
the DMUs’ operational effectiveness score. On the basis of these limitations, several future research
issues are proposed. First, including more input and output variables may lead to more results.
For example, regarding the externality of public transit system, it is reasonable to incorporate CO2

emissions into the evaluation. Second, the impact of the two weight coefficients (i.e., w1 and w2)
on operational effectiveness deserves attention and further study. Finally, in addition to traditional
evaluation methods, new methods should be tried and used in the study of public transit performance.
For example, predictive markets can be used to forecast public transit demand, and then derive
appropriate inputs to achieve effective operation [54]; design thinking can be used to cherish multiple
perspectives and rich frameworks of the public transit problem [55].
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Appendix A. Efficiency Scores with Environmental Variables

Table A1. Production efficiency.

Urban Size DMUs
Period

Mean
2009 2010 2011 2012 2013 2014 2015 2016

Super city

Shenzhen 0.96 1.05 0.96 1.07 0.97 0.93 0.95 1.19 1.01
Guangzhou 1.18 1.05 1.11 1.04 1.01 1.03 1.00 1.05 1.06
Shijiazhuang 0.76 0.79 0.77 0.79 0.77 0.75 0.73 0.75 0.76
Suzhou 1.00 1.00 1.00 1.00 1.03 1.01 1.02 1.02 1.01
Mean 0.98 0.97 0.96 0.98 0.95 0.93 0.93 1.00 0.96

Mega city

Jinan 0.82 0.74 0.69 0.67 0.68 0.69 0.74 0.81 0.73
Hangzhou 0.71 0.73 0.73 0.86 0.87 0.96 0.93 0.97 0.85
Hefei 0.73 0.73 0.72 0.73 0.73 0.75 0.74 0.72 0.73
Mean 0.75 0.73 0.71 0.75 0.76 0.80 0.80 0.83 0.77

Large city

Taiyuan 0.62 0.63 0.58 0.59 0.60 0.60 0.61 0.60 0.60
Urumqi 0.71 0.71 0.72 0.72 0.73 0.73 0.73 0.74 0.72
Haikou 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.75 0.74
Yinchuan 0.68 0.69 0.69 0.70 0.70 0.70 0.71 0.71 0.70
Mean 0.69 0.69 0.68 0.69 0.69 0.69 0.70 0.70 0.69

Table A2. Service effectiveness.

Urban Size DMUs
Period

Mean
2009 2010 2011 2012 2013 2014 2015 2016

Super city

Shenzhen 0.84 0.89 0.88 0.98 0.98 1.00 0.94 1.25 0.97
Guangzhou 1.01 1.03 1.14 1.03 1.01 1.05 1.00 1.03 1.04
Shijiazhuang 0.68 0.69 0.70 0.70 0.71 0.71 0.71 0.72 0.70
Suzhou 0.71 0.71 0.72 0.77 0.78 0.80 0.84 1.29 0.83
Mean 0.81 0.83 0.86 0.87 0.87 0.89 0.87 1.07 0.88

Mega city

Jinan 0.93 0.93 0.93 0.93 0.94 0.94 0.94 0.94 0.94
Hangzhou 0.86 0.89 0.86 0.78 0.79 0.86 0.89 0.87 0.85
Hefei 0.73 0.75 0.75 0.76 0.76 0.77 0.78 0.80 0.76
Mean 0.84 0.86 0.85 0.82 0.83 0.86 0.87 0.87 0.85

Large city

Taiyuan 0.66 0.67 0.69 0.70 0.70 0.71 0.71 0.72 0.70
Urumqi 0.90 0.89 0.87 0.87 1.00 0.98 0.97 1.00 0.94
Haikou 1.00 0.97 0.94 0.94 0.93 0.92 0.89 0.91 0.94
Yinchuan 1.00 0.96 0.98 1.00 1.00 0.99 0.99 1.00 0.99
Mean 0.89 0.87 0.87 0.88 0.91 0.90 0.89 0.91 0.89

Table A3. Operational effectiveness.

Urban Size DMUs
Period

Mean
2009 2010 2011 2012 2013 2014 2015 2016

Super city

Shenzhen 0.90 0.97 0.92 1.03 0.98 0.97 0.95 1.22 0.99
Guangzhou 1.10 1.04 1.13 1.04 1.01 1.04 1.00 1.04 1.05
Shijiazhuang 0.72 0.74 0.74 0.75 0.74 0.73 0.72 0.74 0.74
Suzhou 0.86 0.86 0.86 0.89 0.91 0.91 0.93 1.16 0.92
Mean 0.90 0.90 0.91 0.93 0.91 0.91 0.90 1.04 0.93

Mega city

Jinan 0.88 0.84 0.81 0.80 0.81 0.82 0.84 0.88 0.84
Hangzhou 0.79 0.81 0.80 0.82 0.83 0.91 0.91 0.92 0.85
Hefei 0.73 0.74 0.74 0.75 0.75 0.76 0.76 0.76 0.75
Mean 0.80 0.80 0.78 0.79 0.80 0.83 0.84 0.85 0.81

Large city

Taiyuan 0.64 0.65 0.64 0.65 0.65 0.66 0.66 0.66 0.65
Urumqi 0.81 0.80 0.80 0.80 0.87 0.86 0.85 0.87 0.83
Haikou 0.87 0.86 0.84 0.84 0.84 0.83 0.82 0.83 0.84
Yinchuan 0.84 0.83 0.84 0.85 0.85 0.85 0.85 0.86 0.85
Mean 0.79 0.79 0.78 0.79 0.80 0.80 0.80 0.81 0.80
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Appendix B. Efficiency Scores without Environmental Variables

Table A4. Production efficiency.

Urban Size DMUs
Period

Mean
2009 2010 2011 2012 2013 2014 2015 2016

Super city

Shenzhen 0.78 0.93 0.90 1.01 0.93 0.90 0.90 0.98 0.92
Guangzhou 0.98 1.00 1.04 1.00 0.95 0.94 0.94 0.98 0.98
Shijiazhuang 0.76 0.79 0.77 0.76 0.74 0.72 0.71 0.71 0.75
Suzhou 1.00 0.99 0.98 0.95 0.97 0.99 0.99 0.99 0.98
Mean 0.88 0.93 0.92 0.93 0.90 0.89 0.89 0.92 0.91

Mega city

Jinan 0.82 0.74 0.69 0.67 0.68 0.68 0.69 0.70 0.71
Hangzhou 0.71 0.72 0.73 0.86 0.87 0.84 0.93 0.93 0.82
Hefei 0.68 0.68 0.69 0.69 0.70 0.71 0.71 0.72 0.70
Mean 0.74 0.71 0.70 0.74 0.75 0.74 0.78 0.78 0.74

Large city

Taiyuan 0.62 0.63 0.52 0.52 0.54 0.54 0.55 0.55 0.56
Urumqi 0.71 0.72 0.72 0.72 0.73 0.73 0.73 0.74 0.73
Haikou 0.72 0.73 0.73 0.73 0.74 0.74 0.74 0.75 0.74
Yinchuan 0.68 0.69 0.69 0.70 0.70 0.70 0.71 0.71 0.70
Mean 0.68 0.69 0.67 0.67 0.68 0.68 0.68 0.69 0.68

Table A5. Service effectiveness.

Urban Size DMUs
Period

Mean
2009 2010 2011 2012 2013 2014 2015 2016

Super city

Shenzhen 0.77 0.79 0.80 0.87 0.88 0.87 0.84 0.86 0.84
Guangzhou 0.84 0.98 1.04 0.99 0.95 0.94 0.94 0.95 0.95
Shijiazhuang 0.68 0.69 0.70 0.70 0.71 0.71 0.71 0.72 0.70
Suzhou 0.71 0.71 0.72 0.77 0.78 0.80 0.81 0.82 0.77
Mean 0.75 0.79 0.82 0.83 0.83 0.83 0.83 0.84 0.82

Mega city

Jinan 0.93 0.93 0.93 0.93 0.94 0.94 0.94 0.94 0.94
Hangzhou 0.74 0.74 0.74 0.78 0.79 0.80 0.80 0.85 0.78
Hefei 0.73 0.75 0.75 0.76 0.76 0.77 0.78 0.80 0.76
Mean 0.80 0.81 0.81 0.82 0.83 0.84 0.84 0.86 0.83

Large city

Taiyuan 0.65 0.66 0.69 0.70 0.70 0.71 0.71 0.72 0.69
Urumqi 0.72 0.73 0.74 0.75 0.75 0.75 0.75 0.76 0.74
Haikou 0.73 0.73 0.74 0.75 0.76 0.76 0.75 0.76 0.75
Yinchuan 0.80 0.81 0.82 0.83 0.83 0.84 0.83 0.84 0.83
Mean 0.73 0.73 0.75 0.76 0.76 0.77 0.76 0.77 0.75

Table A6. Operational effectiveness.

Urban Size DMUs
Period

Mean
2009 2010 2011 2012 2013 2014 2015 2016

Super city

Shenzhen 0.78 0.86 0.85 0.94 0.91 0.89 0.87 0.92 0.88
Guangzhou 0.91 0.99 1.04 1.00 0.95 0.94 0.94 0.97 0.97
Shijiazhuang 0.72 0.74 0.74 0.73 0.73 0.72 0.71 0.72 0.73
Suzhou 0.86 0.85 0.85 0.86 0.88 0.90 0.90 0.91 0.88
Mean 0.82 0.86 0.87 0.88 0.87 0.86 0.86 0.88 0.87

Mega city

Jinan 0.88 0.84 0.81 0.80 0.81 0.81 0.82 0.82 0.82
Hangzhou 0.73 0.73 0.74 0.82 0.83 0.82 0.87 0.89 0.80
Hefei 0.71 0.72 0.72 0.73 0.73 0.74 0.75 0.76 0.73
Mean 0.77 0.76 0.76 0.78 0.79 0.79 0.81 0.82 0.78

Large city

Taiyuan 0.64 0.65 0.61 0.61 0.62 0.63 0.63 0.64 0.63
Urumqi 0.72 0.73 0.73 0.74 0.74 0.74 0.74 0.75 0.74
Haikou 0.73 0.73 0.74 0.74 0.75 0.75 0.75 0.76 0.74
Yinchuan 0.74 0.75 0.76 0.77 0.77 0.77 0.77 0.78 0.76
Mean 0.71 0.72 0.71 0.72 0.72 0.72 0.72 0.73 0.72
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