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Abstract: The aquaculture industry has expanded to fill the gap between plateauing wild seafood
supply and growing consumer seafood demand. The use of genetic modification (GM) technology
has been proposed to address sustainability concerns associated with current aquaculture practices,
but GM seafood has proved controversial among both industry stakeholders and producers, especially
with forthcoming GM disclosure requirements for food products in the United States. We conduct a
choice experiment eliciting willingness-to-pay for salmon fillets with varying characteristics, including
GM technology and GM feed. We then develop a predictive model of consumer choice using LASSO
(least absolute shrinkage and selection operator)-regularization applied to a mixed logit, incorporating
risk perception, ambiguity preference, and other behavioral measures as potential predictors. Our
findings show that health and environmental risk perceptions, confidence and concern about potential
health and environmental risks, subjective knowledge, and ambiguity aversion in the domain of GM
foods are all significant predictors of salmon fillet choice. These results have important implications
for marketing of foods utilizing novel food technologies. In particular, people familiar with GM
technology are more likely to be open to consuming GM seafood or GM-fed seafood, and effective
information interventions for consumers will include details about health and environmental risks
associated with GM seafood.

Keywords: food labeling; machine learning; seafood; genetic modification; consumer preferences;
risk perceptions; subjective knowledge; ambiguity aversion; choice experiment

1. Introduction

The global population is projected to reach nearly 10 billion people by 2050 [1]. Growing
populations will necessarily result in increased demand for quality, safe, and diverse foods, and
seafood is no exception. Annual global per capita seafood consumption has more than doubled since
the 1960s to over 20 kg, making up over 16 percent of global animal protein intake and more than 6
percent of all protein consumed [2]. Part of this increase is likely due to targeted policy efforts meant
to increase seafood consumption, particularly in women and children. In 2010, the United States
Department of Agriculture (USDA) and Department of Health and Human Services (HHS) began
focusing nutrition campaigns on seafood consumption. Specifically, USDA and HHS recommended
pregnant and nursing women consume at least 8 to 12 ounces of a variety of seafood per week as part
of a well-balanced diet, with similar recommendations for other adults and less for younger children

A complication associated with increased seafood demand is the fact that global harvest of wild fish
has remained almost constant since the 1990s. The aquaculture industry expanded rapidly to fill the gap
and meet global seafood demand, representing an increasing portion of global seafood supply (40.1% in
2011 compared to 46.8% in 2016) [2,3]. This trend is expected to continue in the foreseeable future, and
will encourage more investment and technological innovations in the aquaculture sector. One unique
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innovation that has received much attention recently is the development of genetically-modified (GM)
fish that grows faster, meatier, and more disease-tolerant while relying on less wild harvest resources
for use in fish feed, for example. Looking at the experience of the agriculture industry in adoption
of GM technologies, it is only a matter of time before the U.S. consumers and seafood supply chain
are faced with decisions involving GM seafood. The question is whether the market will accept GM
seafood, and will it advance the contribution of aquaculture in meeting the world’s seafood demand.

AquaBounty Technologies, Inc., a biotechnology firm located in Massachusetts, U.S. and Prince
Edward Island., Canada, developed a GM Atlantic Salmon, marketed as AquAdvantage Salmon®
carrying the tag line “the World’s Most Sustainable Salmon” [4]. AquAdvantage Salmon® grows to
market weight twice as quickly as conventionally farmed salmon and requires less wild harvest species
for feed, while it is also claimed to minimize environmental impacts by being grown in land-based
facilities closer to metropolitan areas. All of this together is meant to address sustainability concerns
associated with current open-ocean salmon farming practices. Another approach utilized by the
aquaculture industry to address sustainability concerns is the use of alternate feed ingredients, such as
insect meal [5]. AquAdvantage Salmon© has been sold as fillets in Argentina, Brazil and Canada, and
approved for sale in the U.S. in 2015. However, the controversy surrounding the use of GM technology
as a means of achieving a more sustainable, farmed salmon product [6] has halted AquAdvantage
Salmon® from reaching the market until a clear GM labeling standard is put in place.

On 29 July 2016 the National Bioengineered Food Disclosure Standard (NBFDS) was signed into
law [7] and was finalized in December 2018. The Standard is set to be fully implemented on 1 January
2020 [8]. As it currently stands, foods containing any of the commercially available GM foods and their
derivatives will be subject to disclosure, while small food manufacturers, restaurants, animals fed with
GM products, and foods certified under the National Organic Program are exempt [7]. Disclosure will
be carried out via written text, a symbol similar to the USDA Organic symbol, or electronically using
QR codes. A recent ruling by the U.S. Food and Drug administration motivated by the final NBFDS
approval resulted in the import ban on GM salmon eggs being lifted [9]. This means that production of
GM salmon in the U.S. is likely to begin in the near future with products reaching seafood counters by
2021 [10]. The NBFDS presents a unique challenge for strategic marketing of food products utilizing
novel food technologies in a way that appeals to consumers’ growing interests for sustainably sourced
and marketed products.

As the NBFDS is not yet implemented, we are in a unique position to investigate this prediction
problem. Specifically, we investigate the potential impact of the NBFDS on demand for Atlantic Salmon
using machine learning methodology. We analyze data collected from a nationally representative
sample in an online discrete choice experiment distributed across the United States. We are one of
the first studies to use machine learning techniques to study consumer food choice, as well as being
one of the first to fully investigate demand for GM seafood. The results of this work will help the
food industry identify the means through which to transform the seafood supply chain and marketing
strategies into sustainable practices that will support predicted growth in population, food demand
and greener trends.

New advances in machine learning are increasingly being adapted by economists to investigate
policy prediction problems [11,12]. Machine learning methods excel at addressing these types of
problems due to their ability to discover complex data structures that are not specified or known a
priori. This is in stark contrast to many applied economic applications focused on parameter estimation
and causal inference. Recent applications of machine learning in policy prediction problems include
environmental monitoring [13], judicial behavior [14], changes in household diet [15,16], poverty
quantification [17-19], tax policy evaluation [20], restaurant hygiene inspections [21], and highway
procurement auctions [22].

We expand this literature by applying LASSO (least absolute shrinkage and selection operator)
penalized regression as a variable selection tool to identify behavioral factors that predict consumer
choice in the context of seafood purchases. Labels presented under current institutions, including the
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forthcoming NBFDS, act as a signal of quality and safety for consumers [23]. Generally, the information
provided in a food label is expected to be a positive course of action by providing more information
than was previously available. However, labels can be ineffective if the information is misperceived [24].
For example, consumers may over-estimate risks related to the labeled product, perceiving the label
as a type of warning, resulting in the (unintended) effect of decreased consumption [23,25,26]. This
ineffectiveness can be related to inferential processing on the part of the consumer. From a public policy
standpoint, this is undesirable because label interpretation is reliant upon consumers’ perceptions,
attitudes, and subjective beliefs [27,28]. This effect can be further exacerbated by the availability
of additional information about food products making the distinction between information on the
label itself and market provided information an important consideration. The research findings
presented herein contributes to the academic literature by identifying unique mechanisms through
which information impacts consumer purchase decisions. The most surprising result is that balanced
information appears to only have significant negative effects on demand for GM and Organic salmon
driven by environmental risk perception and confidence in environmental risk perception, respectively.

Studies have shown that risk perceptions, preferences, and other intangible aspects are becoming
increasingly important in consumer food choice [27,29,30], but no work has addressed which
subjective/behavioral measures are most important. Considering the controversy associated with
the NBFDS itself and the use of GM technology in food production in general, perceptions, attitudes
and other behavioral measures are likely to have significant influence on the effectiveness of the
NBFDS and ultimately consumer choice. Considering the importance of behavioral measures and the
forthcoming NBFDS, we have a unique opportunity to explore this policy prediction problem using
machine learning techniques.

We seek to develop a predictive model of consumer choice by incorporating often-overlooked
behavioral measures into our choice model [29]. Inclusion of these data and other “non-conventional”
measures is important given the potentially significant effects they can have on predictive accuracy of
choice models [31]. Developing an accurate predictive model that incorporates these data is particularly
important in evaluating the potentially unintended consequences of policy interventions such as the
NBEFDS. If economists are interested in developing predictive models to promote as decision support
tools for policy makers and food industry stakeholders alike, then balancing model complexity with
predictive performance is a critical consideration, which is precisely the goal of LASSO. The advantage
of using LASSO to address this consideration is that it provides a data-driven approach to identifying
important factors that relate to individual behavior without relying on researcher intervention. In
addition, overly complex predictive models may require large amounts of (potentially unavailable) data
or may be difficult to implement. A clear benefit of applying LASSO, then, is that more parsimonious
models require less data and are therefore easier to implement in applications outside of the initial,
motivating project.

Our results show that behavioral measures do indeed play an important role in predicting
consumer choice. Specifically, we find that risk perception, confidence in risk perceptions and concern
about the risks associated with GM technology are the prominent behavioral factors in the health
domain. Risk perception, confidence in risk perceptions, and concern are also important behavioral
factors in the environmental domain. Both context specific subjective knowledge and ambiguity
aversion have a significant influence on consumer choice of salmon fillets.

When shopping for food, labels act as signals to consumers [23]. GM food labels will act as a
signal of quality and safety for consumers deciding on what to purchase. This aligns with groups
that advocate for consumer “right to know” about what goes into their food. Generally, information
provided via a food label is expected to be a positive course of action, as labels are meant to correct for
the lack of information previously available to consumers. In the case of GM foods, labels are desired
to as an attempt correct the information asymmetry regarding food production processes of many food
products available on the market. Advocates of the NBFDS cite unknown environmental and health
consequences of production and consumption of GM products as justification for distinction of GM
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foods from conventional products as a means of facilitating informed consumer choice. The most
prevalent issues in the discussion are unanticipated allergic responses, spread of pest resistance or
herbicide tolerance to wild plants, and inadvertent harm to wildlife [32]. Aside from the tangible risks
often associated with GM products, other studies have shown moral acceptability to be a significant
predictor for the encouragement of biotechnology applications [33,34].

Bonroy and Constantatos [24] note that labels can be less effective at fixing the lack of information
issue given consumer misperceptions of the information provided by the label. One form of
misperception can be an over- or under- estimation of risks or benefits related to a product attribute [25].
This type of misperception is related to what Lusk and Rozan [23] call the “red flag effect” and is
attributed to (undesired) inferential processing on the part of the consumer [27,28]. If one considers
the varying attitudes and opinions as an alternate form of “advertising” for GM foods, it becomes clear
that this ambiguous advertising may influence consumer evaluation of GM product safety and quality,
and ultimately the magnitude of the “red flag” effect [35].

As is the case with GM foods, lack of information related to a specific decision or choice may
lead to ambiguity in the consumer’s evaluation of the probability of an outcome, such as health or
environmental impacts of GM food consumption. This transformation of information ambiguity to
probability ambiguity can influence individual decision-making [36]. Even in the context of food-borne
pathogens, few consumers know the odds of becoming ill from it and many consumers have ill-formed
beliefs about their chances of actually becoming ill from a food-borne pathogen [37]. Further, when
individuals seek out information in an attempt to gain more information on a topic, there is seldom
consensus among interest groups, consumers, or the scientific community, particularly regarding GM
foods as mentioned above [38].

It is common in situations of uncertain origin or outcome that lay peoples’ risk perceptions will
differ from expert-provided technical risk estimates [39,40]. We know from the works discussed above
that this difference in perception hinders the effectiveness of expert provided information meant to
alleviate the information asymmetry [41]. We conjecture that the contrasting states of knowledge
among interest groups and ultimately the information available to consumers, plays a significant role
in driving consumer aversion to genetically modified food products. Given the lack of consensus on
the consequences of genetic modification, we argue that this may reinforce consumer aversion to GM
technology in food, and thus ambiguity aversion drives preferences for GM food and demand for a
labeling regime such as NBFDS.

It is a natural extension to discuss risk perceptions along with ambiguity preferences in the
evaluating the effectiveness of the NBFDS as these measures are often overlooked in explaining
consumer demand for food products [29]. However, assessing risk perceptions” effect on consumer
choice can be difficult as comprehensive measurement of risk perception is not trivial.

Risk perception as a concept is multidimensional, meaning that a single question on a survey may
not capture all the nuances of individual risk perception [40,42—44]. A large body of work exists in
the risk communication field focused on measuring risk perceptions in the context of climate change.
Van der Linden [42] discusses the fact that while the public might perceive some long-term changes in
long-term climate conditions, psychological factors are often much more influential in determining
public perception of climate change risk. We utilize a framework proposed by van der Linden [42] to
measure and interpret our results. This framework breaks down risk perception into a hierarchy of
components which allows us to identify the relative importance of each component of risk perception
in explaining consumer demand for GM salmon under the NBFDS.

2. Materials and Methods

2.1. Data

We recruited 1043 survey participants via Amazon Mechanical Turk (denoted “Mturk”), a
crowd-sourcing platform for computer-based tasks. The computer-based task was a Qualtrics survey,
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in which we implemented our choice experiment. This work was reviewed and approved by the
University of Rhode Island’s Office of Research Integrity (Approval #1718-181), which required
collection of informed consent forms from participants and measures to preserve participant anonymity.
For recruitment, Mturk workers with greater than zero approved tasks, task approval rating greater
than 97%, and located in the United States saw the survey announcement for a “20-minute Academic
Study”. Eligible participants were (1) aged 18 years or older, (2) lived in the United States, (3)
consumed seafood regularly, and (4) consumed salmon. We paid participants $2.00 upon completion
of the survey. The average participant completed the full survey in 13.5 minutes. The final sample
consists of a diverse group of respondents from every state in the United States aside from Delaware,
Table 1 provides sample summary statistics. Compared to the most recent American Community
Survey [45-47], our sample differs from the general population of the United States primarily in gender
distribution (40.1% female compared to 50.8% in the ACS) and educational attainment (60% with
Bachelor’s degree or higher compared to 31.2% in the ACS), consistent with previous summaries of
the Mturk population [48]. We consider our sample to be sufficiently representative of U.S. seafood
consumers given our screening criteria, acknowledging these previously identified nuances of the
Mturk population.

Table 1. Sample summary statistics.

Mean SD 2016 ACS 1

Age 35.9 11.0 37.7
Female (%) 40.1 49.0 51.60
Income (%)
Less than $49,999 48.5 50.0 454
$50,000-99,999 37.1 48.3 30.0
$100,000-149,999 5.8 23.5 13.5
Greater than $150,000 2.7 16.2 11.1
Education (%)
Less than high school 0.4 6.3 12.5
High School degree 94 29.2 27.2
Some college or Associate’s 29.0 454 29.0
Bachelor’s degree 425 495 19.3
Graduate or professional degree 575 495 11.9
Household size (%)
1 195 39.7 27.7
2 26.7 442 33.7
3 242 429 15.7
4 18.8 39.1 13.1
5 6.8 25.2 6.0
6 3.0 17.1 2.3
7 or more 0.9 9.5 1.5
Race (%)
White 74.7 435 73.3
Black or African American 13.5 34.2 12.6
Hispanic or Latino 7.0 25.5 17.3
Native American or Alaska Native 1.8 13.5 0.8
Asian 4.3 20.2 5.2
Native Hawaiian or Pacific Islander 0.4 6.2 0.2
Other 0.9 9.3 4.8
Observations 1043

12016 ACS (American Community Survey) column reports mean values from the 2016ACS, except age which is
reported as a median. ACS summary of household size includes both family and nonfamily households.
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We have further confidence in considering our sample to be sufficiently representative of the
U.S. seafood consumers based on their prior preferences and attitudes related to GM food technology.
Between 50-60% of our sample believe it is either “Very Important” or “Extremely Important” to
label each of Organic, Non-GM, Contains GM ingredients, GM-fed, and GM food products. This is
representative of the general sentiment of consumer “right to know” movements and use of information
regarding food production methods identified in various academic work as well as independent polls.
For example, a Pew Research Center poll [49] found that 89% of respondents (n = 1480) believe the
general public should play at least a minor role in making policy decisions related to GM foods, while
40% of respondents believe the news media does not take the health risks of GM foods seriously enough.

As an alternate means of capturing prior preferences related to production process labeling,
participants were asked to rank four food labels based on likelihood of purchasing a product displaying
each label: Organic, Certified Non-GMO, Contains GM Ingredients, and Produced with Genetic
Engineering. As we expected based on the prior preferences summarized above, participants ranked
Organic as most likely to be purchased, followed by Certified Non-GMO, Contains GM ingredients,
and Produced with Genetic Engineering. We did allow participants to rank multiple labels equally
to indicate indifference. The rankings are indicative of an association between Organic and Certified
Non-GMO labels and Contains GM Ingredients and Produced with Genetic Engineering labels as
evidenced by their relative average rankings.

As we are studying GM food labels in the context of seafood, we also had participants rate their
seafood purchase habits on a five-point Likert scale to indicate level of agreement with statements
about seafood. As expected based on prior literature [50], participants have a general preference for
seafood that is wild-caught, domestic, low-priced, freshest, and healthy for them. Data used for these
and all following analyses are available as Supplementary Materials.

2.2. DCE and Survey Design

Our discrete choice experiment (DCE) was designed to simulate seafood purchase scenarios for
fresh, farmed Atlantic Salmon fillets with different labels denoting presence or absence of genetic
modification, country of origin, and price. The survey instrument also asked respondents questions
about their food consumption habits, general attitudes toward food and technology, and specific
attitudes toward GM foods. Table 2 summarizes the levels of each product attribute used in our DCE,
which were chosen based on previous literature and current market conditions.

Table 2. DCE attributes and levels.

Atlantic Salmon Fillets

Price 6.49
9.99
13.49
16.99

GM Label No Label
Organic
Verified Non-GM
GM-Fed
GM

Origin Us.
Norway
Chile

Participants were randomly assigned to one of four information treatment groups that differed in
support of GM technology in food production:
In the Positive Information treatment, subjects were shown on the screen:
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e  Genetically modified organisms (crops and animals) produced for consumption have better taste,
increased nutrients, greater resistance to disease and pests, and faster production compared to
conventionally produced crops and animals.

e  Genetically modified organisms can be more environmentally friendly because they conserve
water, soil, and energy.

In the Negative Information treatment, subjects were shown on the screen:

e  Genetically modified organisms (crops and animals) produced for consumption have potential
health risks, including allergic reactions, resistance antibiotics, and unknown effects.

e  Genetically modified organisms may require food producers to increase use of pesticides,
herbicides, and other chemicals that can harm the water system and damage the soil.

In the Balanced Information treatment, subjects were shown both Positive Information and
Negative Information treatments at once on the same screen, with positive information at top as
ordered above. In the control group, or No Information treatment, subjects did not see the information
screen at all. Each information treatment was presented as short bullet points as it is more attuned
to the manner in which consumers receive food marketing information, such as social media and/or
information pamphlets at food stores.

We used a full factorial design for the DCE meaning that each possible attribute combination
was seen across survey participants. Due to the large number of total choices (4 x 5 X 3 = 60 total
combinations for salmon) we blocked our choice sets into ten blocks, each containing six choice
questions to reduce the cognitive burden on our participants. The design was created in STATA
version 13 (StataCorp LP, College Station, TX, USA) with the user-written program dcreate [51,52].
Each respondent was randomly assigned to one choice set block. Each choice question had two choice
alternatives plus a no purchase option. The order of each question in a given block was randomized
for each participant. Figure 1 is an example fillet choice set.

Please select your most preferred option.

If these were my only
options, | would not
purchase salmon

fillets.
Atlantic Salmon Fillet Atlantic Salmon Fillet
Fresh, Farm-Raised, GMO Fresh, Farm-Raised, Organic
Product of Chile Product of USA
$6.49 1 LB. $16.99 1 LB.

Figure 1. Example choice set.
2.2.1. Behavioral Measures

Prior to seeing the choice scenarios, participants answered questions regarding their knowledge
level and risk perceptions related to GM technology. We refer to this series of questions as “behavioral
measures” (including our ambiguity aversion measure discussed below). The knowledge questions
specifically addressed participants’ (1) knowledge level about the facts and issues associated with GM
technology, (2) risk perception of GM foods relative to foods produced without GM, (3) confidence in
risk perception, and (4) concern level about potentially negative impacts of GM foods.

Then, the risk and perception series of questions was presented as follows:



Sustainability 2019, 11, 3934 8 of 21

1.  How much do you agree with the following statement? GM foods pose a greater [health,
environmental] risk than foods produced without GM technology.

2. How confident are you in your answer to the previous question?

3.  How concerned are you about GM foods leading to negative [health, environmental] impacts?

This series was asked separately for the health and environmental domains (i.e., which bracketed
word actually appeared in the above questions). The risk perception series and self-reported knowledge
level were measured on a five-point Likert scale.

We elicited this specific series of behavioral measures to capture the relationship between these
variables in a similar manner as van der Linden [42]. In his work, van der Linden developed a
“hierarchy of concern” (HoC) model to conceptualize public perception of climate change similar to
Maslow’s “hierarchy of needs” framework for human motivation. The HoC establishes a transitive
relationship between likelihood of an event, perceived seriousness, general concern, and personal
worry. For reasoning similar to the climate change case, an individual may think that effects of
consuming and/or producing genetically modified foods are likely to occur, but that does not imply that
they perceive the issue to be serious. The relationship between each level of the hierarchy is comparable
to the example above. The transitivity axiom is not a necessary condition for this framework to remain
a useful tool for conceptualizing risk perceptions of genetic modification, climate change, or other
issues. Figure 2 presents a pictorial representation of the hierarchy measured for our study.

Figure 2. Hierarchy of concern framework. This framework is adapted from van der Linden (2017).
“Risk Perception” is a measure of whether an individual believes there are risk associated with a
scenario, e.g., GM food, “Confidence” refers to the perceived likelihood risks will occur, and “Concern”
is the level of worry about the potential risks.

The highest level in the HoC is personal worry. This level distinguishes concern at a societal
versus a personal level. This distinction can be important as individuals often exhibit optimism bias
in which they overestimate the likelihood of positive life events and underestimate the likelihood of
negative events. The resulting bias translates into overestimates of risk perceptions if measures only
rely on single question to capture concern level. Since we are not interested in analyzing the specific
level of public concern about the risks of GM technology, we opted to only use a single-question
measure of concern and personal worry levels. We purposely used a concern measure that could be
subjectively interpreted as a means of capturing an overall level of concern about the risks of GM
technology rather than only societal- or personal-level concern.
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We are also interested in establishing the relationship food purchases have with subjective
knowledge and ambiguity aversion. The relationship between subjective knowledge and ambiguity
aversion was proposed and tested in Fox and Tversky’s [53] comparative ignorance hypothesis. The
authors’” work concludes that as subjective knowledge (how knowledgeable you feel about a topic)
increases, so too does ambiguity aversion. A related explanation lies in Heath and Tversky’s [54]
competence hypothesis. Costa-Font [55] formally tests the link between these variables in the context
of three food scares, which included GM food technology. One important result is the confirmation of
subjective knowledge having a positive and significant effect on ambiguity aversion in line with the
results of Fox and Tversky [53] and Heath and Tversky [54].

2.2.2. Ambiguity Aversion Elicitation

Along with the behavioral measures outlined above, we elicited participants’ aversion to ambiguity.
We developed a domain-specific ambiguity aversion elicitation mechanism as there is evidence that
effects of behavioral measures could depend on how measures are elicited (Petrolia 2016). Specifically,
participants iterated through a series of choice menus that asked them to make a choice between a
salmon fillet with a known chance of being GM and a fillet with an unknown chance of being GM.
This method was developed as an adaption of that used by Dimmock, Kouwenberg, Mitchell, and
Peijnenburg [56]. Figure 3 presents an example “lottery” menu. We are aware of only one other work
that that framed an ambiguity measure in the context of a specific food product or category [55]. The
measure used by Costa-Font relied on a single question that was asked participants to choose a country
to live in (Country A or Country B) based on known or vague information about deaths associated
with bovine spongiform encephalopathy. This was adapted from a measure used by Viscusi [57].

Please select the fillet of your choice: U or K. If you think both fillets are equally attractive, you can select
"Indifferent".

Fillet U Fillet K

| INDIFFERENT |

/192 /19y

Chance of being GM: ? out of 100 Chance of being GM: 70 out of 100

Figure 3. Example ambiguity aversion elicitation menu.

We truncated the tails of the distribution for elicitation purposes based on discussions with
colleagues that have used this elicitation method in similar applications. Thus, our measure falls
in the range [0.15, 0.85] rather than [0, 1.0]. The menus were designed in the loss frame based on
current negative perceptions of GM technology. Participants are ambiguity averse if the individual
level ambiguity aversion parameter is greater than 0.5. Based on this definition, 26.65% of our sample
is considered ambiguity averse. Figure 4 presents the distribution of estimated ambiguity aversion in
our sample.
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Figure 4. Histogram and smoothed density plot of ambiguity aversion parameter.

2.3. Empirical Methods

2.3.1. Mixed Logit

Since every choice elicitation includes a no-purchase option in addition to the two fillets, we
consider multinomial logit models to estimate choice. A random-parameters logit framework relaxes
the independence assumption necessary in a traditional multinomial logit. This framework allows us
to appropriately account for the panel structure of our data (there were six choice occasions in each
block randomly assigned, one per subject), in which choice errors may not be independent within
individuals. The model accounts for the panel structure by including a random intercept term for each
participant and participant-choice set combination. All other covariates are specified as fixed effects
(i.e., non-random effects, not to be confused with dummy variables used in fixed effects regression).
Our empirical specification includes a total of 192 covariates that include an alternative specific constant
(ASC) for the no-purchase alternative, choice set attributes (price, country of origin, and GM label;
described in Table 2), and interactions of the behavioral measures with all choice set attributes. All
choice set attributes are dummy-coded aside from price which was specified as a continuous covariate.
The use of interaction terms allows us to link the behavioral measures to consumers’ seafood choice.

2.3.2. LASSO Penalized Regression

We use the LASSO Ll-regularization to select the most important behavioral measures for
predicting participant choices [58]. Since these measures are correlated, the selection of a sparse model
is based on the explicit assumption that there is a subset of our measures that is more important in
predicting choice behavior. We follow Huseynov, Kassas, Segovia, and Palma [59] to reformulate
the LASSO in a logit framework. All independent measures are standardized prior to estimating
a maximum binomial likelihood to fit the LASSO to our training data. Specifying an individual’s
non-selection probability as

p(xit) = Pr(yi = O)Xit)/ 1
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we maximize the following log-likelihood:

N

max %Z{I(yit = 0)log p(xir) + 1(yir = 1)log (1 =p(xir))} = AN B lle, | ©)
i=1

where A (“lambda”) can be interpreted as a constraint on the sum of the absolute values of the
coefficients estimates (the vector), as in a typical LASSO applied to linear regression models.

A is commonly referred to as the “tuning parameter” because it determines the strength of the
penalty imposed on the model covariates. For small values of A, the penalty imposed on the estimated
parameters is small resulting in the recovery of the maximum likelihood estimates of the mixed logit
coefficients. For sufficiently large values of A, some coefficients are set to zero. This is the mechanism
through which LASSO performs variable selection, making the stability of A a necessary component of
our empirical strategy.

We ran 100 iterations of a modified two-fold cross-validation LASSO routine to confirm the
stability of the optimal tuning parameter. Each iteration of the cross-validation routine used a randomly
selected 50-50 split (permutation) of the full data into training and test data sets. This split for cross
validation routines has been shown to be optimal for a broad class of loss functions independent of
the data distribution, and particularly in the case of classification via logistic regression [60]. For
each iteration, the LASSO was fit on the training data and out-of-sample log-likelihood (OOSLL) was
calculated using the test data. We fit 22 values of the tuning parameter ranging in penalty strength.
This range is slightly smaller relative to other applications and defaults of popular software packages
that typically evaluate 30-100 values of the tuning parameter, see for example Friedman, Hastie and
Tibshirani [61]. We decided to focus our attention on this range of candidate tuning parameters based
on preliminary analysis conducted using this data set. For each iteration and value of the tuning
parameter, we recorded (1) variable selection, (2) in-sample Bayesian Information Criteria (BIC), and
(3) OOSLL. The OOSLL values we report are calculated using the regularized model, in which the
regression betas represent maximum a posteriori estimates given a Laplacian prior [62]. For further
details on the theory and application of the LASSO, we recommend the seminal text authored by
Hastie, Tibshirani, and Friedman [58].

We used the results from the routine described above to select the optimal tuning parameter, A,
based on average OOSLL and mean prediction accuracy across the replications. Once we determined
the optimal tuning parameter, A*, we re-ran the LASSO on our full data set with that penalty term to
generate the list of covariates with non-zero coefficient estimates. This set of covariates was used to
estimate a naive post-LASSO model fit, discussed below, to conduct inference on the effect of these
covariates on seafood purchase decisions. We account for the use of this naive post-LASSO inference
method using bootstrapped standard errors based on 100 bootstrap replications. Below, we discuss
the variables selected by this procedure in order to identify the important behavioral measures for
consumer purchasing of GM seafood.

3. Results

All models were fit implementing the R package glmmLasso [63,64]. We utilized Elastic Cloud
Computing instances on Amazon Web Services to alleviate computing constraints. Based on the results
of our replication analysis, the optimal tuning parameter is A* = 100. Figure 5 plots the average OOSLL
for each value of the tuning parameter we tested. Figure 6 plots average prediction accuracy at each
value of the tuning parameter tested in our resampling analysis. These figures confirm that the optimal
tuning parameter value maximizes both OOSLL and also average out-of-sample prediction accuracy.



Sustainability 2019, 11, 3934 12 of 21

. %1
=
2
= 0
(4]
R
Lo
)
=
It
£ 3
= 5
=
2 t
o
z {
o
E 3 -
m o
w0
wt
c" {
5 }
(=]
=
3 @ |
= 5 }::{

I I I I I
0 50 100 150 200

Lasso tuning parameter (i)

Figure 5. Mean out-of-sample log-likelihood. The point marked X denotes the maximal, mean
out-of-sample log-likelihood of model fit, corresponding to A = 100.
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Figure 6. Mean out-of-sample prediction accuracy. The point marked X denotes the maximal, mean
out-of-sample prediction accuracy of model fit, corresponding to A = 100.

The fitted model includes 155 covariates after LASSO regularization using A*, denoted Lasso*
in the text and figures to follow. Table 3 summarizes the included covariates for direct effects and
provides counts of behavioral measure interactions included in each approach. Prior to presenting our
findings, a discussion about inference in regularized regression is necessary.
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Table 3. Summary of retained covariates in Lasso* model.

Variable Retained

Direct Effects !
No Purchase (ASC)
Fillet Price
Organic
Verified Non-GM
Fed with GM Soy
GM
Both GM
Norway
Chile

<R Z

Information !

Positive x Organic

Positive x Verified Non-GM
Positive x Fed with GM Soy
Positive x GM

Positive x Both GM
Negative x Organic
Negative X Verified Non-GM
Negative x Fed with GM Soy
Negative x GM

Negative X Both GM
Balanced x Organic
Balanced x Verified Non-GM
Balanced x Fed with GM Soy
Balance x GM

Balance x Both GM

R Z R Z

Health domain interactions (# included)
Risk perception 18
Confidence in risk perception 15
Concern about risks 19

Environmental domain interactions (#

included)
Risk perception 19
Confidence in risk perception 15
Concern about risks 18

Subjective Knowledge about GM (#
included) 15

Ambiguity aversion (# included) 15
Average out-of-sample log-likelihood (S.E.) —2896.167 (2.934)
Average OOS prediction accuracy (S.E.) 0.558 (0.002)
Average McFadden’s R-squared (S.E.) 0.492 (0.0005)
Total covariates retained 155

1 “y” indicates a variable was retained, “N” indicates variable was excluded by regularization, respectively.

In an application such as ours where regularized regression is used for variable selection, we are
using the data to “sparse” a full set of covariates into a sub-model that was not known or specified
a priori. The problem arises due to the fact that when fitting the sub-model for the purposes of
inference, we are looking at the data twice: once to determine the sub-set of covariates and once to
test hypotheses [65]. There are a variety of methods proposed to deal with this selection bias like
sample-splitting [66], simultaneous inference [66], exact post-selection inference methods [67,68], as
well as double-selection methods [69]. All of these methods account for the regularization procedure
to compute adjusted p-values, conditional on the particular sub-model being selected. However, under
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certain conditions, the naive post-LASSO inference approach that simply refits the sparse model on the
full data set (not accounting for regularization) can provide valid p-values and confidence intervals [65].

All the selective inference approaches mentioned above have been developed and validated in
the context of models that assume only fixed (non-stochastic) parameter estimates. We are unaware of
developments in the selective inference literature that address the case of selective inference issues
in mixed models, as is the case for our work. It would be ideal to compute adjusted p-values and
confidence intervals conditional on the regularization routine. However, given the lack of available
methods for computing adjusted p-values and confidence intervals in the case of regularized mixed
models, we are limited in the way we handle selective inference in our case. Thus, we report
bootstrapped standard errors for each coefficient in our final models to account for potential issues
associated with selection bias that is inherent in using a feature selection tool like LASSO. Bootstrapping
standard errors, under the assumption that our empirical model is correct, allows us to quantify the
uncertainty associated with our parameter estimates.

While we rely on a naive post-LASSO approach outlined in the literature, we are confident in the
validity of the inference given our relatively large sample size in relation to the number of considered
covariates. In addition, we are not concerned with issues of endogeneity of our treatment conditions
(GM labels) based on the fact that choice question blocks were randomly assigned to participants. This
is the primary issue considered by Belloni, Chernozhukov, and Hansen [69]. We did evaluate the
correlation between our controls and choice question assignment and found no evidence of statistically
significant correlations. Any significant correlation observed would be spurious given the random
assignment of choice question blocks.

3.1. Model Fit

In terms of overall model fit, Figures 5 and 6 summarize the average OOSLL and average
out-of-sample predication accuracy for each value of the tuning parameter. Prediction accuracy
was determined by comparing predicted alternative choice and actual alternative choice for each
participant-choice set pair. Predicted alternative choice was determined using the highest predicted
choice probability among alternatives from each iteration of the resampling procedure and at each
level of the penalty term. Similarly, the prediction accuracy is the percent of correct, out-of-sample
predictions at each iteration in the resampling routine.

3.2. Behavioral Measures

As shown in Table 3, the regularized model fit on the full data set retained all of the direct effect
attribute levels aside from the GM label attribute. All behavioral measures were retained in some form
in in our modeling approach. Table 4 present the covariates with coefficient estimates significant at the
99% level based on bootstrapped standard errors for the Lasso*. This subset of covariates is materially
the same whether or not we consider bootstrap standard errors. All covariates were standardized prior
to model fitting. As such, we can directly interpret the magnitude of each coefficient as a measure
of relative signal strength. We acknowledge that focusing only on covariates with 99% significance
is an arbitrary decision. However, due to the large number of implicit hypothesis tests (155 for the
Lasso* model) inherent in our analysis we only dedicate time to this subset. The interested reader is
encouraged to contact the authors for further additional summary figures.
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Table 4. Significant covariates (99% level), Lasso* fit on full sample.

Fillet Choice !
Coefficient Bootstrap Standard Error
Direct Effects
No Purchase (ASC) -1.89 0.11
Fillet Price ($) -0.95 0.04
Verified Non-GM 0.47 0.18
Fed with GM Soy -0.70 0.10
Norway -0.22 0.02
Chile -0.32 0.02
Health domain interactions
No Purchase (ASC) x Confidence 0.23 0.09
Positive x Organic x Confidence 0.27 0.11
No Purchase (ASC) x Concern 0.49 0.08
Fed with GM Soy x Concern -0.43 0.10
Environment domain
interactions
Balanced x Fed w1th GM Soy x ~035 011
Risk Perception
Balanced x GM X Risk Perception -0.34 0.10
No Purchase (ASC) x Confidence -0.21 0.08
Balanced x Organic x Confidence -0.29 0.10
Subjective knowledge
interactions
No Purchase (ASC) -0.32 0.07
Fed with GM Soy 0.39 0.06

Ambiguity aversion interactions
Fed with GM Soy 0.24 0.07

1 Coefficients on risk perception, concern, confidence, subjective knowledge, and ambiguity aversion are standardized.
All other covariates are indicator variables to denote label attributes or experimental conditions.

The first notable results are the Direct Effects in Table 4. For example, there is a significant
and negative coefficient on fillet price, which is evidence our participants made rational choices in
accordance with economic theory [70]. In terms of the other direct effect variables, we find results
consistent with previous findings. Participants prefer salmon fillets that are Verified Non-GM while
they dislike Fed-GM fillets. We also find that participants dislike imported salmon fillets relative to
domestic based on the negative coefficients on the Norway and Chile attribute indicators. Finally, the
No Purchase (ASC) direct effect can be interpreted simply as an intercept term. We now consider the
significant behavioral interaction effects in Table 4.

3.3. Health Domain

In the health domain, concern about the health risks associated with GM technology is present
in two of the four significant interactions. As concern level increases, Fed-GM labeled fillets become
less attractive to consumers. A related observation is that concern level makes the no-purchase
option more attractive. This would imply that consumers would rather not buy salmon fillets at all
as their concern about the health risks of GM technology increased. Similarly, confidence in health
risk perception makes the no-purchase option more attractive. Confidence in health risk perception
level also increases the likelihood of purchasing organic salmon for those in the positive information
treatment. This is somewhat unexpected as the information provides benefits of using GM technology
in food production. However, we believe the confidence in risk perception is the driving force behind
this effect. This is indicative of substitution away from GM salmon given strong prior confidence in
health risk perceptions.
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3.4. Environment Domain

In the environment domain, risk perception decreases the likelihood of purchasing a Fed-GM
or GM fillet given the balanced information treatment. The fact that balanced information could not
override the effects of prior risk perceptions provides further support for the negativity bias related to
food technology identified in previous works [71,72]. The result that the interaction of confidence in
environmental risk perception makes organic fillets less attractive for those in the balanced information
treatment could be driven by those that are confident GM foods do not pose environmental risks.
The justification for this interpretation is the fact that we are able to separate risk perception from
confidence in the risk perception under the framework of the HoC. Specifically, higher confidence in
risk perception does not necessarily imply a graver risk assessment.

We also see that increased confidence in environmental risk assessment of GM foods makes the
no-purchase alternative less attractive in contrast to the same interaction in the health domain. This
may be evidence that health risks are more salient on a personal-level, while environmental risks are
more salient on a societal level, providing an exhibition of optimism bias as described by van der
Linden [42]. Lastly, we also see that the interaction of confidence in environmental risk perception
makes organic fillets less attractive for those in the balanced information.

3.5. Subjective Knowledge

There are two interactions with subjective knowledge in Table 4. We find a significant and positive
effect of subjective knowledge on purchase likelihood of Fed-GM fillets, while subjective knowledge
decreases the likelihood of selecting the no-purchase alternative. As subjective knowledge about GM
technology in food production increases, so does likelihood of purchasing products in this category.
Similarly, if consumers feel knowledgeable about GM technology in food, they perceive no or minimal
information asymmetry about these food products and feel more confident making decisions that
involve them. We consider these results consistent with the motivation behind “consumer right to
know” campaigns.

3.6. Ambiguity Aversion

Domain-specific ambiguity aversion significantly increases the likelihood of purchasing Fed-GM
salmon. If you are more competent or consider yourself more competent about GM technology in
food, then you are more ambiguity averse in the domain of GM food. Thus, you prefer “betting” on
purchases you are familiar with or feel knowledgeable about. If you know a product is not GM with
certainty, then all bets are off. This ties directly back to the subjective knowledge measures, as we
know from the literature that these measures increase together, specifically in this domain [55]. An
alternate phrasing of the results uses the definition of an ambiguity-averse individual. As individual
ambiguity aversion increases, so does the probability of losses they are willing to accept to avoid
making a decision with an ambiguous outcome. So, ambiguity aversion in the GM domain implies
that an individual would rather buy a fillet with a known high probability of being GM than a fillet
with an unknown probability of being GM.

4. Discussion

As the global population continues to grow, there will be increasing demand for quality, safe,
and diverse food options, especially seafood. We find that consumers’” perceptions, attitudes and
behavioral measures do play an important role in predicting consumer choice of seafood products.
Our results confirm basic intuitions about consumer preference for lower prices and non-GM foods, as
well as preference for domestic origin of their seafood. We also find that health and environmental
risk perceptions, confidence and concern about potential health risks, confidence and concern about
environmental risks, subjective knowledge, and ambiguity aversion have a significant influence on
consumer choice of salmon fillets. In the context of van der Linden’s Hierarchy of Concern framework,
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we see that risk perception, confidence, and concern about the risks associated with GM technology
are the prominent behavioral factors in both the health and environment domain. Both context specific
subjective knowledge and ambiguity aversion promote consumption of Fed-GM labeled salmon fillets,
which is consistent with the competence hypothesis [54] and comparative ignorance hypothesis [53].

Our results show that familiarity with GM technology is an important component of demand for
GM seafood, as well as the ultimate efficacy of the NBFDS at addressing the information asymmetry
issue in the market for GM seafood. Further, we provide evidence that familiarity with the use of GM
technology in food can promote consumption of these products. On the other side of this, however, is
the fact that concern and confidence about the potential health and environmental risks associated
with GM technology can push consumers out of the salmon market all together. These results indicate
that while labels under the NBFDS can effectively promote informed consumer choice, the labels might
unintentionally reduce overall salmon consumption, which is problematic given the already low levels
of seafood consumption in the United States. This is particularly relevant given the recent lift of the
import ban on AquAdvantage salmon eggs and large-scale production of the product.

In light of these findings, it is all the more pressing that future work focuses on using empirical
techniques, like machine learning, to better understand how behavioral measures might lead to
perverse outcomes of the NBFDS and other proposed food policy. We see strong opportunity to utilize
available data sets such as those associated with the Eurbarometer and/or Pew Research Center surveys
as a means of feasibly investigating this issue. Some additional considerations to explore as behavioral
predictors might include measures of cultural cognition and social norms as they relate to scientific
communication and public policy [73]. One specific area that would be valuable to explore is the
consumer perception of the sustainability of GM seafood products. If advancements in the aquaculture
industry, including GM technology, are utilized to address sustainability concerns, the ultimate efficacy
of such advancements is dependent on consumer perceptions. As such, further investigation of
consumers’ perception of the sustainability of industry innovations would be a valuable endeavor.
These analyses will continue to build evidence in support of incorporating “non-conventional” data in
models to improve predictive performance [59].

While we are proponents of using machine learning techniques to investigate consumer behavior,
we do note that these methods have some inherent limitations that have implications for its use in
policy evaluation via a DCE. From a practical standpoint, the primary limitation of these methods
is the time and computational demands necessary for estimation. Whether policy makers have the
resources to estimate such models could be a potential barrier to full utilization in the policy sector.
Another limitation of using LASSO to analyze DCE data is that it does not allow for estimation of valid
willingness-to-pay (WTP) measures typical of DCE studies. WTP estimates from such a method are
invalid due to potential selection bias introduced by using the LASSO as a feature selection tool. The
selection bias arises due to LASSO’s indifference between selecting from a group of correlated variables.

Regardless of the approach adopted, these models can only be as effective as the data available
to decision makers. The European Union (EU) conducts the annual Eurobarometer to assess public
opinion on various topics ranging from trust in national government to consumer habits regarding
fishery and aquaculture products. A triennial special topic survey focuses on public perception of
biotechnology in the EU and a variety of studies have used the publicly available data set to infer public
perception of GM foods [34,74]. In the United States, the Pew Research Center conducts similar public
surveys and provides data sets for public use. Our findings highlight important pathways through
which information on food labels, as well as outside market information, can have heterogeneous
effects on consumer purchase decisions. Specifically, we have reaffirmed the importance of measuring
risk perceptions in a multidimensional manner as proposed by van der Linden and other scholars.
These results are informative for those developing public surveys such as the EU and Pew Research
Center of the most appropriate manner in which to gauge public perceptions and sentiments toward
novel food technologies like genetic modification. A fuller understanding of the multidimensionality
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of public perception is particularly relevant to policy makers as regulatory measures for promoting
sustainability in the food system develop concurrently with sustainable food innovations.

We propose that data sources like those mentioned above be more thoroughly utilized by policy
makers to address the policy prediction problem associated with food process labels. Using these data
with a model selection approach like LASSO can help to tease out important behavioral considerations
that, as we have shown, are important in consumer decision making in the seafood market. Given
current policy interventions that aim to promote consumption of seafood products through affecting the
outside information available to consumers, these methods can be used to identify pathways through
which these interventions are effective and, critically, can aid in targeting future policy initiatives or
strategic marketing of food products more effectively.
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Author Contributions: M.J.W. is responsible for software, validation, formal analysis, investigation, data
curation, writing—original draft preparation, visualization, project administration and funding acquisition under
supervision of TW.S. Both M.J.W. and T.W.S. contributed to conceptualization, methodology, resources, and
writing—review and editing.

Funding: This research is made possible by the partial support of the University of Rhode Island Coastal Institute.

Acknowledgments: The authors thank Ben Blachly, Jason Walsh, Vasu Gaur, David Bidwell, Hiro Uchida, Maya
Vadiveloo and the anonymous reviewers for helpful comments and suggestions.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. United Nations, Department of Economics and Social Affairs, Population Division. World Population Prospects:
The 2017 Revision, Key Findings and Advance Tables; United Nations: New York, NY, USA, 2017.

2. Food and Agricultural Organization of the United Nations. State of World Fisheries and Aquaculture
2016—Contributing to Food Security and Nutrition for All; Food and Agricultural Organization of the United
Nations: Rome, Italy, 2016.

3. Food and Agricultural Organization of the United Nations. State of World Fisheries and Aquaculture
2018—Meeting the Sustainable Development Goals; Food and Agricultural Organization of the United Nations:
Rome, Italy, 2018.

4.  AquaBounty Technologies, Inc. AquaBounty Technologies. Available online: https://aquabounty.com/
(accessed on 30 May 2019).

5. Ferrer Llagostera, P.; Kallas, Z.; Reig, L.; Amores de Gea, D. The use of insect meal as a sustainable feeding
alternative in aquaculture: Current situation, Spanish consumers’ perceptions and willingness to pay. J. Clean.
Prod. 2019, 229, 10-21. [CrossRef]

6. Smith, M.D.; Asche, F; Guttormsen, A.G.; Wiener, ]J.B. Genetically Modified Salmon and Full Impact
Assessment. Science 2010, 330, 1052-1053. [CrossRef] [PubMed]

7. Agricultural Marketing Act of 1946, 7 United States Code §§ 1639-1639¢c. 2016. Available online: https:
/[www.congress.gov/114/plaws/publ216/PLAW-114publ216.pdf (accessed on 10 October 2017).

8.  Boudreau, C. USDA Eyes Dec. 1 for Final GMO Labeling Rule. POLITICO Pro 2018. Available
online: https://subscriber.politicopro.com/agriculture/whiteboard/2018/09/usda-eyes-dec-1-for-final-gmo-
labeling-rule-1904831 (accessed on 16 November 2018).

9. Blank, C. FDA Lifts Import Alert on GE Salmon, Clears Way for AquaBounty. Available
online: https://www.seafoodsource.com/news/supply-trade/fda-lifts-import-alert-on-ge-salmon-clears-way-
for-aquabounty (accessed on 10 March 2019).

10. Blank, C. GE Salmon Advancing in the US with FDA’s Blessing. Available online: https://www.seafoodsource.
com/news/aquaculture/ge-salmon-advancing-in-the-us-with-fda-blessing (accessed on 3 May 2018).

11.  Mullainathan, S.; Spiess, ]. Machine Learning: An Applied Econometric Approach. J. Econ. Perspect. 2017, 31,
87-106. [CrossRef]

12.  Kleinberg, J.; Ludwig, J.; Mullainathan, S.; Obermeyer, Z. Prediction Policy Problems. Am. Econ. Rev. 2015,
105, 491-495. [CrossRef] [PubMed]


http://www.mdpi.com/2071-1050/11/14/3934/s1
https://aquabounty.com/
http://dx.doi.org/10.1016/j.jclepro.2019.05.012
http://dx.doi.org/10.1126/science.1197769
http://www.ncbi.nlm.nih.gov/pubmed/21097923
https://www.congress.gov/114/plaws/publ216/PLAW-114publ216.pdf
https://www.congress.gov/114/plaws/publ216/PLAW-114publ216.pdf
https://subscriber.politicopro.com/agriculture/whiteboard/2018/09/usda-eyes-dec-1-for-final-gmo-labeling-rule-1904831
https://subscriber.politicopro.com/agriculture/whiteboard/2018/09/usda-eyes-dec-1-for-final-gmo-labeling-rule-1904831
https://www.seafoodsource.com/news/supply-trade/fda-lifts-import-alert-on-ge-salmon-clears-way-for-aquabounty
https://www.seafoodsource.com/news/supply-trade/fda-lifts-import-alert-on-ge-salmon-clears-way-for-aquabounty
https://www.seafoodsource.com/news/aquaculture/ge-salmon-advancing-in-the-us-with-fda-blessing
https://www.seafoodsource.com/news/aquaculture/ge-salmon-advancing-in-the-us-with-fda-blessing
http://dx.doi.org/10.1257/jep.31.2.87
http://dx.doi.org/10.1257/aer.p20151023
http://www.ncbi.nlm.nih.gov/pubmed/27199498

Sustainability 2019, 11, 3934 19 of 21

13.

14.

15.

16.

17.
18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.
31.

32.

33.

34.

35.

36.
37.

38.

39.

Hino, M.; Benami, E.; Brooks, N. Machine learning for environmental monitoring. Nat. Sustain. 2018, 1,
583-588. [CrossRef]

Kleinberg, J.; Lakkaraju, H.; Leskovec, J.; Ludwig, J.; Mullainathan, S. Human Decisions and Machine
Predictions. Q. J. Econ. 2017, 133, 237-293. [PubMed]

Hut, S.; Oster, E. Changes in Household Diet: Determinants and Predictability; National Bureau of Economic
Research: Cambridge, MA, USA, 2018.

Oster, E. Diabetes and Diet: Purchasing Behavior Change in Response to Health Information. Am. Econ. .
Appl. Econ. 2018, 10, 308-348. [CrossRef]

Blumenstock, J. Fighting poverty with data. Science 2016, 353, 753-754. [CrossRef] [PubMed]

Jean, N.; Burke, M.; Xie, M.; Davis, W.M.; Lobell, D.B.; Ermon, S. Combining satellite imagery and machine
learning to predict poverty. Science 2016, 353, 790-794. [CrossRef]

Blumenstock, J.; Cadamuro, G.; On, R. Predicting poverty and wealth from mobile phone metadata. Science
2015, 350, 1073-1076. [CrossRef]

Andini, M.; Ciani, E.; de Blasio, G.; D’Ignazio, A.; Salvestrini, V. Targeting with machine learning;:
An application to a tax rebate program in Italy. J. Econ. Behav. Organ. 2018, 156, 86-102. [CrossRef]

Kang, J.S.; Kuznetsova, P.; Luca, M.; Choi, Y. Where Not to Eat? Improving Public Policy by Predicting
Hygiene Inspections Using Online Reviews. In Proceedings of the 2013 Conference on Empirical Methods in
Natural Language Processing, Seattle, WA, USA, 18-21 October 2013; pp. 1443-1448.

Kim, J.-M.; Jung, H. Predicting bid prices by using machine learning methods. Appl. Econ. 2019, 51,
2011-2018. [CrossRef]

Lusk, J.L.; Rozan, A. Public Policy and Endogenous Beliefs: The Case of Genetically Modified Food. J. Agric.
Resour. Econ. 2008, 33, 270-289.

Bonroy, O.; Constantatos, C. On the Economics of Labels: How Their Introduction Affects the Functioning of
Markets and the Welfare of All Participants. Am. J. Agric. Econ. 2014, 97, 239-259. [CrossRef]

Marette, S.; Roosen, J. Bans and Labels with Controversial Food Technologies. In The Oxford Handbook of the
Economics of Food Consumption and Policy; Oxford University Press: Oxford, UK, 2011.

Liu, S.; Huang, J.-C.; Brown, G.L. Information and Risk Perception: A Dynamic Adjustment Process. Risk
Anal. 1998, 18, 689-699. [CrossRef]

Messer, K.D.; Costanigro, M.; Kaiser, H.M. Labeling Food Processes: The Good, the Bad and the Ugly. Appl.
Econ. Perspect. Policy 2017, 39, 407—427. [CrossRef]

Steenkamp, J.-B. Conceptual model of the quality perception process. J. Bus. Res. 1990, 21, 309-333.
[CrossRef]

Lusk, J.L.; Coble, K.H. Risk Perceptions, Risk Preference, and Acceptance of Risky Food. Am. J. Agric. Econ.
2005, 87, 393—-405. [CrossRef]

Petrolia, D.R. Risk preferences, risk perceptions, and risky food. Food Policy 2016, 64, 37-48. [CrossRef]
Loewenstein, G. Emotions in Economic Theory and Economic Behavior. Am. Econ. Rev. 2000, 90, 426—432.
[CrossRef]

Curtis, K.R.; McCluskey, J.J.; Wahl, T.I. Consumer Acceptance of Genetically Modified Food Products in the
Developing World. AgBioForum 2004, 7, 70-75.

Amin, L.; Azad, M.A.; Gausmian, M.H.; Zulkifli, F. Determinants of Public Attitudes to Genetically Modified
Salmon. PLoS ONE 2014, 9, e86174. [CrossRef]

Gaskell, G.; Allum, N.; Wagner, W.; Kronberger, N.; Torgersen, H.; Hampel, J.; Bardes, J. GM Foods and the
Misperception of Risk Perception. Risk Anal. 2004, 24, 185-194. [CrossRef]

Hoch, S.J.; Ha, Y.-W. Consumer Learning: Advertising and the Ambiguity of Product Experience. J. Consum.
Res. 1986, 13, 221-233. [CrossRef]

Snow, A. Ambiguity and the value of information. J. Risk Uncertain. 2010, 40, 133-145. [CrossRef]

Kivi, PA.; Shogren, J.F. Second-Order Ambiguity in Very Low Probability Risks: Food Safety Valuation.
J. Agric. Resour. Econ. 2010, 35, 443-456.

Viscusi, WK.; Magat, W.A.; Huber, J. Smoking Status and Public Responses to Ambiguous Scientific Risk
Evidence. South. Econ. J. 1999, 66, 250-270. [CrossRef]

Kaptan, G.; Fischer, A.R.H.; Frewer, L.J. Extrapolating understanding of food risk perceptions to emerging
food safety cases. J. Risk Res. 2018, 21, 996-1018. [CrossRef]


http://dx.doi.org/10.1038/s41893-018-0142-9
http://www.ncbi.nlm.nih.gov/pubmed/29755141
http://dx.doi.org/10.1257/app.20160232
http://dx.doi.org/10.1126/science.aah5217
http://www.ncbi.nlm.nih.gov/pubmed/27540154
http://dx.doi.org/10.1126/science.aaf7894
http://dx.doi.org/10.1126/science.aac4420
http://dx.doi.org/10.1016/j.jebo.2018.09.010
http://dx.doi.org/10.1080/00036846.2018.1537477
http://dx.doi.org/10.1093/ajae/aau088
http://dx.doi.org/10.1111/j.1539-6924.1998.tb01113.x
http://dx.doi.org/10.1093/aepp/ppx028
http://dx.doi.org/10.1016/0148-2963(90)90019-A
http://dx.doi.org/10.1111/j.1467-8276.2005.00730.x
http://dx.doi.org/10.1016/j.foodpol.2016.09.006
http://dx.doi.org/10.1257/aer.90.2.426
http://dx.doi.org/10.1371/journal.pone.0086174
http://dx.doi.org/10.1111/j.0272-4332.2004.00421.x
http://dx.doi.org/10.1086/209062
http://dx.doi.org/10.1007/s11166-010-9088-7
http://dx.doi.org/10.2307/1061142
http://dx.doi.org/10.1080/13669877.2017.1281330

Sustainability 2019, 11, 3934 20 of 21

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.
58.

59.

60.

61.

62.

63.

64.

65.

Hansen, J.; Holm, L.; Frewer, L.; Robinson, P.; Sandee, P. Beyond the knowledge deficit: Recent research into
lay and expert attitudes to food risks. Appetite 2003, 41, 111-121. [CrossRef]

Frewer, L.].; Howard, C.; Hedderley, D.; Shepherd, R. The Elaboration Likelihood Model and Communication
About Food Risks. Risk Anal. 1997, 17, 759-770. [CrossRef]

van der Linden, S. Determinants and Measurement of Climate Change Risk Perception, Worry, and Concern.
In The Oxford Encyclopedia of Climate Change Communication; Nisbet, M.C., Schafer, M., Markowitz, E., Ho, S.,
O'Neill, S., Thaker, J., Eds.; Oxford University Press: Oxford, UK, 2017; Volume 1.

Meagher, K.D. Public perceptions of food-related risks: A cross-national investigation of individual and
contextual influences. J. Risk Res. 2018, 22, 919-935. [CrossRef]

Slovic, P. Trust, Emotion, Sex, Politics, and Science: Surveying the Risk-Assessment Battlefield. Risk Anal.
1999, 19, 689-701. [CrossRef]

United States Census Bureau. DP05: ACS Demographic and Housing Estimates. In 2016 American Community
Survey 1-Year Estimates; United States Census Bureau’s American Community Survey Office: Washington,
DC, USA, 2017.

United States Census Bureau. S1501: Educational Attainment. In 2016 American Community Survey 1-Year
Estimates; United States Census Bureau’s American Community Survey Office: Washington, DC, USA, 2017.
United States Census Bureau. 52501: Occupancy Characteristics. In 2016 American Community Survey 1-Year
Estimates; United States Census Bureau’s American Community Survey Office: Washington, DC, USA, 2017.
Goodman, J.K.; Paolacci, G. Crowdsourcing Consumer Research. ]. Consum. Res. 2017, 44, 196-210.
[CrossRef]

Funk, C.; Kennedy, B. The New Food Fights: U.S. Public Divides Over Food Science; Pew Research Center:
Washington, DC, USA, 2016.

Carlucci, D.; Nocella, G.; De Devitiis, B.; Viscecchia, R.; Bimbo, E; Nardone, G. Consumer purchasing
behaviour towards fish and seafood products. Patterns and insights from a sample of international studies.
Appetite 2015, 84, 212-227. [CrossRef]

StataCorp. Stata Statistical Software: Release 13; StataCorp LLC: College Station, TX, USA, 2013.

Hole, A.R. DCREATE: Stata Module to Create Efficient Designs for Discrete Choice Experiments; Boston College
Department of Economics: Boston, MA, USA, 2015.

Fox, C.R,; Tversky, A. Ambiguity Aversion and Comparative Ignorance. Q. J. Econ. 1995, 110, 585-603.
[CrossRef]

Heath, C.; Tversky, A. Preference and belief: Ambiguity and competence in choice under uncertainty. J. Risk
Uncertain. 1991, 4, 5-28. [CrossRef]

Costa-Font, M. Understanding Food Scares: The Role of Ambiguity Aversion and Analogical Reasoning.
Hum. Ecol. Risk Assess. Int. ]. 2013, 19, 661-673. [CrossRef]

Dimmock, S.G.; Kouwenberg, R.; Mitchell, O.S.; Peijnenburg, K. Estimating ambiguity preferences and
perceptions in multiple prior models: Evidence from the field. J. Risk Uncertain. 2015, 51, 219-244. [CrossRef]
Viscusi, WK. Alarmist Decisions with Divergent Risk Information. Econ. J. 1997, 107, 1657-1670. [CrossRef]
Hastie, T.; Tibshirani, R.; Friedman, J.H. The Elements of Statistical Learning: Data Mining, Inference, and
Prediction, 2nd ed.; Springer Series in Statistics; Springer: New York, NY, USA, 2009.

Huseynov, S.; Kassas, B.; Segovia, M.S.; Palma, M.A. Incorporating biometric data in models of consumer
choice. Appl. Econ. 2018, 51, 1514-1531. [CrossRef]

Afendras, G.; Markatou, M. Optimality of Training/Test Size and Resampling Effectiveness of Cross-Validation
Estimators of the Generalization Error. arXiv 2015, arXiv:1511.02980.

Friedman, ].H.; Hastie, T.; Tibshirani, R. Regularization Paths for Generalized Linear Models via Coordinate
Descent. J. Stat. Softw. 2010, 33, 1. [CrossRef]

Tibshirani, R. Regression Shrinkage and Selection via the Lasso. . R. Stat. Soc. Ser. B Methodol. 1996, 58,
267-288. [CrossRef]

Groll, A. glmmLasso: Variable Selection for Generalized Linear Mixed Models by L1-Penalized Estimation; R Package
Version 1.5.1.; The R Foundation for Statistical Computing: Vienna, Austria, 2017.

R Core Team. R: A Language and Environment for Statistical Computing; R Version 3.5.2; The R Foundation for
Statistical Computing: Vienna, Austria, 2018.

Zhao, S.; Shojaie, A.; Witten, D. In Defense of the Indefensible: A Very Naive Approach to High-Dimensional
Inference. arXiv 2017, arXiv:1705.05543.


http://dx.doi.org/10.1016/S0195-6663(03)00079-5
http://dx.doi.org/10.1111/j.1539-6924.1997.tb01281.x
http://dx.doi.org/10.1080/13669877.2017.1422789
http://dx.doi.org/10.1111/j.1539-6924.1999.tb00439.x
http://dx.doi.org/10.1093/jcr/ucx047
http://dx.doi.org/10.1016/j.appet.2014.10.008
http://dx.doi.org/10.2307/2946693
http://dx.doi.org/10.1007/BF00057884
http://dx.doi.org/10.1080/10807039.2012.685805
http://dx.doi.org/10.1007/s11166-015-9227-2
http://dx.doi.org/10.1111/j.1468-0297.1997.tb00073.x
http://dx.doi.org/10.1080/00036846.2018.1527460
http://dx.doi.org/10.18637/jss.v033.i01
http://dx.doi.org/10.1111/j.2517-6161.1996.tb02080.x

Sustainability 2019, 11, 3934 21 of 21

66.

67.

68.

69.

70.

71.

72.

73.

74.

Berk, R.; Brown, L.; Buja, A.; Zhang, K.; Zhao, L. Valid post-selection inference. Ann. Stat. 2013, 41, 802-837.
[CrossRef]

Lee, ].D.; Sun, D.L.; Sun, Y.; Taylor, J.E. Exact post-selection inference, with application to the lasso. Ann. Stat.
2016, 44, 907-927. [CrossRef]

Tibshirani, R.J.; Taylor, J.; Lockhart, R.; Tibshirani, R. Exact Post-Selection Inference for Sequential Regression
Procedures. |. Am. Stat. Assoc. 2016, 111, 600-620. [CrossRef]

Belloni, A.; Chernozhukov, V.; Hansen, C. Inference on Treatment Effects after Selection among
High-Dimensional Controls. Rev. Econ. Stud. 2013, 81, 608-650. [CrossRef]

Mas-Colell, A.; Whinston, M.D.; Green, J.R. Microeconomic Theory; Oxford University Press: New York, NY,
USA, 1995.

Mizerski, R.W. An Attribution Explanation of the Disproportionate Influence of Unfavorable Information.
J. Consum. Res. 1982, 9, 301-310. [CrossRef]

Kahneman, D.; Knetsch, J.L.; Thaler, R.H. Anomalies: The endowment effect, loss aversion, and status quo
bias. J. Econ. Perspect. 1991, 5, 193-206. [CrossRef]

Kahan, D.M.; Jenkins-Smith, H.; Braman, D. Cultural cognition of scientific consensus. J. Risk Res. 2011, 14,
147-174. [CrossRef]

Gaskell, G.; Hohl, K.; Gerber, M.M. Do closed survey questions overestimate public perceptions of food
risks? J. Risk Res. 2017, 20, 1038-1052. [CrossRef]

@ © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.1214/12-AOS1077
http://dx.doi.org/10.1214/15-AOS1371
http://dx.doi.org/10.1080/01621459.2015.1108848
http://dx.doi.org/10.1093/restud/rdt044
http://dx.doi.org/10.1086/208925
http://dx.doi.org/10.1257/jep.5.1.193
http://dx.doi.org/10.1080/13669877.2010.511246
http://dx.doi.org/10.1080/13669877.2016.1147492
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Data 
	DCE and Survey Design 
	Behavioral Measures 
	Ambiguity Aversion Elicitation 

	Empirical Methods 
	Mixed Logit 
	LASSO Penalized Regression 


	Results 
	Model Fit 
	Behavioral Measures 
	Health Domain 
	Environment Domain 
	Subjective Knowledge 
	Ambiguity Aversion 

	Discussion 
	References

