

Supplementary

Section A. The Buildings Elements and the LCA Database Using in this Indicator is According to Life-Cycle Analysis of Buildings [2], in the Annex II (LCA Database). The Building Elements Using in the Francisco de Holando High School Are:

PExt 1: Single wall with support element in masonry of brick (22 cm). The insulation is in molded polystyrene plates with 6 cm thick. The outer shell is in reinforced plaster (2 cm).

PExt 12: Double wall with an exterior cloth in masonry of cast brick (15 cm) and interior cloth in masonry of cast brick of (11 cm). The cloths are separated by a box-of-air with 4 cm thick, filled with insulation of 2cm thick, with Interior and exterior vestments (1.5 cm).

PExt 16: Double wall with an exterior cloth in stone masonry (12 cm) and interior cloth in masonry of brick (11 cm). The cloths are separated by (4 cm). The Interior vestments is coated with traditional plaster (2 cm).

PExt 15 Double wall with an exterior cloth in mass brick (11 cm) and an interior cloth in masonry of bored brick (11 cm). The cloths are separated by a box-of-air (4 cm) filled with insulation in plates, extruded polystyrene (4 cm). The Interior vestments is coated with traditional plaster (2 cm).

Pint 7 Drilled brick masonry single wall (11 cm). The vestments, interior and exterior are coated with traditional plaster (1.5 cm).

Pint 9 Drilled brick masonry single wall (22 cm). The vestments are coated with plaster (1.5 cm).

Cob 1 Traditional flat roof coating in cobble, with 10cm thick and inner coating in traditional plaster of 2cm thick. The support is in solid slab (20 cm), upon which rests: the layer of lightweight concrete form with 10cm thick, upon which rests, the PVC vapour barrier, the thermal insulation in plates of expanded polystyrene (EPS) with 8 cm thick, the layer of waterproofing in PVC membranes, the blanket of geotextile, and the ceramic mosaic.

Cob 12 Sloping roof with wooden structure (ripped with a section (5×3 cm) and sticks (8×12 cm) that serve as support to the outer coating in ceramic tile. Thermal insulation is in extruded expanded polystyrene (8 cm). Under the thermal insulation, there is a vapour barrier in PVC membranes. The interior is in gypsum plasterboard (1.25 cm).

Cob 22 It has a discontinuous structure in wood (5×3 cm) and sticks (8×12 cm) that serve as support to the exterior coating fiber cement sheet. The isolation, in rock wool (10 cm), is laid on the horizontal belt. The belt is composed of support elements in wood (8×12 cm) and the celling is covered with gypsum plasterboards. On the gypsum, plasterboards there is a vapour barrier in PVC membranes.

Pav 7 Pavement composed by alveolar panels (20 cm) containing (4 cm) of concrete layer.

Pav 13 Discontinuous structure pavement, composed by wooden flooring (1.8 cm) wooden beams (25×30 cm) spaced by 65 cm and ceiling coated with plasterboards (1.25 cm).

Env 5 It is composed by PVC window frame system with five chambers, has a sheet with a constructive (depth 7.9 cm) and a ring (7.2 cm). It is equipped with a double-glazing, composed by an outer glass (4mm), an air gap (16mm) and an inner glass (1.6 cm).

Env 8 It is composed by a window frame system with solid or laminated wood profile has a sheet with a constructive (6.8 cm) and a ring (5.8 cm). It is equipped with a double-glazing, composed by an outer glass (4 mm), an air gap (6 mm) and an inner glass (1 cm).

Table S1 shows the description of all solution types used in Francisco de Holanda High School building, their area and quantify the environmental impacts of building life cycle (Barbosa, 2013).

Colution	A #0.0	Quantificati	ion of Environme	ental Impact	: m ² of Each T	ype of Suppo	ort Solution.	
Type	Area (m ²)	GWP (kg	ODP (kg	AP (kg	POCP (kg	EP (kg	EEDD (MI)	
Type	(111)	CO ₂)	CFC-11)	SO ₂)	C2H4)	PO ₄)	FFDF (MJ)	
Solution for Ground and High floor								
1	15,042	58.9694	0.0000049911	0.19	0.01048	0.03928	861.0458	
Solution for Exterior walls								
2	13,886.4	82.994	0.0000495	0.16797	0.01756	428.7344	495.78	
Solution for Interior walls								
3	18,769	36.7907	0.0000043587	0.1585	0.00341	0.02590	690.6769	
Solution for	Solution for Roofs							
4	7770	20.51	0.000004527	0.22769	0.009365	0.024	411.25825	
Solution for	r Glazed ope	enings						
5	649	68.0023	0.0000004083	0.65498	0.023234	466.0823	1,389.811205	
Sum of Imp	oacts	267 2664	0 0000627851	1 20014	0.064040	201 00E22	2040 572155	
56,116.4		207.2004	0.0000657851	1.39914	0.064049	094.90300	3646.372133	
Divide by L	lifetime cycl	e						
Total impac	cts of life	4 76×10-3	7 28~10-12	2 Ex10-5	1 1 1 10-6	1 50×10-2	6 86×10-2	
cycle		4.70^10 °	7.20^10	2.5~10 °	1.1^10 °	1.33~10 -	0.00^10 -	

Table S1. Solution types used in FHHS.

Section B. Quantification of the Environmental Impacts of the Life Cycle of Reference Solutions (Benchmarks):

For each type of building element, it must be multiplied each environmental impact that corresponds to the reference solution by the total area of that element. In this section, it is presented the calculation procedure needed to help to quantify the categories of environmental impact for life cycle in reference buildings (standard practice and best practice). The quantification of these categories is carried out by completing Table. For the different building components: ground floor, high floors, exterior walls, interior walls, roofs, glazed openings and structure.

B.1.Ground and High Floor

In Table S2 is made a sum of all environmental impacts of ground floor, obtaining an average impact per unit of area.

					Ground and	l High floor
	Quantificatio	on of environmer	ntal impact ca	ategories		
	GWP	ODP	AP	POCP	EP	FFDP
	(Kg CO2)	(kg CFC-11)	(Kg SO2)	(kg.C2H4)	(kg PO4)	(MJ)
Conventional Solution	8.02x10+01	4.33x10 ⁻⁰⁶	2.03x10-01	7.53x10 ⁻⁰³	3.08x10 ⁻⁰²	5.88x10+02
			Х			

Table S2. Values corresponding to the standard practice for the ground floor of FHHS.

Total area of element (m2)	A1: 15,042					
(P1.2) Impacts from standard practice	1,206,368.80	0.0651318	305,352.60	113.2662	463.2936	8,844.696

B.2. Exterior Walls

In the Table S3 is made a sum of all environmental impacts of exterior walls obtaining an average impact per unit of area.

	Quantificat	ion of environm	ental impact o	ategories						
	GWP	ODP	AP	POCP	EP	FFDP				
	(KgCO2)	(kg CFC-11)	(Kg SO2)	(Kg.C2H4)	(kg PO4)	(MJ)				
Conventional Solution	5.89x10+01	3.91x10 ⁻⁰⁶	1.69x10 ⁻⁰¹	1.72x10 ⁻⁰²	2.37x10 ⁻⁰²	6.32x10+02				
	Х									

Table S3. Values corresponding to the standard practice for exterior walls of FHHS.

Total surface. l (m2)	A2: 13,886.4					
(P1.2) Impacts from	917 995 40	0.0542058	2246 8016	228 84608	220 10768	8776204 8
standard practice	817,885.40	0.0342938	2340.0010	238.84008	329.10766	0770204.0

B.3. Interior Walls

In the Table S4 is made a sum of all environmental impacts of interior walls, obtaining an average impact per unit of area.

Table S4. Values corresponding to the standard practice for interior walls of FHHS.

			Interior Walls					
	Quantification of environmental impact categories							
	GWP	ODP	AP	РОСР	EP	FFDP		
	(KgCO2)	(Kg CFC11)	(KgSO2)	(kg.C2H4)	(kg PO4)	(MJ)		
Conventional Solution	3.14x10 ⁺⁰¹	2,17x10 ⁻⁰⁶	8.22x10 ⁻⁰²	4.54x10 ⁻⁰³	1.35x10 ⁻⁰²	2.82x10+02		
	X							

Total area of the element (m ²)	A3: 18,769					
(P1.3) Impacts from standard practice	589,346.60	0.0407287	1,542.81	85.21126	253.3815	5292858

B.4. Roof

In the Table S5 is made a sum of all environmental impacts of roof, obtaining an average impact per unit of area.

Table S5. Values corresponding to the standard practice for roofs of Francisco de Holanda High School (FHHS).

					Roofs		
	Quantificati	on of environme	ntal impact c	ategories			
	GWP	ODP	AP	POCP	EP	FFDP	
	(KgCO2)	(kg CFC-11)	(KgSO2)	(kg.C2H4)	(kg PO4)	(MJ)	
Conventional Solution	88	4.75x10 ⁻⁰⁶	1.84x10 ⁻⁰¹	9.66x10 ⁻⁰³	2.94x10 ⁻⁰²	6.15x10 ⁺⁰²	
	X						

Total Surface (m2)	A4: 7,770					
(P1.4) Impacts from	683 760	0.0369075	1429 68	75.0582	228 128	4 778 550
standard practices	003,700	0.0309073	1429.00	75.0562	220.430	4,778,550

B.5. Glazed Openings

In the Table S6: is made a sum of all environmental impacts of glazed openings, obtaining an average impact per unit of area.

Table S6. Values corresponding to the standard practice for windows and glazed openings of FHHS.

					Glazed openings				
	Quantificati	Quantification of environmental impact categories							
	GWP	ODP	AP	POCP	EP	FFDP			
	(KgCO2)	(kg CFC-11)	(KgSO2)	(kg.C2H4)	(kg PO4)	(MJ)			
Conventional Solution 1	8.31	1,17x10 ⁻⁰⁶	0.116	-2.9×10 ⁻⁵	8.18×10 ⁻³	1.04×10 ³			
	X								
Total surface (m2)	A6								
(P1.7) Impacts from	5276.27	0.0007592	75 284	_0 19921	5 2088	0.67406			
standard practices	5270.57	0.0007393	75.264	-0.10021	5.5066	0.07490			

B.6. Benchmarks Associated to the Building's Life Cycle

The Table S7 and Table S8 present the auxiliary calculation process required to quantify the life cycle environmental impact categories in reference buildings (standard and best practice).

Table S7. Impacts of life cycle corresponding to the standard practice of FHHS.

					Standard P	ractice		
	Quantification of environmental impact categories							
	GWP	ODP	AP	РОСР	EP	FFDP		
	(KgCO2)	(kgCFC-11)	(KgSO2)	(kg.C2H4)	(kg PO4)	(MJ)		
Total impacts incorporated (P1.2+P1.3+P1.4+P1.5 +P1.6+P1.7 + P1.8)	3,302,637.17	0.19782	310747.17	512.19353	1279.529	18,856,458.2		
11.0 11.0 11.0)	1	I	۱ ـــ		1	1		

Duration of cycle life of reference (years)	50 years					
(P1.9) Impacts of the						
life cycle of standard	58.8533	3.52×10 ⁻⁶	5.5375464	0.0091273	0.0228013	336.024018
practices						

Table S8. Impacts of life cycle corresponding to the best practice of FHHS.

				Best practice		
	Quantification of environmental impact categories					
	GWP (KgCO2)	ODP (kgCFC-11)	AP (KgSO2)	POCP (kg.C2H4)	EP (kg PO4)	FFDP (MJ)
Total Impacts Incorporated <u>SP %</u> <u>4</u>	825,659.29	0.09891	77,686.79	128.04838	319.8822	84.006

	÷					
Duration of the life cycle of reference (years)	50 years					
(P1.10) Best practice life cycle impacts	14.713325	8.8×10-7	1.3843866	0.0002282	0.0057	4714114.6

Section C. Normalization and Aggregation of the Environmental Impact Categories

By the filling of Table S9, it is possible to determine the normalized value of each one of the environmental impact categories.

The normalization is made through the following equation:

$$\overline{P}_{i} = \frac{P_{i} - P_{i*}}{P_{i}^{*} - P_{i*}}$$
(1)

GWP (Kg CO₂):

$$\overline{P}_{1} = \frac{0.00476 - 58.8}{0.147 - 58.8} = 1.0023$$
⁽²⁾

ODP (kg CFC-11):

$$\overline{P}_{1} = \frac{0.000000000728 - 0.0000352}{0.00000088 - 0.00000352} = 1.33$$
(3)

AP (KgSO₂):

$$\overline{P}_{1} = \frac{0.000025 - 5.54}{1.38 - 5.54} = 1.33 \tag{4}$$

POCP (kg.C₂H₄):

$$\overline{P}_{1} = \frac{0.0000011 - 0.00913}{0.000228 - 0.00913} = 0.3516$$
(5)

EP (kg PO₄):

$$\overline{P}_{1} = \frac{0.0159 - 0.0228}{0.0057 - 0.0228} = 0.403508$$
(6)

FFDP (MJ):

$$\overline{P}_{1} = \frac{0.0686 - 336}{4710 - 336} = 0.076 \tag{7}$$

Table S9. Standardization and assessment of the global environmental performance of the solution assessed of FHHS.

	Life Cycle Impacts (per m ² of Useful Area of					
Environmental Impact Categories	Pavement, Year)				Weight of the	Walahtad
	Best	Best Standard			Environmental	Weighted
	Practice	Practice	Assessed	Standardisation	Impact Category	
	[Pi*] =	Pi*] = [Pi*] = [Pi] = Value		Value (1) [A]	[B]	[A]^[D]
	(P1.7)	(P1.6)	(P1.1)			
GWP (Kg CO ₂)	0.147	58.8	4.76×10-3	1.0023	40.7%	0.4
ODP (kg CFC-	0.88×10-6	2 52×10-6	7 28~10-12	1 22	Q 10/	0.11
11)	0.88×10 0	5.52×10 °	7.26×10 12	1.55	0.4 /0	0.11
AP (Kg SO ₂)	1.38	5.54	0.25×10-4	1.33	13.6%	0.18
POCP	2.28×10^{-4}	0.12×10^{-3}	1.1×10 ⁻⁶	0.35	10.15%	0.036
(kg.C2H4)	2.26×10	9.13×10 °				
EP (kg PO ₄)	5.7×10 ⁻³	2.28×10 ⁻²	1.59×10 ⁻²	0.40	13.6%	0.054
FFDP (MJ)	471	336	6.86×10 ⁻²	0.076	13.6%	0.012
			(PLCA) (P1	0.792		
			the solution			

Based on this calculus, the value given to this indicator is 0.79 - A.