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Abstract: Precise solar radiation forecasting is of great importance for solar energy utilization and
its integration into the grid, but because of the daily solar radiation’s intrinsic non-stationary and
nonlinearity, which is influenced by a lot of elements, single predicting models may have difficulty
obtaining results with high accuracy. Therefore, this paper innovatively puts forward an original
hybrid model that predicts solar radiation through extreme learning machine (ELM) optimized
by the bat algorithm (BA) based on wavelet transform (WT) and principal component analysis
(PCA). First, choose the meteorological variables on the basis of Pearson coefficient test, and WT will
decompose historical solar radiation into two time series, which are de-noised signal and noise signal.
In the approximate series, the lag phase of historical radiation is obtained by partial autocorrelation
function (PACF). After that, use PCA to reduce the dimensions of the influencing factors, including
meteorological variables and historical radiation. Finally, ELM is established to predict daily solar
radiation, whose input weight and deviation thresholds gained optimization by BA, thus it is called
BA-ELM henceforth. In view of the four distinct solar radiation series obtained by NASA, the
empirical simulation explained the hybrid model’s validity and effectiveness compared to other
primary methods.

Keywords: solar radiation forecasting; ELM; BA; WT; PACF; PCA; Pearson coefficient test

1. Introduction

Daily total solar radiation is considered as the most important parameter in meteorology, solar
conversion, and renewable energy applications, particularly for the sizing of stand-alone photovoltaic
(PV) systems. The knowledge of the amount of solar radiation falling on the surface of the earth
is of prime importance to engineers and scientists involved in the design of solar energy systems.
In particular, many design methods for thermal and photovoltaic systems require information about
the daily radiation on a horizontal surface in order to predict the energy production of the system, and
its prediction precision is extremely instructive for the stable operation of the power grid as well as the
formulation of a scheduling plan [1].

Many researchers have produced daily solar radiation (DSR) predictions. DSR prediction methods
are usually divided into three categories: conventional physical models, mathematical statistical
models, and machine learning. Conventional physical models predict solar radiation values through a
series of physical analysis, data fitting, complex mathematical model construction, and calculations in
the absence of meteorological data on total solar radiation intensity. A lot of authors have succeeded in
various clear day models as well, including the simple ones of the half-sine [2,3] and the Collares-Pereira
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and Rabl model [4]. Physical models do not reflect the strong randomness of the solar radiation
sequence. Once the meteorological environment changes, the calculation accuracy is greatly reduced.

The traditional mathematical statistics models include regression analysis [5], time series
analysis [6,7], gray theory [8], fuzzy theory [9,10], and Kalman filter [11]. Trapero et al. (2015) [5]
applied dynamic harmonic regression model (DHR) to forecast short-term direct solar radiation
and scattered solar radiation in Spain for the first time in 2015. Huang et al. (2013) [6] used the
autoregressive model to predict the 2013 meteorological factors—when the solar radiation is within the
dynamic adjustment system framework, the accuracy is 30% higher than the general neural network
or stochastic model. Through the integration of Fourier transform and neural network, Fidan et al.
(2014) [8] predicted hourly solar radiation in Izmir, Turkey. Olcan, Mahmudov (2016) [10] proposed a
modified fuzzy time series (FTS) using eight different radiation mixing models. The results show that,
compared with other fuzzy models and traditional time series methods, the proposed hybrid model-8
exhibits better performance. Akarslan et al. (2014) [11] first utilized the multi-dimensional linear
predictive filtering model to predict solar radiation, and the two-dimensional linear predictive filtering
model as well as the traditional statistical forecasting method have passed through empirical analysis.

With the development of big data mining, machine learning technology has attracted widespread
attention. For instance, artificial neural network (ANN) [12–17] and support vector machine
(SVM) [18–20] have been widely applied in solar radiation prediction. Amrouche and Le Pivert
(2014) [12] took advantage of spatial modeling and artificial neural networks (ANNs) to predict daily
total solar radiation in four locations in the United States, and the empirical results indicate that the
proposed model satisfies the expected accuracy. Benmouiza and Cheknane (2013) [13] used K-means
to classify the input data, then used nonlinear autoregressive neural networks to model various
categories, and eventually predicted the solar radiation of test data through the accordant model. Adel,
Massi (2010) [15] used artificial neural network (ANN) for solar irradiance prediction. A comparison
between the forecasted one and the energy produced by the Grid Connected Photovoltaic Plants
(GCPV) installed on the rooftop of the municipality of Trieste showed the advantages of the model.
From the above, the conclusion can be drawn that, when the data set is not enough, ANN cannot
perform well. Ekici, B.B. [18] developed an intelligent model based on least squares support vector
machine (LSSVM) to forecast solar radiation for the next day. The number of days from 1 January,
the daily average temperature, the daily maximum temperature, the sunshine time, and the sun day
before the parameter were used as input to predict the daily sun sunshine. The results indicated that
LSSVM is a superb approach to evaluate the amount of solar radiation of a specific location with an
accuracy of 99.294%. Sun Shaolong et al. [19] put forward a decomposition cluster set (DCE) learning
method for solar radiation prediction. In the proposed DCE learning method, (1) Ensemble Empirical
Mode Decomposition (EEMD) is used to decompose the original solar radiation data into several
intrinsic mode functions (IMF) and residual components, (2) least squares support vector regression
(LSSVR) is utilized to predict IMF and residual component, and (3) the Kmeans method is used to
cluster the prediction results of all components. The empirical analysis of the solar radiation data
introduced in Beijing shows that, compared with other benchmark models, the Normalized Root Mean
Square Error (NRMSE) and Mean Absolute Percentage Error (MAPE) generated by the DCE learning
method are smaller, and the accuracy rates are 2.96% and 2.83%, respectively. In the forecast one day
ahead, Meenal and Selvakumar [20] assessed the accuracy of support vector machine (SVM), artificial
neural network (ANN), and empirical solar radiation models with different combinations of input
parameters. The parameters include month, latitude, longitude, bright sunshine hours, day length,
relative humidity, and maximum and minimum temperature. Based on statistical measures, the daily
solar radiation forecasting models of different cities in India were evaluated. The results indicated
that, compared with ANN and empirical models, the SVM model with the most influencing input
parameters is superior. However, diverse types of kernel functions and kernel parameters greatly
affect the accuracy of fitting and generalization.
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The Extreme Learning Machine (ELM) originally put forward by Huang in 2004 [21] has faster
convergence speed and less human interference than traditional neural networks and can also prevent
possible occurrences in gradient-based learning, such as stopping criteria, learning rate, and learning
periods. In view of this, extreme learning machines are widely used in different forecasting areas, load
forecasting [22,23], wind speed forecasting [24,25], electricity price forecasting [26], carbon emission
forecasting [27], and so on. However, the input weight matrix and hidden layer bias of the randomly
assigned ELM is likely to influence the generalization ability of the ELM. Therefore, an optimization
algorithm is highly desirable to obtain the optimal weight of the input layer and the bias of the
hidden layer.

The Bat Algorithm (BA) [28] is considered to be a new meta-heuristic method that dynamically
controls the mutual conversion between local search as well as global search and achieves better
convergence. For the superb performance of local search and global search compared with
existing algorithms such as genetic algorithm (GA) [29] and particle swarm optimization (PSO) [30],
researchers and scholars have made wide use of BA in various optimization problems [31–33].
Qi Liu et al. [31] proposed a novel Hybrid Bat Algorithm for complex continuous optimization
problems. Deepak Gupta et al. [32] proposed an Optimized Binary Bat algorithm for classification of
different types of leukocytes. Lili A et al. [33] proposed bat algorithm to minimize total generator cost
from the thermal power plant, and their experimental results showed that bat algorithm is able to save
approximately 1.23% compare to the actual cost.

Therefore, this paper optimizes the input weight and hidden bias of the extreme learning machine
through BA to realize the advantages of maximizing the global and local search capabilities of BA and
the goal of ELM fast learning speed, which overcomes the inherent instability of ELM.

Considering the solar radiation’s inherent complexity, which is influenced by many parameters,
it is expected to complete data processing ahead [34,35]. Wavelet transform (WT) is considered to be
the most commonly used data preprocessing method for decomposing time series and eliminating
stochastic volatility. Tan et al. [36] succeeded in using wavelet decomposition to decompose the
electricity price sequence into an approximate sequence and detail sequences, and each sub-series can
be forecasted separately by an appropriate time series model. The results show that WT can capture
the complex features of non-stationary, nonlinear, and high volatility.

Based on the above studies, it can be found that the appropriate selection of influencing factors
has a significant impact on the prediction of solar radiation. Nevertheless, most studies only emphasize
the effects of these factors on solar radiation, ignoring the interrelationships between them. In fact,
the information contained in the data overlaps, so the computational efficiency is greatly reduced
due to the complexity of the network. Principal component analysis (PCA) simplifies the network
structure and significantly improves operational efficiency and prediction accuracy by minimizing the
dimensionality of pre-selected influencing factors for information retention. Sun, Wet al. [37] used
PCA to draw original features and the dimensions of the LSSVM input selection were reduced to
predict daily PM2.5 concentrations. Experimental studies show that this method is superior to the
single LSSVM model. Therefore, PCA is utilized in this paper with the intention of reducing the
dimensionality of data and improving prediction accuracy.

At present, most of the empirical studies on solar radiation prediction use data from a certain region
or a certain country. Few use different longitudes and different dimensions to predict simultaneously.
In order to verify the solar radiation prediction model proposed in this paper. The validity and
application of four solar radiation time series in Beijing (40 degrees north latitude 116), New York
(north latitude 40 degrees −73), Melbourne (latitude −37, longitude 145), and São Paulo (latitude −23,
longitude −46) are studied in this paper.

In summary, after the WT decomposition, the solar radiation series is split into an approximate
series and a detailed series. Then, the detailed time series is discarded, and the approximate time
series and meteorological indicators are processed by partial autocorrelation analysis (PCA) to further
determine the input variables of the prediction model. Finally, a BA-optimized Extreme Learning
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Machine (ELM) is applied to obtain predicted daily solar radiation. In order to verify the validity
and superiority of the proposed model, four different sites were simulated in this paper. The main
contributions of this article are as follows.

• The factors affecting solar radiation contain meteorological indicators and historical data on solar
radiation in this paper;

• ELM is a new type of neural network that has been applied in solar radiation prediction,
which avoids the shortcomings of slow learning, large training samples, and over-fitting in
previous studies;

• The BA-optimized ELM application further improves the robustness and prediction accuracy of
the model;

• Implementation of WT greatly reduces the difficulty of solar radiation prediction;
• This paper focuses on the correlation between influencing factors and uses PCA to reduce the

dimensionality to improve computational efficiency and prediction accuracy;
• This may be the first paper to study solar radiation prediction methods that can be applied to

different parts of the world at the same time.

The structure of this paper is as follows: Section 2 briefly introduces WT, PACF, PCA, BA, ELM,
and BA-ELM, and the new hybrid prediction technique (PCA-WT-BA-ELM) is then discussed in
detail. Section 3 provides empirical analysis, which includes data collection, input selection, parameter
settings, prediction results, and error analysis for four cities. Section 4 shows the general conclusions
based on the experimental results.

2. Methodology

2.1. Wavelet Transform

Wavelet decomposition and reconstruction are based on multi-resolution analysis. It was first
proposed by Mallat in 2000 [38] and is one of the most useful tools in signal analysis. The observation
data usually consists of two parts—the true value and the error (i.e., noise). The true value (i.e.,
the useful signal) in the observed data is different from the characteristic exhibited by the random
noise in the time-frequency domain. The useful features of the useful signal in the time domain
and the frequency domain are obvious, and generally appear as low frequency signals. The random
noise has obvious global characteristics in the time domain and the frequency domain, and the high
frequency signal appears in the frequency domain. According to the different characteristics of the
two in the time-frequency domain, multi-resolution analysis by wavelet transform can be performed.
The components of different frequencies are effectively separated to eliminate random noise. Finally,
according to the inverse operation of wavelet transform, the denoising processing of the original
observation data is realized by wavelet reconstruction [39].

The Wavelet Transform equation is defined as the integral of the signal multiplied by scaled,
shifted versions of a basic wavelet function—a real-valued function whose Fourier Transform fulfill
the admissibility criteria.

W f (a, b) =
1
√

a

∫
f (t)Ψ

(
t− b

a

)
dt (1)

where a is the so-called scaling parameter and b is the time positioning or shifting parameter. Both a
and b can be continuous or discrete variables. t represents time, f (t) represents the original signal, and
Ψ (·) represents the mother wavelet function. Wf(a,b) is the result of the wavelet transform.

2.2. Bat Algorithm

Bat algorithm is inspired by micro-bats’ echolocation behavior, through which bats are able to
probe prey and evade obstacles. It has the advantages of parallelism, fast convergence, and less
distribution and parameter adjustment [33].
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In the d-dimensions of search space during the global search, the bat i has the position of xt
i ,

and velocity vt
i at the time of t, whose position and velocity will be updated as Equations (2) and (3),

respectively:
xt+1

i = xt
i + vt+1

i (2)

vt+1
i = vt

i +
(
xt

i − xΛ
)
·Fi (3)

where xΛ is the current global optimal solution. Fi is the sonic wave frequency that can be seen in
Equation (4).

Fi = Fmin + (Fmax − Fmin)·β (4)

where β is a random number within [0, 1] and Fmax and Fmin are the max and min sonic wave
frequency of the bat i. In the flight, each initial bat is allocated one frequency in conformity with
[Fmin, Fmax] randomly.

If a solution is selected in the current global optimal solution in local search, each bat will bring
about a new alternative solution in the way of random walk according to Equation (5).

xn(i) = x0 + µAt (5)

where x0 is the solution which is randomly selected in current best disaggregation, At represents the
mean of current bat populations, and µ is the D-dimensional vector within [−1, 1].

Impulse volume A(i) and impulse emission rate R(i) controlled the balance of bats. When a bat
aims at its prey, the volume A(i) will declines while the emission rate R(i) ascends. The update of A(i)
and R(i) are expressed as Equations (6) and (7), respectively.

At+1(i) = γAt(i) (6)

Rt+1 = R0(i)·
(
1− e−θt

)
(7)

where γ and θ are the attenuation coefficient of the volume and the enhancement factor of the search
frequency, respectively. γ is within [0, 1], and θ > 0.

It has already been proven (Yang, 2012) [28] that bat algorithm is potentially more powerful than
PSO, GA, and Harmony Search. Because BA uses a good combination of major advantages of these
algorithms in some way, it has been confirmed by Yang that bat algorithm is potentially more powerful
than PSO, GA, and Harmony Search. Thanks to its parallelism, quick convergence, distribution, and
less parameter adjustment, BA has been utilized in various areas.

2.3. Extreme Learning Machine

ELM is a novel algorithm based on single hidden layer feed forward neural network (SFLN).
Most traditional neural networks, as their nature of the gradient descent method, adjust the weight
and bias through multiple iterations, making them slow for training and easy to plunge into the local
optimum. Their performance is also subject to certain limitations because it is sensitive to the learning
rate. On account of its high sensibility to the learning rate, their performance is restricted [21].

To improve the SLFN, ELM, as shown in Figure 1, randomly assign the weight of the input layer
and the thresholds of the hidden layer. Without a necessary iteration, the speed of completing the
network learning is accelerated. Once the number of the hidden nodes is set, ELM can make use of the
Moore-Penrose (MP) [40] generalized inverse matrix to calculate the output weight, which transforms
the training program into solving the least square problem. Moreover, ELM is more accurate on
performance than other neural networks [41]. The calculation steps of the standard ELM can be
explained as follows:
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Figure 1. The framework of the extreme learning machine.

The ELM consists of an input layer including, an implicit layer, and an output layer, where the n is
input layer neuron number, which corresponds to n input variables x1 . . . xn. The hidden layer neuron
number is L; the output layer neuron number is m, corresponding to m input variables y1 . . . yn.

The connection weights between the input layer and the hidden layer isω =
[
ωi j

]
n×L

, i = 1L n,

j = 1L L, and the connection weight between hidden layer and output layer is. β =
[
β jk

]
L×m

,
j = 1L L, k = 1 Lm.

Make the training set input matrix with Q samples to be X = [xir]n×Q, i = 1L n, r = 1 LQ and
the output matrix to be Y = [ykr]m×Q,k = 1L m, r = 1L Q. The hidden layer neuron threshold is

b = [b1, b2L bL]
T, the hidden layer activation function is g(x), and the expected output of the network is

T = [t1, t2L tm]. Therefore, ELM can be illustrated as

T′ =


t1

t2

M
tm

 =



L∑
j=1

β j1g
[
ω jgxi + b j

]
L∑

j=1
β j2g

[
ω jgxi + b j

]
M

L∑
j=1

β jmg
[
ω jgxi + b j

]


i = 1L n (8)

2.4. The Proposed Model

Despite the fact that ELM has expected performance in major cases, its weakness affects its accuracy.
While learning, the possible non-optimal or unnecessary weight values as well as thresholds may
reduce ELM’s performance, leading to erratic results. Additionally, in some practical applications, ELM
demands a lot of hidden layer nodes to receive expected results, which precisely adds complications
and makes it easy to overfit.

In order to solve the above problems and obtain a stable network, an extreme learning
machine based on the bat algorithm is proposed to guarantee that the input weight and the bias
threshold are reasonably selected. The proposed model takes full advantage of BA′s global search
capability and ELM’s rapid convergence rate and also overcomes the inherent problems of ELM.
Consequently, BA-ELM performs better in generalization, function approximation, and has more stable
simulation results.

Figure 2 shows the whole flowchart of daily solar radiation forecasting, which is divided into
four parts.
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Figure 2. The flowchart of daily solar radiation forecasting model.

Part 1 is designed for input selection. First, the meteorological indicator is chosen in view of the
Pearson coefficient test, and then the original historical solar radiation sequence is decomposed into
two parts: an approximate series and a detailed series. The detailed series is abandoned, and PACF is
applied to analyze the intrinsic relationships between the approximation series so as to determine the
lag phases of historical radiation. PCA is used to decline the dimensionality of the influential factors,
which contains meteorological indicators selected by Pearson coefficient test and historical radiation
indicators selected by WT and PACF. The result is the inputs of BA-ELM.

Part 2 is the bat optimization algorithm (BA). It is obvious that BA is utilized to make the weight of
the input layer and the bias of the hidden layer in ELM more optimal, for which the expected network
can be achieved.

Part 3 is the training process of extreme learning machine (ELM). The training set data is derived
from Part 1, and the parameters of ELM are optimized by Part 2, so that the ELM model is obtained
with less training errors.

Part 4 is the testing process of ELM. The test set data is derived from Part 1, and the trained model
is provided by Part 3 to obtain the test set prediction values.
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3. Empirical Analysis

3.1. Data

Four typical cities are selected as research objects, which are Beijing (latitude 40, longitude 116),
New York (latitude 40, longitude −73), Melbourne (latitude −37, longitude 145), and São Paulo
(latitude −23, longitude −46). The four cities are at different latitudes and longitudes, which makes
them more representative. North latitude and east longitude are positive, while the south latitude and
west longitude is negative. The locations of the four cities are shown in Figure 3. The historical data of
solar radiation and their meteorological influential indicators from 1 January 2014 to 31 December 2018
in four districts can be acquired from NASA [42].

Figure 3. Locations of Beijing, New York, Melbourne, and São Paulo.

Figure 4 shows the daily solar radiation curves for the four regions, reflecting the highly uncertain,
nonlinear, dynamic, and complex characteristics of solar radiation. The curve of Beijing and New York
are similar, and the solar radiation peaks both appear in the summer. The curve of Melbourne and
São Paulo are similar as well, and solar radiation peaks both appear in the winter because Beijing and
New York are located in the north latitude, while Melbourne and São Paulo are located in the south
latitude. The curve of New York is less volatile than that of Beijing, and the curve of São Paulo is less
volatile than that of Melbourne. Therefore, there are four different types of solar radiation time series.
This proposed model is applied to the prediction of these four solar radiation time series to prove its
versatility and applicability.

Figure 4. The original solar radiation data of Beijing, New York, Melbourne, and São Paulo.
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The samples are divided into two subsets—the training set and the testing set. The training set
includes the date from 1 January 2014 to 31 December 2017, which occupies about 80% of the entire date
and is used for building prediction models. Another 20% of the data is testing set, which includes data
from 1 January 2018 to 31 December 2018 for testing the accuracy of the established model. Taking the
solar radiation date prediction of Beijing for instance, we confirm the model’s function and superiority.
The forecasting radiation date of New York, Melbourne, São Paulo is selected to demonstrate the
model’s validity.

3.2. Input Selection

3.2.1. Selection of Meteorological Indexes by Pearson Coefficient Test

Given that solar radiation is interfered with by many meteorological factors, it is critical to mine
the relationships between solar radiation and the 21 pre-selected meteorological variables, for which
an ideal prediction model can be established. Pearson coefficient test is chosen to conduct correlation
analysis by SPSS 19.0. Table 1 presents the values of correlation coefficients.

Table 1. Pearson correlation coefficient of solar radiation and various meteorological indicators.

Indicator Abbreviation Unit Beijing New York Melbourne São Paulo

Precipitation PRECTOT Mm/day 0.118 ** 0.089 ** −0.020 0.101 **
Specific Humidity at 2 M SH2M kg/kg 0.911 ** 0.883 ** 0.834 ** 0.895 **
Relative Humidity at 2 M RH2M % 0.446 ** 0.562 ** −0.446 ** 0.502 **

Surface Pressure SP kPa −0.779 ** −0.290 ** −0.568 ** −0.658 **
Temperature Range at 2 M T2M_RANGE C −0.162 ** -0.449 ** 0.237 ** −0.572 **

Earth Skin Temperature EST C 0.922 ** 0.768 ** 0.800 ** 0.691 **
Dew/Frost Point at 2 M T2M_DEW C 0.967 ** 0.906 ** 0.828 ** 0.901 **

Maximum Temperature at 2 M T2M_MAX C 0.858 ** 0.840 ** 0.713 ** 0.285 **
Temperature at 2 M T2M C 0.926 ** 0.844 ** 0.893 ** 0.868 **

Minimum Temperature at 2 M T2M_MIN C 0.963 ** 0.849 ** 0.815 ** 0.667 **
Wind Speed Range at 50 M WS50M_RANGE m/s −0.139 ** −0.167 ** 0.361 ** 0.042
Wind Speed Range at 10 M WS10M_RANGE m/s −0.147 ** −0.175 ** 0.397 ** 0.176 **

Minimum Wind Speed at 50 M WS50M_MIN m/s −0.408 ** −0.119 ** −0.076 ** −0.085 **
Minimum Wind Speed at 10 M WS10M_MIN m/s −0.417 ** −0.195 ** −0.081 ** −0.154 **
Maximum Wind Speed at 50 M WS50M_MAX m/s −0.422 ** −0.234 ** 0.224 ** −0.035
Maximum Wind Speed at 10 M WS10M_MAX m/s −0.345 ** −0.302 ** 0.261 ** 0.063 **

Wind Direction at 50 M WD50M m/s −0.471 ** −0.368 ** −0.041 0.194 **
Wind Direction at 10 M WD10M m/s −0.481 ** −0.364 ** −0.032 0.190 **

Wind Speed at 50 M WS50M m/s −0.457 ** −0.197 ** 0.109 ** −0.053 *
Wind Speed at 10 M WS10M m/s −0.426 ** −0.278 ** 0.154 ** −0.073 **

Insolation Clearness Index ICI 0.048 * 0.001 0.000 −0.013

Notes: ** Significantly correlated at the 0.01 level (both sides). * Significantly correlated at the 0.05 level (both sides).

In order to show that there is a positive correlation between solar radiation and selected indicators,
a meteorological index with a Pearson correlation coefficient greater than 0.8 is chosen as the factor.
The selected meteorological indicators of Beijing, New York, Melbourne, and São Paulo are shown
in Table 2. Consequently, it is important to take consideration of selected variables when predicting
solar radiation.

Table 2. The selected meteorological indicators of Beijing, New York, Melbourne, and São Paulo.

Region Selected Indexes Indexes Number

Beijing SH2M, EST, T2M_DEW,
T2M_MAX, T2M, T2M_MIN 6

New York SH2M, EST, T2M_DEW,
T2M_MAX, T2M, T2M_MIN 6

Melbourne SH2M, EST, T2M_DEW,
T2M_MAX, T2M, T2M_MIN 6

São paulo SH2M, SP, EST,T2M_DEW,
T2M, T2M_MIN 6
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3.2.2. Decomposition of Solar Radiation Series by WT

For the purpose of avoiding noise interference, WT is used to resolve the time series and remove
random fluctuations. The parameters are set as follows: decomposition level = 1, Wavelet-basis
function = ‘db4’, and WT is calculated in MATLAB R2017a. The data processing result of Beijing,
New York, Melbourne, and São Paulo are presented in Figure 5.

Figure 5. (a) The wavelet transform (WT) decomposed results of Beijing solar radiation series; (b) The
WT decomposed results of New York solar radiation series; (c) The WT decomposed results of Melbourne
solar radiation series; (d) The WT decomposed results of São Paulo solar radiation series.

As Figure 5 demonstrated, the solar radiation series are decomposed into de-noised signal (A1)
and noise signal (D1). The main fluctuations in solar radiation are represented by de-noised signal,
while noise signal contains spikes and stochastic volatility. When comparing with original solar
radiation series, it is found that A1 provides a smooth form, while D1 represents a high frequency
component. We take A1 as the solar radiation to model in order to improve efficiency.

3.2.3. Determination of the Lags by PACF

For the purpose of testing the correlation between historical radiation and radiation targets, this
paper introduces some autocorrelation functions to choose the model’s input variables. That is to
say, the PACF calculated by SPSS 19.0 is employed to discover the Lags which are apparent after the
cancellation of internal correlation. Figure 6 indicates the PACF results of de-noised signal of Beijing,
New York, Melbourne, and São Paulo solar radiation series after WT.
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Figure 6. (a) Partial autocorrelation function (PACF) results of Beijing solar radiation series after WT;
(b) PACF results of New York solar radiation series after WT; (c) PACF results of Melbourne solar
radiation series after WT; (d) The PACF results of São Paulo solar radiation series after WT.

Set xi as the output variable and apply xi-k as one of the input variables if the PACF at lag k
exceeds the 95% confidence interval. Table 3 presents the chosen variables of solar radiation in Beijing,
New York, Melbourne, and São Paulo after WT.

Table 3. The lags determination of solar radiation by PACF after WT.

City Lag

Beijing (xt-1, xt-2, xt-3, xt-4, xt-5)
New York (xt-1, xt-2, xt-3, xt-4, xt-5, xt-6, xt-7, xt-8, xt-9)
Melbourne (xt-1, xt-2, xt-3, xt-4, xt-5, xt-6, xt-7)
São Paulo (xt-1, xt-2, xt-3,xt-4, xt-5, xt-6, xt-7)

3.2.4. Reduction of Dimensionality by PCA

PCA is used to eliminate the multicollinearity that occurs in predictors, which is in view of the
pre-selected variables in Sections 3.2.1 and 3.2.3. We receive the main information included in the data
by using this approach. The PCA calculation was achieved on SPSS 19.0, and the results of Beijing,
New York, Melbourne, and São Paulo are illustrated in Figure 6.

The red line in Figure 7 represents accumulated variance contribution rate, and the principal
components whose accumulated variance contribution rate is more than 80% will be extracted. It can
be discovered that the first major component of Beijing, the first major component of New York, the
first three major components of Melbourne and the first two major components of São Paulo explain
the elements accounting for more than 80%, so these major components are chosen as the BA-ELM
input, as presented in Table 4, where xt-i represents the i-th lag of historical solar radiation data.
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Figure 7. Scree plot of Beijing, New York, Melbourne, and São Paulo in principal component analysis
(PCA) analysis.

Table 4. Component Matrix of Beijing, New York, Melbourne, and São Paulo

Beijing New York Melbourne São Paulo

Component PC1 Component PC1 Component PC1 PC2 PC3 Component PC1 PC2

SH2M 0.899 SH2M 0.87 SH2M 0.847 −0.298 0.198 SH2M 0.902 −0.162
EST 0.973 EST 0.861 EST 0.81 −0.056 0.458 SP 0.906 −0.005

T2M_DEW 0.954 T2M_DEW 0.854 T2M_DEW 0.782 0.22 0.513 EST 0.881 0.21
T2M_MAX 0.932 T2M_MAX 0.856 T2M_MAX 0.774 0.415 0.321 T2M_DEW 0.857 0.38

T2M 0.975 T2M 0.859 T2M 0.765 0.518 0.004 T2M 0.84 0.459
T2M_MIN 0.985 T2M_MIN 0.861 T2M_MIN 0.741 0.517 −0.255 T2M_MIN 0.816 0.455
Lag 1 xt-1 0.966 Lag 1 xt-1 0.862 Lag 1 xt-1 0.704 0.4 −0.324 Lag 1 xt-1 0.78 0.383
Lag 2 xt-2 0.96 Lag 2 xt-2 0.854 Lag 2 xt-2 0.779 −0.451 0.034 Lag 2 xt-2 0.928 −0.152
Lag 3 xt-2 0.954 Lag 3 xt-2 0.834 Lag 3 xt-2 0.927 −0.115 −0.22 Lag 3 xt-2 −0.713 0.214
Lag 4 xt-4 0.95 Lag 4 xt-4 0.93 Lag 4 xt-4 0.776 −0.459 0.021 Lag 4 xt-4 0.813 −0.417
Lag 5 xt-5 0.941 Lag 5 xt-5 0.959 Lag 5 xt-5 0.869 −0.077 −0.291 Lag 5 xt-5 0.923 −0.153

Lag 6 xt-6 0.938 Lag 6 xt-6 0.924 −0.259 −0.15 Lag 6 xt-6 0.922 −0.311
Lag 7 xt-7 0.961 Lag 7 xt-7 0.92 −0.148 −0.241 Lag 7 xt-7 0.795 −0.448
Lag8 xt-8 0.962
Lag 9xt-9 0.965

3.3. Parameters Setting and Forecasting Evaluation Criteria

The PCA-WT-BA-ELM is utilized for the solar radiation prediction in this paper. With the intention
of verifying the superiority of the model, the study makes the comparison of solar radiation predictions
and varieties of model settings. The comparison shown in Figure 8 contains four parts. In the first part,
in order to test the performance of the prediction method, the single extreme learning machine (ELM),
the least squares support vector machine (LSSVM), and the backward propagation neural network
(BPNN) are used for comparison. In the second part, the single ELM, PSO-ELM, and BA-ELM are
collected to prove the effectiveness of the optimization approach and further certify the superiority
of BA-ELM. In the third part, BA-ELM and WT-BA-ELM are used to display the progress of the
decomposition method WT. In the fourth part, WT-BA-ELM and PCA-WT-BA-ELM are compared in
order to prove the necessity and capability of the dimensionality reduction method.
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Figure 8. Framework of the solar radiation forecasting model comparisons.

Since the parameter settings may readily affect the prediction accuracy, it is prerequisite to define
the comparison model’s parameters, and the specifications are as displayed in Table 5.

Table 5. Parameters of three types of artificial neural networks

Model Parameters

BPNN L = 10; learning rate = 0.0004
LSSVM L = 10; γ = 50; σ2 = 2

ELM L = 10; g(x) = ‘sig’;
PSO-ELM N = 10; N_iter = 500; c1 = c2 = 2; w = 1.5; rand = 0.8
BA-ELM N = 10; N_iter = 500; A = 1.5; γ = θ = 0.9; R = 0.0001; F = [0, 2]

L represents the hidden layer neuron number, γ represents regularization parameter, σ2 represents
kernel parameter, g (x) represents the hidden layer activation function, N represents Initial population
size, N_iter is the maximum number of iterations, and c1 and c2 are acceleration factors. W is
inertia weight, and rand is generated uniformly in the interval [0, 1]. A represents Initial Impulse
volume, γ and θ are the attenuation coefficient of the volume and the enhancement coefficient of the
search frequency. R is impulse emission rate, and F represents the range of frequency. The values of
each parameter in Table 5 are repeatedly adjusted through the simulation process to finally obtain a
satisfactory value.

For the purpose of measuring prediction performance with effect, four commonly used error
criteria were proposed to test the accuracy of all relevant models—mean absolute error (MAE),
mean absolute percentage error (MAPE), the root mean squared error (RMSE), and the coefficient of
determination R2. The formulas are represented as follows.

MAE = 1
n

∣∣∣yi − y∗i
∣∣∣

MAPE = 1
n

n∑
i=1

∣∣∣∣ yi−y∗i
yi

∣∣∣∣× 100%

RMSE =

√
1
n

n∑
i=1

∣∣∣∣ yi−y∗i
yi

∣∣∣∣2
R2 =

(n
∑n

i=1 yi×y∗i−
∑n

i=1 yi
∑n

i=1 y∗i )
2(

n
∑n

i=1 y∗2i −(
∑n

i=1 y∗i )
2
)(

n
∑n

i=1 y2
i −(

∑n
i=1 yi)

2
)

(9)

where n is the number of training samples, and yi and yi * are actual and predicted values, respectively.
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3.4. Solar Radiation Forecasting

3.4.1. The Case of Beijing

The proposed model BA-ELM and its comparison models PSO-ELM, LSSVM, and BPNN are all
implemented in MATLAB R2017a on a Windows 10 system. The results of Beijing solar radiation after
prediction are presented in Figure 9. The error analysis and actual values of MAE, MAPE, RMSE, and
R2 are given respectively in Figure 10. Referring to Figure 10, Table 6, the following can be obtained:

(a) The MAE, MAPE, and RMSE of PCA-WT-BA-ELM are the minimum and the R2 is the maximum,
which demonstrates its performance sufficiently;

(b) The predicted carbon price curve is closest to the actual carbon price curve, which is better
than the Single-LSSVM and Single-BPNN. Single ELM’s MAE, MAPE, RMSE and R2 surpasses
Single-LSSVM and Single-BPNN, showing that Single-ELM has the best predictive performance.
In addition, as can be discovered in Table 6, the learning speed of Single-ELM is the shortest,
reflecting that in the part of prediction accuracy and learning speed, Single-ELM exceeds
Single-LSSVM and Single-BPNN;

(c) When Comparing with single ELM, hybrid models (including PSO-ELM and BA-ELM) have
smaller MAE, MAPE, RMSE, and larger R2, which shows that it makes sense to optimize the ELM
parameters. BA-ELM′s MAE, MAPE, and RMSE are smaller, and BA-ELM’s R2 is larger than
PSO-ELM’s R2, reflecting that BA-ELM is more precious in the whole, and BA is superior to PSO
in the part of optimizing the parameter of ELM;

(d) After the comparison with BA-ELM, the predicted solar radiation curve of WT-BA-ELM is closest
to the actual one. For that the solar radiation series is highly uncertain, nonlinear, dynamic, and
complex, it may not be appropriate to predict straight without decomposition. It can therefore be
seen that the MAE, MAPE, RMSE, and R2 of WT-BA-ELM are better than BA-ELM;

(e) The predicted solar radiation curve of PCA-WT-BA-ELM is closer to the actual solar radiation
curve than that of WT-BA-ELM. The MAE, MAPE, RMSE, and R2 of PCA-WT-BA-ELM are better
than WT-BA-ELM. All of this can verify the need to use PCA to reduce the dimensions of the
BA-ELM input.

Figure 9. The forecasting results of Beijing solar radiation.
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Figure 10. Error analysis of Beijing solar radiation forecasting.

Table 6. Learning speed comparation analysis of BPNN, LSSVM, ELM.

Training Time (s) Test Time (s)

BPNN 2621.112 0.265
LSSVM 1784.593 0.153

ELM 19.341 0.001

3.4.2. The Case of New York, Melbourne, and São Paulo

In order to present the predicting capacity of the proposed model, the solar radiation of New York,
Melbourne, and São Paulo are utilized. Figures 11–13 are the forecasting results, and Figures 14–16 are
the error analysis of forecasting results. We are able to draw the conclusion that the hybrid model
PCA-WT-BA-ELM has the most outstanding predictive ability, which is measured by the MAE, MAPE,
RMSE, and R2. It can forecast the solar radiation of different parts of the world.

Figure 11. The forecasting results of New York solar radiation.
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Figure 12. The forecasting results of Melbourne solar radiation.

Figure 13. The forecasting results of São Paulo solar radiation.

Figure 14. Error analysis of New York solar radiation forecasting.
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Figure 15. Error analysis of Melbourne solar radiation forecasting.

Figure 16. Error analysis of São Paulo solar radiation forecasting.

4. Conclusions

In this paper, a new hybrid model of extreme learning machine based on WT and PCA-based BA
optimization algorithm is proposed for solar radiation prediction. The solar radiation series is divided
into two parts: an approximate series (de-noised signal) and a detail series (noise). BA is employed
to get the input weight matrix and the hidden layer bias matrix, which correspond to the ELM of
the minimum training error. PACF is used to choose the lags of the approximation series, which are
the inputs of BA-ELM. Diverse model and solar radiation series are employed in order to check the
capability and effectiveness of PCA-WT-BA-ELM. In summary, according to the carbon price prediction
results of Beijing, New York, Melbourne, and São Paulo, the following conclusions can be drawn:

(a) ELM is superior to BPNN and LSSVM in predicting accuracy and learning speed. Because the
ELM parameter, which the users have to make appropriate adjustments of, is the just number of
hidden nodes. After stochastically installing the input weight and the hidden layer deviation, the
output weight of the ELM can be analytically determined by solving the linear system according
to the Moore-Penrose (MP) generalized inverse idea.

(b) In terms of prediction precision, both BA-ELM and PSO-ELM are superior to ELM, and BA-ELM
is better than PSO-ELM. Therefore, it makes sense to optimize the parameters of the ELM through
optimization method, and BA is more competitive than PSO;

(c) The model using decomposition method WT-BA-ELM performs better than that without it, which
means that the decomposition method is able to ameliorate the forecasting performance, and it is
essential to denoise the solar radiation sequence through WT as its uncertain, nonlinear, dynamic
and complex features;



Sustainability 2019, 11, 4138 18 of 20

(d) Compared with the model not using dimensionality reduction method WT-BA-ELM, the model
with PCA-WT-BA-ELM is superior. It shows that the dimension reduction method is able to
enhance the forecasting performance, and it is a necessity to decrease the dimension of many
input indicators of BA-ELM through PCA;

(e) The PCA-WT-BA-ELM model is superior to other methods in solar radiation prediction in Beijing,
New York, Melbourne, and São Paulo. It can therefore be inferred that the proposed hybrid
model can be utilized to predict solar radiation in different parts of the world at the same time,
and it greatly expands the application of the model.

This paper primarily studies solar radiation predictions that take consideration of meteorological
indicators and historical solar radiation sequences, as well as many other factors affecting solar
radiation, such as PM 2.5, PM10, O3, and Air Quality Index (AQI). For the fact of the serious air
pollution, these indicators are very significant for Beijing solar radiation prediction. Hence, there are
still several directions to study in the future.
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11. Akarslan, E.; Hocaoğlu, F.O.; Edizkan, R. A novel MD (multi-dimensional) linear prediction filter approach

for hourly solar radiation forecasting. Energy 2014, 73, 978–986. [CrossRef]
12. Amrouche, B.; Le Pivert, X. Artificial neural network based daily local forecasting for global solar radiation.

Appl. Energy 2014, 130, 333–341. [CrossRef]
13. Benmouiza, K.; Cheknane, A. Forecasting hourly global solar radiation using hybrid k-means and nonlinear

autoregressive neural network models. Energy Convers. Manag. 2013, 75, 561–569. [CrossRef]
14. Paoli, C.; Voyant, C.; Muselli, M.; Nivet, M. Forecasting of preprocessed daily solar radiation time series

using neural networks. Sol. Energy 2010, 84, 2146–2160. [CrossRef]

http://dx.doi.org/10.1140/epjp/i2018-12333-2
http://dx.doi.org/10.1016/0960-1481(91)90060-3
http://dx.doi.org/10.1016/0038-092X(79)90100-2
http://dx.doi.org/10.1016/j.energy.2015.02.100
http://dx.doi.org/10.1016/j.solener.2012.10.012
http://dx.doi.org/10.1016/j.rser.2013.07.058
http://dx.doi.org/10.1049/iet-rpg.2014.0057
http://dx.doi.org/10.1016/j.renene.2013.05.011
http://dx.doi.org/10.1016/j.energy.2014.06.113
http://dx.doi.org/10.1016/j.apenergy.2014.05.055
http://dx.doi.org/10.1016/j.enconman.2013.07.003
http://dx.doi.org/10.1016/j.solener.2010.08.011


Sustainability 2019, 11, 4138 19 of 20

15. Adel, M.; Massi, P.A. A 24-h forecast of solar irradiance using artificial neural network: Application for
performance prediction of a grid-connected PV plant at Trieste, Italy. Sol. Energy 2010, 84, 807–821.

16. Gala, Y.; Fernández, Á.; Díaz, J.; Dorronsoro, J.R. Hybrid machine learning forecasting of solar radiation
values. Neurocomputing 2016, 176, 48–59. [CrossRef]

17. Lauret, P.; Voyant, C.; Soubdhan, T.; David, M.; Poggi, P. A benchmarking of machine learning techniques for
solar radiation forecasting in an insular context. Sol. Energy 2015, 112, 446–457. [CrossRef]

18. Ekici, B.B. A least squares support vector machine model for prediction of the next day solar insolation for
effective use of PV systems. Measurement 2014, 50, 255–262. [CrossRef]

19. Sun, S.; Wang, S.; Zhang, G.; Zheng, J. A decomposition-clustering-ensemble learning approach for solar
radiation forecasting. Sol. Energy 2018, 163, 189–199. [CrossRef]

20. Meenal, R.; Selvakumar, A. Immanuel. Assessment of SVM, empirical and ANN based solar radiation
prediction models with most influencing input parameters. Renew. Energy 2018, 121, 324–343. [CrossRef]

21. Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme learning machine: A new learning scheme of feed forward neural
networks. In Proceedings of the International Joint Conference on Neural Networks, Budapest, Hungary,
25–29 July 2004; pp. 985–990.

22. Li, S.; Wang, P.; Goel, L. Short-term load forecasting by wavelet transform and evolutionary extreme learning
machine. Electr. Power Syst. Res. 2015, 122, 96–103. [CrossRef]

23. Li, S.; Goel, L.; Wang, P. An ensemble approach for short-term load forecasting by extreme learning machine.
Appl. Energy 2016, 170, 22–29. [CrossRef]

24. Syed, M.; Sivanagaraju, S. Short Term Wind Speed Forecasting using Hybrid ELM Approach. Indian J. Sci.
Technol. 2017, 10, 1–8. [CrossRef]

25. Abdoos, A.A. A new intelligent method based on combination of VMD and ELM for short term wind power
forecasting. Neurocomputing 2016, 203, 111–120. [CrossRef]

26. Shrivastava, N.A.; Panigrahi, B.K. A hybrid wavelet-ELM based short term price forecasting for electricity
markets. Int. J. Electr. Power Energy Syst. 2014, 55, 41–50. [CrossRef]

27. Sun, W.; Wang, C.; Zhang, C. Factor analysis and forecasting of CO2 emissions in Hebei, using extreme
learning machine based on particle swarm optimization. J. Clean. Prod. 2017, 162, 1095–1101. [CrossRef]

28. Yang, X.S.; Hossein Gandomi, A. Bat algorithm: A novel approach for global engineering optimization. Eng.
Comput. 2012, 29, 267–289. [CrossRef]

29. Guo, J.; White, J.; Wang, G. A genetic algorithm for optimized feature selection with resource constraints in
software product lines. J. Syst. Softw. 2011, 84, 2208–2221. [CrossRef]

30. Stelios, P.; Maria, M. An in depth economic restructuring framework by using particle swarm optimization.
J. Clean. Prod. 2019, 215, 329–342.

31. Liu, Q.; Wu, L.; Xiao, W.; Wang, F.; Zhang, L. A novel hybrid bat algorithm for solving continuous optimization
problems. Appl. Soft Comput. 2018, 73, 67–82. [CrossRef]

32. Gupta, D.; Arora, J.; Agrawal, U.; Khanna, A.; De Albuquerque, V.H.C. Optimized Binary Bat algorithm for
classification of white blood cells. Measurement 2019, 143, 180–190. [CrossRef]

33. Wulandhari, L.A.; Komsiyah, S.; Wicaksono, W. Bat Algorithm Implementation on Economic Dispatch
Optimization Problem. Procedia Comput. Sci. 2018, 135, 275–282. [CrossRef]

34. Mellit, A.; Benghanem, M.; Kalogirou, S.A. An adaptive wavelet-network model for forecasting daily total
solar-radiation. Appl. Energy 2006, 83, 705–722. [CrossRef]

35. Monjoly, S.; André, M.; Calif, R.; Soubdhan, T. Hourly forecasting of global solar radiation based on multiscale
decomposition methods: A hybrid approach. Energy 2017, 119, 288–298. [CrossRef]

36. Tan, Z.; Zhang, J.; Wang, J.; Xu, J. Day-ahead electricity price forecasting using wavelet transform combined
with ARIMA and GARCH models. Appl. Energy 2010, 87, 3606–3610. [CrossRef]

37. Sun, W.; Sun, J. Daily PM2.5 concentration prediction based on principal component analysis and LSSVM
optimized by cuckoo search algorithm. J. Environ. Manag. 2017, 188, 144–152. [CrossRef]

38. Mallet, Y.; De Vel, O.; Coomans, D. Fundamentals of Wavelet Transforms. In Data Handling in Science and
Technology; Elsevier: Amsterdam, The Netherlands, 2000; Chapter 3, Volume 22, pp. 57–84.

39. Daubechies, I.; Lu, J.; Wu, H.T. Synchrosqueezed wavelet transforms: An empirical mode decomposition-like
tool. Appl. Comput. Harmon. Anal. 2011, 30, 243–261. [CrossRef]

40. Alves Barata, J.C.; Hussein, M.S. The Moore-Penrose Pseudoinverse: A Tutorial Review of the Theory. Braz.
J. Phys. 2012, 42, 146–165. [CrossRef]

http://dx.doi.org/10.1016/j.neucom.2015.02.078
http://dx.doi.org/10.1016/j.solener.2014.12.014
http://dx.doi.org/10.1016/j.measurement.2014.01.010
http://dx.doi.org/10.1016/j.solener.2018.02.006
http://dx.doi.org/10.1016/j.renene.2017.12.005
http://dx.doi.org/10.1016/j.epsr.2015.01.002
http://dx.doi.org/10.1016/j.apenergy.2016.02.114
http://dx.doi.org/10.17485/ijst/2017/v10i8/104479
http://dx.doi.org/10.1016/j.neucom.2016.03.054
http://dx.doi.org/10.1016/j.ijepes.2013.08.023
http://dx.doi.org/10.1016/j.jclepro.2017.06.016
http://dx.doi.org/10.1108/02644401211235834
http://dx.doi.org/10.1016/j.jss.2011.06.026
http://dx.doi.org/10.1016/j.asoc.2018.08.012
http://dx.doi.org/10.1016/j.measurement.2019.01.002
http://dx.doi.org/10.1016/j.procs.2018.08.175
http://dx.doi.org/10.1016/j.apenergy.2005.06.003
http://dx.doi.org/10.1016/j.energy.2016.11.061
http://dx.doi.org/10.1016/j.apenergy.2010.05.012
http://dx.doi.org/10.1016/j.jenvman.2016.12.011
http://dx.doi.org/10.1016/j.acha.2010.08.002
http://dx.doi.org/10.1007/s13538-011-0052-z


Sustainability 2019, 11, 4138 20 of 20

41. Salaken, S.M.; Khosravi, A.; Nguyen, T.; Nahavandi, S. Extreme learning machine based transfer learning
algorithms: A survey. Neurocomputing 2017, 267, 516–524. [CrossRef]

42. Solar Radiation Data and Meteorological Data. Available online: http://eosweb.larc.nasa.gov/sse/ (accessed
on 31 December 2018).

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.neucom.2017.06.037
http://eosweb.larc.nasa.gov/sse/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methodology 
	Wavelet Transform 
	Bat Algorithm 
	Extreme Learning Machine 
	The Proposed Model 

	Empirical Analysis 
	Data 
	Input Selection 
	Selection of Meteorological Indexes by Pearson Coefficient Test 
	Decomposition of Solar Radiation Series by WT 
	Determination of the Lags by PACF 
	Reduction of Dimensionality by PCA 

	Parameters Setting and Forecasting Evaluation Criteria 
	Solar Radiation Forecasting 
	The Case of Beijing 
	The Case of New York, Melbourne, and São Paulo 


	Conclusions 
	References

