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Abstract: In today’s grid, the technological based cyber-physical systems have continued to be plagued
with cyberattacks and intrusions. Any intrusive action on the power system’s Optimal Power Flow
(OPF) modules can cause a series of operational instabilities, failures, and financial losses. Real time
intrusion detection has become a major challenge for the power community and energy stakeholders.
Current conventional methods have continued to exhibit shortfalls in tackling these security issues.
In order to address this security issue, this paper proposes a hybrid Support Vector Machine and
Multilayer Perceptron Neural Network (SVMNN) algorithm that involves the combination of Support
Vector Machine (SVM) and multilayer perceptron neural network (MPLNN) algorithms for predicting
and detecting cyber intrusion attacks into power system networks. In this paper, a modified version
of the IEEE Garver 6-bus test system and a 24-bus system were used as case studies. The IEEE
Garver 6-bus test system was used to describe the attack scenarios, whereas load flow analysis was
conducted on real time data of a modified Nigerian 24-bus system to generate the bus voltage dataset
that considered several cyberattack events for the hybrid algorithm. Sising various performance
metricion and load/generator injections, en included in the manuscriptmulation results showed the
relevant influences of cyberattacks on power systems in terms of voltage, power, and current flows.
To demonstrate the performance of the proposed hybrid SVMNN algorithm, the results are compared
with other models in related studies. The results demonstrated that the hybrid algorithm achieved a
detection accuracy of 99.6%, which is better than recently proposed schemes.

Keywords: multilayer perceptron neural network; support vector machine; cyberattacks; optimal
power flow; smart grid security; intruder detection system

1. Introduction

In recent times, rapid developments in technology have increased the rate of cyberattacks
and cybercrimes on cyber-physical systems and institutions. Infrastructural security against these
cyberattacks and cybercrimes have become increasingly important to individuals, organizations, and
research centers. In a 2016 Global Economic Crime survey, cybercrime was ranked as the fourth most
reported economic crime in South Africa, and the rate increased from 26% to 32% when compared to
the reported cases in 2014 [1]. With regards to power systems and the electricity grid, the integration of
the Internet of Things (IoT) and other technological tools have assisted in promoting grid efficiency and
effectiveness. However, just like other important infrastructures, a plethora of new security concerns,
such as cyberattacks, are becoming rampant on the power grid [2]. Moreover, the fact that the power
grid is a vital asset among the country’s various infrastructures makes it a highly attractive target for
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cyber-threats [2,3]. In the 2014 fiscal year, the Industrial Control Systems Cyber Emergency Response
Team (ICS-CERT) announced that 79 of the 245 recorded cyber incidents on critical infrastructures
targeted the energy sector [4]. Severe cyberattack examples, such as the Ukrainian power grid blackout
in 2015 and the Israeli power grid in 2016, have shown that grid cyber-security is among the top
priorities of national security [3,5]. Studies have shown that supervisory control and data acquisition
(SCADA) systems, and other operational modules, including the State Estimation, Optimal Power
Flow (OPF) can be successfully attacked [6–8]. Intruders take advantages of the various vulnerabilities
in the grid network and modules to disrupt grid operation and stability, thereby causing blackouts
and economic loss. These security issues have continuously necessitated attention from power system
engineers and researchers into developing solutions.

Intruder detection schemes have been identified as a security solutions for power systems [3,9].
Intrusion detection systems (IDSs) in network processes aim to monitor, analyze, and react to any
unauthorized and anomalous deviation from the normal profile of the network. Monitoring power
system networks and module results in order to predict and detect intrusion and anomalies into the
grid topology, database, and network data by adversaries is highly important for a reliable power
system network. In recent times, various studies have proposed several formulations that focus on
intrusion and anomaly detection for power systems [10–15]. The authors in [9,10] proposed an anomaly
detection and correlation algorithm for substation cybersecurity using test systems as case studies.
Further, machine learning techniques have been proposed as a viable option, as they are known to
show tremendous performance in intrusion detections because of their accurate pattern recognition
and learning abilities [16–18]. The authors in [16] ascertained that the machine learning approach is
applicable to power system security. The authors successfully applied machine learning algorithms,
including OneR, random forest, and Adaboost+JRipper, in classifying power system disturbances over
a three-class (Attack, Natural Disturbance, and No Event) scheme. The authors in [18] developed
different multi-model algorithms in order to find the best performer for voltage security monitoring and
assessment. The authors used the IEEE 96 reliability test system as a case study and presented Random
Forest as the best performer, with an accuracy of 99.89%. The authors in [19] proposed an artificial
neural network algorithm (ANN) to detect power system cyberattacks on transmission network data.
The authors evaluated their experiments on a 24-bus system and achieved a detection rate of 92–99.5%
on the introduced anomalies. However, the consideration of scalability, demand, and generation
uncertainty, which are highly common for power systems, were not considered. Further, the authors
in [17] used some machine learning algorithms, involving a convolutional neural network, K-nearest
neighbor, and XGBoost, to analyze raw data logs collected by phasor measurement units (PMUs) to
detect intrusion into power systems. The authors achieved an average accuracy, precision, recall and F1
score of 0.9391, 0.938, 0.936, and 0.935 on 15 datasets, respectively. The authors in [2] also presented an
IDS based on principal component analysis (PCA), whereby flow results are monitored and intrusion
due to cyberattacks on transmission line parameters are detected. The authors used PCA to separate
power flow variability into regular and irregular subspaces. They verified the performance of their
algorithm using IEEE 24-bus and 118-bus reliability test systems and achieved good results. However,
intrusions on several other input data such as the load, generator inputs, and network topology were
not considered in their work. Furthermore, the authors in [20] presented a graph matching approach
for power systems. The authors used IEEE 24-bus, 30-bus, and 118-bus benchmark test systems to
implement their proposed scheme and achieved perfect scores. However, the proposed algorithm only
considered the topological and configurational aspect of the power system database; intrusions into
the power flow analysis were not considered.

We sought to improve the shortcomings in the above-mentioned literature, such as scalability,
demand, and generation uncertainty, and topological and configurational intrusion of the power
system. In this paper, a hybrid Support Vector Machine and Multilayer Perceptron Neural Network
(SVMNN) algorithm, which involves a combination of Support Vector Machine (SVM) and feedforward
Multilayer Perceptron Neural Network (MPLNN) algorithms, is developed for predicting and detecting
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power system cyber intrusion attacks. The key idea is to take advantage of two distinguished classifiers’
abilities for predicting and detecting attacks on power systems. The logistic regression method is
developed for the stacking process. The hybrid algorithm is modelled to evaluate a case study involving
a 24-bus system AC power flow result dataset. This study made use of a real time generator and load
data injections that showed the nonlinearity and uncertainty properties peculiar to power systems.
Daily generator output profiles for a duration of twenty one (21) days and a load profile taken at an
interval of thirty (30) minutes were used. The hypothesis is that at the end of each day, there will
be ten (10) intrusive events involving simultaneous attacks, as described in [9]. The hypothesis of
ten daily intrusive events was considered in order to have a balanced dataset for the prediction and
detection algorithm. Feedforward MLPNN are known for their excellent learning abilities, especially in
non-linear complex relationships and their good classification performance. With regards to its
well-known flaw of non-optimal separation surfaces between classes, here, MLPNN is stacked with
SVM, which is excellent in that regard. Further, unlike previous studies, the proposed scheme in this
paper considered intrusions that affect the topological configuration, as well as intrusions on the load
and generator output injections. High efficiency in precision and accuracy were achieved using the
proposed scheme.

The specific novelties of this paper are stated briefly: (1) a description of power system cyber
intrusion scenarios, involving topological modification and polluted data using a bus test system as
a case study; (2) evaluating the effects of cyber intrusions on the AC power flow result of OPF and
its relevant influences on voltage, power, and current flows; (3) load flow analysis using modified
power system data and integrating various attack scenarios involving topological manipulation and
load/generator injections; and (4) developing an effective hybrid scheme that involves taking advantage
of two distinguished classifiers’ abilities to evaluate the bus voltage dataset generated from the load
flow results.

In this paper, two test bus systems were used as case studies. A modified IEEE Garver 6 bus
test system was used in describing cyber intrusion scenarios, whereas a 24-bus system was used as
the case study for the hybrid SVMNN prediction and detection scheme. The developed SVMNN
algorithm presented 99.6% precision and accuracy rates in predicting and detecting the introduced
attacks, which demonstrated the efficacy of the model in predicting and detecting both topological
configurational intrusion as well as intrusions into the generator and load injections. All the simulations
to generate the bus voltage dataset were conducted using the Electrical Transient Analyzer Program
(ETAP) software. The ETAP was used to run the AC OPF processes, and the machine learning
algorithms were designed, tested and evaluated using the Orange machine learning tool.

The rest of this paper is organized as follows. Section 2 presents the Materials and Methods while
Section 3 presents the results and discussions. Section 4 presents the conclusions and recommendation
for future work.

2. Materials and Methods

In this section, we describe the OPF processes and the mathematical formulations we used to
generate our voltage dataset from the raw network data. We also discuss the methods used to develop
the hybrid model and the case studies. All the simulations used to generate the voltage log dataset
were generated using ETAP, while the classifiers’ algorithms were implemented using the Orange
machine learning tool. Both software packages were implemented on a 64-bit PC using an Intel Core
i5-3340, 3.10 GHz CPU, with a total amount of 8.00 GB of RAM installed. In Section 2.1, we briefly
discuss the optimal power flow, and in Section 2.2, we explain the mathematical formulations used in
the paper. In Section 2.3, we discuss the prediction and detection model developed, and in Section 2.4,
we present the case studies.
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2.1. Optimal Power Flow

OPF modules are very vital in the operational decisions of the grid. They defines the steady state
operation point, whereby the minimum generating cost is assured, and system operating constraints
on quantities, such as real and reactive power, generator outputs, line flows, and voltage magnitudes,
are maintained [2,19,21]. Grid control centers run multiple instances of the OPF module over regular
time intervals so as to maintain the operational cost of the power system while ensuring its reliability
despite variations in load requirement and available resources. It should be noted that some parameters
and quantities, including line parameters and network topology, typically remain unchanged over
time, unlike quantities like the load and the power dissipated by the generating units, which change
often. Power flow equations can be determined through either AC or DC power flow calculations.
Any error, wrong decision, or actions caused by an intrusion of the OPF modules can cause a series of
operational failures, technical system instability, and huge financial losses.

Kirchhoff’s law explains the theory of how power flows in an electrical network [22]. Using the
node-voltage analysis explained in [22], provided the voltage outputs from the generating units,
the load impedances, transmission line impedances, and susceptances for a network are given,
the current and power flowing through the network can be computed. The current-voltage flow
equation (IV equation) is derived in terms of the network admittance matrix, the current, and the
voltage magnitudes. The network admittance matrix for an n-bus system has a relationship with the
current matrix and voltage magnitude vector as presented in (1) [22]:

I1

I2
...

In

 =


Y11 Y12 · · · Y1n
Y21 Y22 · · · Y2n

...
... · · ·

...
Yn1 Yn2 · · · Ynn




V1

V2
...

Vn

 (1)

where Y is the bus admittance matrix. The bus admittance matrix is given as Y = G + jB [23,24].
The current vector is defined in (2), whereas (3) defines the voltage magnitude vector [22]:

In = [I1, I2 , . . . ., In]
T (2)

Vn = [V1, V2 , . . . . .Vn]
T. (3)

The state vector X for the n node system is given in terms of the voltage magnitude and voltage
phase angle in (4) [25]:

X = [V1V2V3 . . . . . .Vn θ2θ3 . . . . . . θn−1]
T (4)

where θ is the n − 1 dimensional vector representing voltage phase angle and V is the n-dimensional
vector representing voltage magnitudes.

From the PV flow equations, the complex apparent power injection (+ve) or withdrawal (−ve)
from bus n is defined in terms of p, q, and V as given in (5) [25]:

sn = pn + jqn = VnIn
∗. (5)

Equations (6) and (7) express the current and voltage magnitude at bus n, respectively, in complex
form as:

In = [Ir
n + jI j

n] (6)

Vn = [Vr
n + jV j

n] (7)

and substituting (6) and (7) into (5),

sn = VnIn
∗ = (Vn

r + jVn
j)·(In

r
− jIn

j). (8)
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The real and reactive power from (5) is expressed in (9) as:

pn = Vn
r
·In

r + Vn
j
·In

j and qn = Vn
j
·In

r
−Vn

r
·In

j. (9)

Note that j as a superscript refers to a complex number imaginary part, while r as a superscript
refers to the real part. In terms of phasor angles, the real and reactive power at bus n can be expressed
as (10) and (11), respectively [12,23,26,27]:

pn = vn

∑
n′∈N

vn′(Gnn′ cos(θnn′) + Bnn′ sin(θnn′)) (10)

qn = vn

∑
n′∈N

vn′(Gnn′ sin(θnn′) − Bnn′ cos(θnn′)) (11)

where Ynn′ = Gnn′ + jBnn′ is the line admittance between two buses n and n′ and θnn′ is the difference
in phase angle between buses n and n′. The real and reactive power flowing from bus n and n′ is given
in (12) and (13), respectively as [6,12,27]:

pnn′ = v2
n(gsn + gnn′) − vnvn′(gnn′ cosθnn′ + bnn′ sinθnn′) (12)

qnn′ = −v2
n(bsn + snn′) − vnvn′(gnn′ sinθnn′ − bnn′ cosθnn′) (13)

where gsn + jbsn is the shunt branch admittance at bus n. The net apparent equation in (7) for bus n can
be rewritten as (14):

sn = pn + jqn =

{
(pG

n − pD
n ) + j(qG

n − qD
n ), n ∈ seto f gens,

−pD
n − jqD

n , otherwise,
(14)

where pG
n and qG

n are defined as the controllable power injections/control input u. The power consumed
at bus n, pC

n , is related to the power flows of the lines connected to the bus n, as shown in (15):

pC
n =

∑
k∈K

pL
k,in −

∑
k∈K

pL
k,out ∀k ∈ K (15)

where Lk,in and Lk,out represent set of incoming and outgoing lines of bus n, respectively, while the
power flow via line k is denoted as pL

k . The power consumed at bus n is related to the load power
demand and power injection into the bus as expressed in (16):

pC
n = pD

n − pG
n ∀n ∈ N (16)

where pD
n and pG

n are the load power demand and generated power at bus n, respectively.

2.2. Mathematical Formulation

OPF allows operators to specify a range of optimization criteria and some objective functions on
quantities, including bus voltages and line flow. A mixed integer nonlinear programming problem
AC OPF is formulated in the paper. There is an objective, and some constraints, that govern system
performance. The objective is to find steady state operating points in terms of both state vectors and
control inputs, whereby the power generated by the existing generators are optimally controlled to
serve the load requirements and line flows in the network and minimize real and reactive power
loss in the network. The objective function is subjected to the equality and inequality constraints in
(17)–(21) [27,28]: ∑

n∈N

pD
n −

∑
n∈N

pG
n −

∑
k∈Ln,in

pL
k +

∑
k∈Ln,out

pL
k = 0 (17)
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− pL, max
k ≤ pL

k ≤ pL, max
k ∀k ∈ K (18)

0 ≤ pG,
n ≤ pG,max

n ∀n ∈ N (19)

π ≤ θn ≤ π ∀n (20)

θRn = 0; Rn : re f erence node. (21)

The power balance equation to be solved is given in constraint (17), which gives the assurance
that, at any node n, the summation of the total power dissipated by the generating unit n equals the
summation of the power flowing in the lines and the total sum of the power demand. Constraint (18)
defines the power flows via the lines, and the constraint limits the power flows via the lines within
the network, with regards to their capacities. Constraint (19) is for the generator outputs’ limits and
ensures that the generator outputs’ limits are not surpassed. The voltage phase angle limit constraint
is shown in (20) and ensures that voltage angle limits are within the specified range. Constraint (21) is
the constraint for the reference bus/node. Equation (21) ensures that the reference node has a voltage
angle of 0 degrees [28].

2.3. Prediction and Detection Model

In this subsection, we describe the MLPNN, the SVM, and the hybrid SVMNN models that were
employed in predicting and detecting the possibility of the power system network being compromised.

2.3.1. Multilayer Perceptron Neural Networks (MLPNN)

MLPNN is a feedforward neural network that uses backpropagation for its training process.
Neural Network (NN) models are inspired and designed in a similar fashion to the human brain.
However, unlike the brain, NNs utilize some mathematical functions that map input data to produce
the output. A neural network operates in such a way that when data are presented at the input layer,
the neural nodes (which are interconnected via respective weights and bias for each connections) execute
some calculations using activation functions in all the successive layers until the input data reach the
output nodes that produce the outputs. Typical activation functions used in neural networks include
the sigmoid function and the Rectified linear units (ReLu), defined in (22) and (23), respectively [29]:

f (x′) =
1

1 + e−x′ (22)

R(x′) = max(0, x′) (23)

Building a neural network algorithm begins with the simplest form, a ‘single perceptron’.
A perceptron is made up of a single McCulloch-Pitts neuron, which has modifiable weights and
bias [30]. Figure 1a presents a perceptron process [30]. To create a multilayer perceptron, the perceptron
is modified in such a way that it includes several layers of neurons with nonlinear activation functions,
making it highly potent, as it can be implemented for nonlinear separable data. Considering the
architectural model of a typical MLPNN presented in Figure 1b [31], the MLPNN has n inputs,
one hidden layer with z′ hidden neural nodes, and y output nodes.

Let us assume we have input data that is defined with the matrix [32]:

r = (r1, r2, . . . . . . . ., rn). (24)

Let us make the assumption that a vector r1 that belongs to a class of the y output classes denotes
the n feature values of case i’. Assuming αg denotes the lower boundary limit and βg denotes the upper
limits of feature g, which equally relates to the minimum and maximum threshold values achievable
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for feature g, the mapping of the z′ hidden layer neural node feedforward MLPNN process can be
defined as [32]:

N :
{
[α1, β1], [α2, β2], . . . . ., [αn, βn]

}
→ [γ, η]y : = N(r) = f (w j f (wir− bi) − b j) (25)

where wi is the weight matrix that connects n input nodes to the z′ hidden layer neural nodes, and w j
is the weight matrix that connects the z′ neural nodes to output nodes y. Bias vectors bi and b j connect

to the hidden and output layers, respectively. The function f : Rdim(a)
→ [γ, η]dim(a) defines the

activation function that is fitted into individual nodes of the hidden layer’s activation vector a, with γ
and η being the lower and upper bounds. Each element in vector denotes the activation of each output
layer node. Hence, classification is done based on the function class, which depends on the returned
index of the maximum element in vector o.
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Figure 1. Neural Network models: (a) perceptron process; (b) multilayer perceptron neural network. Figure 1. Neural Network models: (a) perceptron process; (b) multilayer perceptron neural network.

2.3.2. SVM Classifier

SVM is a dominant tool that is used in classification and regression problems. SVM was
originally proposed for binary classifications, whereby the width of the margin between the two classes
defines the optimization criterion. SVMs create a single hyper-plane, or sets of hyper-planes, in a
high-dimensional feature space, which optimally separates the training patterns according to their
classes. The efficient implementation of SVMs depends on the trade-off constant C and the kernel
function K type, especially when it is required for nonlinear classification. Typical kernel functions
include the linear, polynomial, sigmoid, and radial basis kernel function (RBF). The trade-off constant
C is the soft margin parameter, which influences each individual support vector. Figure 2 [33] presents
a linear SVM model showing the hyper-plane separation between the two classes.
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As shown in Figure 2, the model presents the examples as space points, plotted such that the
categories are kept apart by a distinct gap. Afterwards, new examples are plotted into the same space
and predicted as either class depending on the side of the gap in which it is categorized.

Let us assume we have training data of n points (
→
x1, y1), . . . . . . . . ., (

→
xn, yn), where point xi is a

p-dimensional vector and yi = ±1 labels the class to which point xi belongs. SVMs tend to locate the
maximum margin hyper-planes that split the group of points where xi is for yi = +1 from the groups
where it is yi = −1 [16]. The hyper-plane for the set of points

→
x satisfies the equation

→
w.
→
x − b = 0,

where
→
w is the normal vector to the hyper-plane and b is the displacement term that determines the

distance between the hyperplane and the origin [17].

2.3.3. Proposed Hybrid SVMNN

Hybrid learning methods are a process of combining two or more learning algorithms. This process
is essential in achieving better accuracy and detection rates. A simplified flowchart of the hybrid
SVMNN model is presented in Figure 3.
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To evaluate the hybrid model’s performance, it is required to have a sufficient experimental
dataset with sensitive information for the algorithm’s training and testing analysis. This is important
for the effective performance of the algorithm. In this paper, bus voltage logs are captured as a
dataset for the intrusion detection algorithm performance evaluation. The power system dataset used
contains a total of 1218 training and testing dataset instances, with 24 features having binary targets.
The scale and distribution of the dataset can produce a significant influence on the algorithm prediction
and detection success. It should be noted that the bus voltage dataset that contains the poisoned
datasets and the good datasets are combined and randomly split into two sets: the training and testing
datasets. From the randomly organized data, 975 of the data samples were devoted to training, which is
equivalent to approximately 80% of the dataset, whereas the remaining 20%, equaling 243 data samples,
were dedicated to testing the trained model. The preprocessing stage of datasets, which includes
transformation, normalization, discretization, and feature selection processes, are highly important
for the efficiency of the machine learning algorithm. The feature selection process can vary based on
the type of dataset being used. Since the dataset used in this paper uses numeric data, the data do
not need any transformation. However, the dataset was normalized using the min-max scaling for
effectiveness. For the developed hybrid model, the stacking utilized a back propagation MLPNN with
three hidden layers of 30 neural nodes each. The L2 regularization parameter assists in reducing the
generalization error as well as the overfitting problem. We varied the values of the L2 regularization
parameters in order to achieve the best possible result from our developed MLPNN. Further, this study
employed ReLu as the activation functions for the hidden layers. An Adam gradient-based optimizer
was used as the solver for weight optimization. For the SVM, this study implemented the Library for
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Support Vector Machines (LibSVM) package. The Cost C was chosen as 1.2. Three kernel functions
(linear, polynomial, and RBF) were tested in order to find the best performer for our developed model.
The gamma constant in kernel function was set at 0.25. This study used logistic regression for the
stacking. The performance of the hybrid algorithm is evaluated and compared with the performance
of individual classifiers (SVM and MLPNN) using a machine learning key performance indicator (KPI)
confusion matrix. Popular classification performance measures, including precision, recall, and F1
score, will also considered for the evaluation. The metrics are discussed briefly [34,35]:

• Confusion Matrix

Confusion matrix refers to a table that is often used to explain and understand the performance of
a classification model. The model evaluation metrics from a binary classifier confusion matrix typically
have two dimensions: The actual class usually indexes one of the dimensions, whereas the other
dimension is indexed by the classifier prediction.

• Precision

Precision presents how often the classifier model is correct. High precision correlates to a low
false positive rate. Mathematically, precision is defined in (26) [34]:

Precision = TP/(TP + FP) (26)

where TP is the rate of true positives, defined as the correctly identified positives from the classifier
model, and FP is the rate of false positives, which is defined as negative cases that have been wrongly
identified/classified as positive ones.

• Recall (Sensitivity)

Recall is the measure that describes the ability of a prediction model to pinpoint cases of a
particular class from a dataset. Mathematically, recall is defined in (27) [34]:

Recall = TP/(TP + FN) (27) (27)

where FN is the rate of false negative observations.

• F1 Score

F1 score is the harmonic average of Precision and Recall. The F1 score is considered to be a better
metric compared to accuracy, especially in a classification involving uneven distribution:

F1 Score = 2 × (Recall × Precision)/(Recall + Precision). (28)

2.4. Case Studies

In this paper, a modified version of the Garver IEEE 6 bus test system modelled in [28] was used in
describing the attack scenarios, whereas a 24-bus system was used for the evaluation of the developed
MLPNN algorithm. The Electrical Transient Analyzer Program (ETAP) Toolkit developed by ETAP,
Operation Technology Inc, is a commercial software package that is widely used for power system
design, simulation, monitoring operation, analysis, optimization, and stability studies. In this study,
the ETAP version 16.0 was used to run the AC version of the OPF calculations. The implementation
of the MLPNN algorithm used was based on the open source machine learning framework Orange
(Orange 3.20.1). The SVM embedded in the Orange framework is from the LibSVM package, while the
MLPNN uses the Sklearn Python Module.
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2.4.1. Cyberattack Scenario Explanation Using a Modified Garver IEEE 6-Bus System

Figure 4 presents the one-line diagram of the modified Garver test system used for the cyberattack
description and the consequences on the power system. The test system has six nodes consisting of
three generating units, six loads, and seven lines connecting the nodes. The generating units are at
node 1, node 3, and node 6, whereas the loads are on node 1, node 2, node 3, node 4, node 5, and node
6. The assumption is that the cyberattack only made changes to the topology and no changes were
made to the physical parameters of the lines and load values. Table 1 provides the parameters used for
the transmission lines of the modified test system. The parameters reflect the values of the impedances
and susceptances of each of the transmission lines in the modified test system.
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Table 1. Transmission lines parameters.

S/N Lk,out Lk,in R (ohm) X (ohm) BL(S)

1 1 2 8.0 × 10−2 1.05 × 10−1 6.03
2 4 1 88.5 × 10−2 4.0 × 10−2 5.1 × 10−2

3 1 5 88.5 × 10−2 4.0 × 10−2 5.1 × 10−2

4 2 3 8.0 × 10−2 1.21 × 10−1 5.75
5 4 2 88.5 × 10−2 4.0 × 10−2 5.1 × 10−2

6 2 6 8.0 × 10−2 1.05 × 10−1 6.03
7 3 5 88.5 × 10−2 4.0 × 10−2 5.1 × 10−2

Attackers having prior knowledge about the network topology and/or having access to the grid
network either through the help of an insider or via remote access may decide to slightly alter, isolate,
or modify part of the network configuration or database. In the description of the attack, two scenarios
are considered. In Scenario A, we assumed that the network is free of intrusion whereas in Scenario B,
we assumed that the network is under attack and the grid operators are unaware of the cyber intrusion.
For both scenarios, the grid is operational.

1. Scenario A
In Scenario A, an assumption was made that there was no manipulation or any attack intrusion

on the network topology or data. Figure 4 presents the one-line diagram of the Scenario A test system.
The generator power output data and load data for Scenario A are depicted in Table 2. The total load
demand for the network without any intrusion is 255.74 MW, whereas the total generator power output
from the three generators is 430.2 MW. Load flow was conducted on Scenario A using the load flow
function in the ETAP program.
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Table 2. Optimal generator power output and load data for Scenario A.

Bus/Node Scenario A PG (MW) Scenario A Load (MW)

1 240.2 42.5
2 - 24.74
3 150 51
4 - 42.5
5 - 70
6 40 25

2. Scenario B
In Scenario B, the assumption was made that there was intrusion, and the attacker(s) made

some changes based on the simultaneous attack described in [6], whereby simultaneous attacks,
which will not lead to a non-convergence simulation, are carried out on bus nodes. Attackers are
aware that, for any type of attack, the isolation/de-energization of critical node(s), major sections, or
the entire database will lead to non-convergence power flow computation. Therefore, the assumption
in this paper is that attackers only make changes slight that affect the grid, but the network remains
operational. Grid operators are unaware of the changes, and the network operates with the corrupted
data. The one-line diagram for Scenario B is presented in Figure 5.
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As presented in Figure 5, the modified Garver 6-bus test system configuration topology has been
altered due to the simultaneous attack. The simultaneous attack consists of the de-energization of
the generator at node 3 and the manipulation of the sending and receiving buses of a line, such that
intruders reconfigured the network by changing the origin and destination of line 1 from bus 1 to bus
5. The dashed line reflects the line that was attacked by the intruder.

The data for the generator units for Scenario B are depicted in Table 3. The total generator power
output from the two supplying generators available in Scenario B is 280.2 MW, as the attack has already
de-energized the generator at node 3.

Table 3. Optimal generator power output for Scenario B.

Bus/Node PG (MW)

1 240.2
2 -
3 -
4 -
5 -
6 40
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In both scenarios, the power flow computation converges. The Scenario B simulation results in
the flows in the transmission lines using the poisoned data from the simultaneous attack, as depicted
in Table 5.

2.4.2. Evaluation of the Prediction and Detection Algorithm Using the 24-Bus System

This paper made use of real time data. For simplicity, the network data used only covered the
SouthWest and NorthWest geopolitical zone of the Nigerian grid’s network topology. The 24-bus
system used covered only some 330 kV stations across the geopolitical zones. Figure 6 depicts the
one-line diagram of the modelled 24-bus system. The test system comprises 37 transmission lines,
17 loads, and 8 generators. The lines were modelled using their pi-equivalent circuits. The generators
were modelled using steady state real and reactive powers limits. The loads were modelled using
steady state real and reactive power consumption value limits.
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The modified generator data profile used in the study is presented in Figure 7, whereas the
modified load data profile collected from the daily operational report used is presented in Figure 8.
As shown in Figures 7 and 8, respectively, the generator data represent a daily generator data profile
for a three weeks duration, whereas the load data profile has a time interval of thirty (30) minutes.
Both the generator and load data used were for a one week duration, using modified data from the
Nigerian Electricity Regulatory Commission daily operational report [36] from 1 to 21 February 2018.

Sustainability 2019, 11, x FOR PEER REVIEW 12 of 19 

 

one-line diagram of the modelled 24-bus system. The test system comprises 37 transmission lines, 17 
loads, and 8 generators. The lines were modelled using their pi-equivalent circuits. The generators 
were modelled using steady state real and reactive powers limits. The loads were modelled using 
steady state real and reactive power consumption value limits. 

The modified generator data profile used in the study is presented in Figure 7, whereas the 
modified load data profile collected from the daily operational report used is presented in Figure 8. 
As shown in Figures 7 and 8, respectively, the generator data represent a daily generator data profile 
for a three weeks duration, whereas the load data profile has a time interval of thirty (30) minutes. 
Both the generator and load data used were for a one week duration, using modified data from the 
Nigerian Electricity Regulatory Commission daily operational report [36] from 1 to 21 February 2018. 

330kV
G

G
G

G

GG

G
G

 

Figure 6. One-line diagram of the 24-bus system. 

 

Figure 7. Generator output profile. 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1700

1800

1900

2000

2100

Day

G
en

 O
ut

pu
t (

M
W

)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

100

300

500

700

900

Day

Lo
ad

 (M
W

)

Figure 7. Generator output profile.



Sustainability 2019, 11, 3586 13 of 18

Sustainability 2019, 11, x FOR PEER REVIEW 12 of 19 

 

one-line diagram of the modelled 24-bus system. The test system comprises 37 transmission lines, 17 
loads, and 8 generators. The lines were modelled using their pi-equivalent circuits. The generators 
were modelled using steady state real and reactive powers limits. The loads were modelled using 
steady state real and reactive power consumption value limits. 

The modified generator data profile used in the study is presented in Figure 7, whereas the 
modified load data profile collected from the daily operational report used is presented in Figure 8. 
As shown in Figures 7 and 8, respectively, the generator data represent a daily generator data profile 
for a three weeks duration, whereas the load data profile has a time interval of thirty (30) minutes. 
Both the generator and load data used were for a one week duration, using modified data from the 
Nigerian Electricity Regulatory Commission daily operational report [36] from 1 to 21 February 2018. 

330kV
G

G
G

G

GG

G
G

 

Figure 6. One-line diagram of the 24-bus system. 

 

Figure 7. Generator output profile. 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1700

1800

1900

2000

2100

Day

G
en

 O
ut

pu
t (

M
W

)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

100

300

500

700

900

Day

Lo
ad

 (M
W

)

Figure 8. Load profile.

3. Results and Discussion

In this section, the results of the case studies are analyzed and presented.

3.1. Comparison of the Two Scenarios

The description of the cyber intrusion is explained with Scenarios A and B. Tables 4 and 5 present
the flow simulation results of Scenario A and Scenario B respectively. Figure 9 presents the comparison
of the bus voltage simulation result for Scenario A and B. Note that, for both scenarios, bus 1 has a bus
voltage of 1 pu, as the bus is chosen as the slack/reference bus.

Table 4. Scenario A flow result.

S/N Lk,out Lk,in Power Flow (MW) Current Flow
(Amp)

1 1 2 24.85 149.9
2 4 1 3.19 72.77
3 1 5 50.32 96.82
4 2 3 78.11 160.1
5 4 2 39.96 89.11
6 2 6 14.83 91.27
7 3 5 20.82 37.28

Table 5. Scenario B flow result.

S/N Lk,out Lk,in Power Flow (MW) Current Flow
(Amp)

1 1 2 65.86 120.5
2 4 1 122.39 228.9
3 1 5 30.73 56.22
4 2 3 25.39 47.9
5 4 2 76.16 152.7
6 2 6 25.47 54.36
7 3 5 25.68 49.71

With intrusions, the normal operating limits of the grid can be above or below the limit. The upper
and lower limits for voltage stability endorsed by American National Standards Institute (ANSI) are
1.05 pu and 0.95 pu, respectively [37]. As shown in Figure 9, bus 6 is clearly below the limit while bus 2
and bus 3 are very close to the lower standard limit for Scenario B. IEEE guidelines and operational safety
require a response and action to be taken by the operators to rectify such situations. Hence, early detection
of cyber intrusions into the power system network is highly important to grid operators.
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Figure 9. Scenario A and Scenario B bus voltage comparison results.

Figure 10 presents the comparison result of the current flows on the lines with and without
intrusion (Scenario A and B respectively). Line 4 and line 2 have the highest magnitude for current
flow for Scenario A and Scenario B, respectively. Despite the intrusion presence in Scenario B, Figure 10
shows a close relationship at line 7 for both scenarios in terms of current flows on the lines, which typifies
the fact that the presence of intrusion on a power system can be tedious to predict or pinpoint.
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Figure 10. Scenario A and Scenario B current flow comparison results.

Moreover, Figure 11 depicts the comparison result of the power flows on the lines for both Scenario
A and Scenario B. As shown in Figure 11, there is a significant difference in terms of the power flow
on each individual line in the network. Line 2 has the highest magnitude of power flow for the
intrusion-presence Scenario B, while the lowest magnitude of power flow occurred in the same line
when there was no intrusion.
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3.2. Hybrid SVMNN Classification Report

In order to obtain the best possible results from the developed SVM model, which will be
stacked with the MLPNN, we experimented using three prominent kernel functions: RBF, Polynomial,
and Sigmoid functions. The Cost C and gamma value were kept at constant values of 1.2 and 0.25,
respectively. Some notable results from preliminary experiments are summarized in Table 6.

Table 6. Summarized classification results comparing the SVM kernel function’s performance.

Kernel
Function Precision Accuracy Recall F1 Score Training Time

(Second)

RBF 95.7% 95.5% 95.5% 95.2% 8.92
Polynomial 87.2% 85.6% 86.3% 86.5% 8.36

Sigmoid 81.6% 78.6% 78.6% 79.8% 5.83

As shown in Table 6, RBF presented the best result while the sigmoid kernel function gave
the lowest accuracy. Hence, the RBF kernel function was stacked with the developed MLPNN.
Also, after developing the MLPNN algorithm, in order to achieve a result with reduced generalization
errors and overfitting problems, the L2 regularization parameter was varied. Table 7 presents the
notable preliminary results achieved by varying the L2 regularization parameter.

Table 7. Summarized classification results varying the MLPNN L2 regularization parameter.

L2 Regularization
Parameter Precision Accuracy Recall F1 Score Training Time

(Second)

100 87.5% 81.9% 81.9% 73.7% 18.38
85 94.3% 85.2% 85.2% 80.7% 17.83
65 94.6% 93.8% 93.8% 93.3% 16.35
50 97.6% 94.2% 94.2% 93.8% 14.25
35 96.2% 96.1% 96.1% 96.5% 9.8

Table 8 presents the hybrid SVMNN model’s evaluation metrics from the confusion matrix.
This model is a binary classifier, and the two classes targets are labelled non-intrusive data sample
(NID) and intrusive data samples (ID). As shown in Table 8, the modelled SVMNN classifier predicted
203 non-intrusive data (NID) samples and 40 intrusive data (ID) samples from the testing data samples.
Table 9 presents the classification result of the hybrid SVMNN compared with the best results from the
standalone MLPNN and SVM classifiers.

Table 8. Model evaluation metrics.

No of Testing Data = 243 Predicted ID Predicted NID

Actual ID 40 1
Actual NID 0 202

Non-intrusive data sample (NID); intrusive data samples (ID).

Table 9. Classification results.

Classifier Precision Accuracy Recall F1 Score

SVMNN 99.6% 99.6% 99.4% 99.6%
SVM alone 95.7% 95.5% 95.5% 95.2%
MLP alone 96.2% 96.1% 96.1% 96.5%

As presented in Table 9, the SVMNN algorithm showed precision and accuracy rates of 99.6%.
The recall score is 99.4%, whereas the F1 score is 99.6%, which is much better than the best results
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achieved from the standalone SVM and standalone MLPNN methods. MLPNN has the ability to learn
complex relationships and can easily generalize models and give efficient predictions. Thus, as expected,
the standalone MLPNN gave a good result with an accuracy of 96.1%. However, the best result was
achieved from the hybrid algorithm. Table 10 presents the comparison result from the paper with some
proposed schemes in the literature.

Table 10. Classification result comparison with other schemes.

Classifier Accuracy

SVMNN 99.6%
Mousavian et al. [19] (ANN model) Average of 95.75%

Hink et al. [16] (Adaboost + JRipper model) 95%
Wang et al. [17] (AWV model) 93.91%

Valenzuela et al. [2] (PCA alone) 97%

As shown in Table 10, in a related model proposed by Mousavian et al. [19], the proposed
ANN model was able to detect 92–99.5% (averaging 95.75% accuracy) involving a 24-bus system.
Further, Hink et al. [16] compared several machine learning approaches and achieved an approximately
95% precision accuracy using Adaboost + JRipper for a binary classification. In a similar approach,
the authors in [17] reported a detection accuracy result of 93.91% using a model that involved using
a random forest as the basic classifier of AdaBoost and a weighted voting (AWV) model on PMU
cyberattacks. Furthermore, the authors in [2] reported a detection accuracy result of 97% in the case of
a severity class C attack involving an attack on only two lines at a time. Note that the authors in [2]
did not consider intrusions into generator and load injections. In a similar article in [20], where the
authors equally considered a 24-bus system in a graph matching approach and achieved a 100% result,
it needs to be pointed out that the authors only considered cyberattacks on a topological power system
configuration. However, in this paper, both topological configurational intrusions, as well as intrusions
into the generator and load injections, were considered. The simulation results of the prediction and
detection algorithm developed showed the effectiveness of the scheme, which can be employed for the
effective protection of power systems.

4. Conclusions

Security threats, such as cyber intrusions into the power grid, necessitate responses from all
stakeholders involved in the electricity grid. Detecting and preventing such cyber intrusions is
important in current and future research. In this paper, power system cyber intrusion scenarios
involving topological modifications and polluted data are described, and the effects of intrusions
on the AC power flow result of OPF are discussed using a modified IEEE Garver 6 bus test system
as a case study. A prediction and detection scheme based on a hybrid SVMNN was developed to
predict and detect cyber intrusion attacks into the power system. The algorithm was developed
to evaluate a bus voltage dataset. Several simultaneous attacks scenarios, including the removal
of transmission lines and generators, were considered as cyber intrusions in the 24-bus case study.
The proposed SVMNN method showed 99.6% precision and accuracy rates in predicting and detecting
simultaneous attacks. However, despite showing tremendous accuracy in predicting and detecting
cyber-intrusion, the developed algorithm cannot identify, locate, or eliminate present or future intrusion.
Future work can focus on extending this work to developing avenues, to identify attacked stations
and/or transmission lines.
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