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Abstract: Solar irradiation that is received on a terrestrial surface at minor scale of an hour does not
have many records, since the current solar irradiation databases generally only have data recorded on
a daily (most) and hourly (some less) scale. For places where there are no records of solar irradiation,
there are a lot of methods that are used to synthetically or artificially generate these data, and again
they are usually methods that generate data on a daily or hourly scale. Currently, for all types
of applications, especially in the field of photovoltaic solar energy, irradiation data are needed at
minor scale of an hour. In this case, there are very few methods to generate such data. For this
purpose, a new methodology to generate series of solar irradiation at temporal high-resolution. In this
paper, it is presented on a 10-min basis. A comparative study with real data has been done and the
conclusion, as it will be explained is that the proposed methodology provides very good results.

Keywords: solar irradiation; temporal high resolution; smart microgrids

1. Introduction

The adequate knowledge of the solar irradiation is the starting point for all types of applications
in the field of renewable energy in general and photovoltaic (PV now on) solar energy in
particular [1]. The two main characteristics of solar irradiation are low density and variability
over time. Both characteristics are fundamental when it comes to knowing how much energy from
the sun can be used. There are several procedures and methodologies to obtain solar irradiation:
measured with different instruments [2–4], consult solar irradiation data bases and satellite images [5],
or generation of synthetical series of solar irradiation [6,7]. There are mainly two time scales in which
the studies on solar characterization have been well developed and studied: daily solar irradiation
series and hourly solar irradiation series. However, for shorter time scales, the proposal of current
prediction methods to generate series of solar irradiation is usually quite complex and very local.
This is because the variability that solar irradiation presents at shorter time scales (lower than an hour)
is complex and difficult to determine.

With the development of advanced energy services in smart microgrids (e.g., households with PV
distributed generation, hereafter household-prosumers), it is very important to lower the time scale
for the availability of solar irradiation data. Thus, data that are going to be needed are instantaneous
solar irradiation data, or on time scales of the order of a few seconds to minutes. The range of
services provided include the application of demand response measures [8–14], smart home/building
automation [15–17], and the provision of balancing services, such as frequency control services
(frequency containment reserve [18–22] and frequency restoration reserve [23]). The design of these
services is based on the training and validation of models, which requires temporal high-resolution
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data for generation/load profiles. The optimal sizing of storage and generation facilities for these
household-prosumers [10,24–27] also depends on the availability of reliable generation/load profile
data. The criteria for this sizing are based on technical, economical, and hybrid indicators [28].
Not surprisingly, the monitoring of household generation/load profiles has experienced an exponential
growth in recent years [29–31]. In fact, many of the electricity distribution companies carry out the
installation of smart meters for the remote reading of electrical consumption.

Smart grids must realize the “smart cities” that are an emerging paradigm throughout the
world. “Smart cities” are supported by studies on the energy behavior of cities around the world.
Such is the scope of the issue that the European Commission, in its draft proposals for the imminent
call of the Horizon 2020 program, points to Smart Green as a priority action line. As previously
mentioned, methods that synthetically generate solar irradiation data at daily and hourly scales have
been well studied and contrasted. The next section summarizes some of them, highlighting its main
features. Nevertheless, for less than the hour values of solar irradiation data, there are few works
nowadays. This is the reason that it is a very important field of researching, and its applications will be
very important.

The objective of this work is to present a methodology for predicting solar irradiation at a lower
scale of the hour.

The structure of this paper is the following. In this first section, the introduction to the paper is
presented plus. Section two is the materials and methods used in this work. In this section, a review
of the most important methods for predicting solar irradiation and an explanation of the database
used and the methodology that was proposed is developed. In Section three, the results are presented.
Finally, the discussion and conclusion are included in Section four and five.

2. Materials and Methods

2.1. Methods for Predicting Solar Irradiation

In order to have long sequences of solar irradiation, here are lots of methods for obtaining solar
irradiation at different time scales. The two main scales where most authors have presented methods
or methodologies for generating what is named “synthetic solar irradiation data” are daily scale and
hourly scale.

In all of these methods, the underlying idea can be summarized as starting from an exhaustive
statistical study of the historical records of the locality or localities for which solar data are available,
to later propose a mathematical model of generation solar. In this statistical study of the data, at least
the following two types of characteristics must be included:

• Independent characteristics of solar irradiation time, such as means (both monthly and annual),
variances, or standard deviations, etc.

• Time-dependent or sequential characteristics of solar irradiation: mainly partial and total
autocorrelation functions.

Once these parameters are known, the next step is the proposal of a mathematical model that
generates synthetic irradiation series that are equivalent to the real series, in the sense that the
aforementioned statistical parameters must be similar (the closer the better) to the values of the real
series, within certain reliability margins.

Hereafter, a review of the methods of generating series on a daily scale is firstly presented and
then those of the hourly scales.

One of the pioneering works in the field of daily series was due to Klein [32]. This researcher
made use of the fact that most of the seasonal variations of the global daily irradiation were due to
variations in the extraterrestrial or extra atmospheric irradiation (the one that affects the upper layers
of the Earth, without having managed to cross the atmosphere), and these seasonal variations can be
eliminated while using the KT clarity index (quotient between global irradiation and extraterrestrial
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irradiation) as a variable. In this way, the variable to be modeled was not the global irradiation itself
but the index of clarity. However, many other researchers began studying the global irradiation itself.

Thus, Brinkworth carried out another of the first works [33] while using an autoregressive model
with moving average (ARMA: AutoRegressive Moving Average) applied directly on the daily global
irradiation data. Paasen [34] modeled the daily irradiation sequences in the Netherlands, while using
a modified irradiation variable. Exell [35] and Vergara-Domínguez et al. [36] made use of a new
variable, called clear sky irradiation, which is similar to the clarity index. However, none of these
authors incorporated in their study the analysis of the distribution of the data obtained by means of
the distribution function. In this sense, Amato et al. [37] included the distribution function of the daily
global irradiation series, but, nevertheless, the proposed model was only applicable to the locality
under study, that is, it was not of universal application.

Although the global irradiation distribution function will locally depend on where the irradiation
comes from, Liu and Jordan [38] showed that, for the case of the distribution functions of the daily
clarity index, they are universal. In addition, these functions are non-Gaussian, dependent on the
monthly clarity index, and therefore monthly variables. Dagelman carried out a work that already
included the universal distribution functions of Liu and Jordan [39], who proposed a method for
generating the daily clarity indices in a random way from the distribution curves of Liu and Jordan.

Also important are the works of Boileau [40], based on developments in Fourier series, and those of
Bartoli et al. [41] also focused on Fourier series and Markov processes. However, the most widespread
are those that were proposed by Graham and Hollands [42] based on Gaussian inversion techniques
and those of Aguiar and Collares-Pereira [43] that makes use of Markov Transition Matrices. These
last two works are currently considered the best in this field, and they are usually used as a basis to
generate artificial sequences of solar irradiation with great rigor. In the case of Graham and Hollands,
the study was conducted with Canadian localities from different climates, and in the case of Aguiar,
the locations used were from several countries, from Portugal to Macao (China).

Regarding hourly generation methods, one of the pioneering works based on ARMA processes
was due to Goh and Tan [44] for data from Singapore. Mustacchi et al. [45], studying about twenty
Italian localities, used Markov Transition Matrices to simulate the stochastic processes that were
implicit in the real time solar irradiation series. A method that was based on spectral techniques
was presented by Balouktsis and Tsalides [46] for data from Athens. The Spanish researchers Llanos
Mora and Mariano Sidrach [47] present a model that was based on multiplicative ARMA processes,
while using data from Spanish localities, while Palomo [48], also for Spanish localities, uses Markov
transition matrices.

However, once again, the methods that were used as a paradigm in this field are again those that
were proposed by Graham and Hollands [49] and by Aguiar and Collares-Pereira [50]. The method
presented by Graham and Hollands makes use of ARMA and Gaussian investment processes,
being practically a continuation of the work presented for the generation of daily series. However,
the work of Aguiar and Collares-Pereira is quite different from the one that they proposed for daily
series, since they do not use Markov matrices, but in this case they start by making a very exhaustive
study of the data that they have available, discovering certain properties that they try to implement
in their new method. This new method is called the Gaussian autoregressive time-dependent model
(“TAG: Time dependent Autoregressive Gaussian model”), and the results that it produces are very
satisfactorily adjusted to the real hourly solar irradiation values.

It is very important to try to generate solar irradiation data at lower time scales of the hour, as,
for instance, in the application of photovoltaic design for smart grids, the data provided by the grid are
obtained for minutes or even less. Nevertheless, for lower time scales (less than an hour), there are few
works [30–32]. A bibliographic search has been done and it can be summarized as the most relevant.

In 2009, Reikard [51] presented a work in which he analyzes different methods to make predictions
about the behavior of solar irradiation in two possible time scales: (a) time slots (intervals of 1 h, 2 h,
3 h, and 4 h) and (b) minutes (intervals of 5 min, 15 min, 30 min, and 60 min). It is interesting to note
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that, already in this work, authors present a study that goes down to the scale of minutes to predict
solar irradiation. Of the six methods analyzed, it concludes that for hour forecasts the best method is
one that is based on ARIMA (AutoRegressive Integrated Moving Average) methods, methods that
are fully contrasted by many other researchers. For periods of minutes, the ARIMA method is still
almost the best, although it is slightly surpassed with a methodology that is based on Neural Networks,
especially for periods of 5 min, although when the interval is greater, it continues to dominate the
ARIMA method.

Additionally, Barbieri et al. [52], presented a work in which on the one hand explains how to make
the possible prediction of the PV power of a PV system from solar irradiation prediction methods
(also for wind) in the very short term and by another side makes an important revision of solar
irradiation methods. In this case, he concludes that the most reliable methods are those that are
based on neural networks to predict solar irradiation. Despite all of these researchers insisting on the
difficulty of predicting the output of a PV system in the short term due to the difficulty of the previous
prediction in solar irradiation, the methodology proposed could be very interesting to reproduce in
our characterization.

Rahmann et al. [53] propose a method of control strategy to reduce the impacts on long-term PV
plants, when fluctuations occur in the input (solar irradiation). It proposes methods for the prediction
of solar irradiation on the daily scale while using finally three typical days: sunny (clear), partly cloudy,
and totally cloudy and the methodology of Neural Networks.

Finally, it is interesting to highlight the work, as previously mentioned, done by Mora et al. [47],
in which they propose an ARMA method for the generation of solar irradiation data at a time scale.
It is one of the methods that gives better results, so its reproducibility at a minor time scale of an hour
can be analyzed.

The first conclusion that can be drawn from the literature review is that there are methods for
the generation of solar irradiation at a time scale that are highly contrasted and mainly based on two
major types, those that are based on classical methods, such as ARIMA and ARMA, and those that are
based on newer methods, such as artificial neural networks. However, there are not many methods for
predicting solar irradiation at a minor time scale of an hour. Nowadays, studies and the proposal of
methods to generate solar irradiation series are increasing. These methods are usually quite complex
and very local, since the variability that solar irradiation presents at minor time scale of an hour is
complex and difficult to determine. This is where there is a wide study field that authors try to cover.

2.2. Database of Solar Irradiation in Jaén

The initial material available is a database of solar irradiation available in Jaén. (Spain, latitude
37.73◦ N, 3.73◦ W), where we have our research laboratory and a solar irradiation data base of many
years. The accessible data are values of solar irradiation at a minor time scale of an hour (values every
10 min). Our research group has been recording solar irradiation data in the city of Jaén from 1996 to
2003 and from 2005 to 2011, in a time scale of 10 min.

Subsequently, these data have been sorted and filtered in order to eliminate errors. The data
measured and provided by the University of Jaén during the study period (from 1996 to 2011, excluding
the year 2004) in some cases they were null, which will be called erroneous. For this reason, a filtering
of said values has been carried out in order to obtain a more complete database.

For this, a previous study of ordering and detection of errors was carried out. Table 1 shows the
errors that were detected and the percentage of final error.

Table 1. Days under study.

Period Total Days Days with Errors Percentage of Days with Errors

1996–2011 5476 250 4.56%
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Finally, a database of more than 15 years has been obtained, with data at minor time scale of an
hour: approximately 788,400 data.

This database was already characterized and the Typical Meteorological Year (TMY) [54] was
obtained. In next two sections, we explain the characterization done and the calculation of the TMY.

2.3. Characterization of Solar Irradiation in Jaén

Once the database is available, the characterization of the hourly solar irradiation has been
carried out. The fundamental parameters that are necessary for a correct solar characterization have
been calculated, such as mean values, variances, and distribution functions. The knowledge of these
parameters allows for making adjustments of the coefficients of solar irradiation generation methods,
such as the ARIMA methods.

A series of statistical parameters have been calculated to characterize solar irradiation, such as
means and standard deviations. Additionally, a good characterization involves knowing the main
components of solar irradiation (direct, diffuse, and albedo), as well as certain relationships between
them, such as the clarity index (KT) or the diffuse fraction (KD). In the following section, the most
important parameters that were carried out in this characterization are shown.

2.4. Calculation of the Typical Meteorological Year (TMY) for Jaén

Finally, the Typical Meteorological Year (TMY) has been calculated to complete the characterization
of solar irradiation in Jaén. The main function of the TMY is to be able to perform simulations in the
case of not having a method to generate solar irradiation series, since the TMY works the same as any
series generated. A TMY internally conserves the parameters and fundamental characteristics of the
solar irradiation of a certain place.

By definition, a TMY is one that collects the different hourly values of global horizontal irradiation
and ambient temperature obtained over a hypothetical year constituted by a succession of twelve
months belonging to a set of real years. These twelve months are chosen, so that the TMY represents
with reliability the meteorological characteristics of the place in question.

TMY is only available for very few locations, even it is difficult to obtain the hourly values of
horizontal irradiation and room temperature for most places.

For the construction of the TMY, different base periods can be used, although it is convenient
that this period is the month, that is, it is used, for each generic month that will make up the TMY,
all of the data of a single month of the locality in question. Thus, the TMY will represent both the
variation of monthly averages throughout the year and the distribution of daily and hourly values
within each month.

If the irradiation data of a single year were chosen as a typical year, this would not take into
account neither the distribution nor the sequences of the irradiation in this period; otherwise, if they
were chosen, for each generic day of a typical year, the data of the actual days would have a succession
of days of almost uniform clarity index.

Two different criteria have been used for the selection of the months that will constitute the TMY
of the town of Jaén under study:

• Criterion I: Criterion of the monthly average values of daily irradiation. Based on finding a month
whose average daily irradiation value is as close as possible to the average irradiation value of the
same month of all years.

• Criterion II: Criteria for the monthly distribution of values of the clarity index.

For this criterion, a similar study is carried out but with the monthly distribution of the values of
the clarity index. In this case, to achieve the appropriate adjustment, a test of goodness of fit must be
used; in this case, it has been done following the Kolmogorov–Smirnov test [55]. This test involves
the examination of a random sample (that will have some unknown distribution) versus a known
distribution function.
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The Kolmogorov–Smirnov test for a sample is a “goodness of fit” procedure, which allows for
measuring the degree of agreement between the distribution of a data set and a specific theoretical
distribution. Its objective is to indicate whether the data come from a population that has the specified
theoretical distribution, that is, it contrasts if the observations could reasonably come from the
specified distribution.

The Kolmogorov–Smirnov test has been used to locate the degree of similarity that exists between
the distribution function in a month and that of the generic distribution function.

2.5. Proposed Method to Generate Data of Solar Irradiation at Minor Time Scale of an Hour

From the revised methods, it is considered that one of the best methods for generating synthetic
solar irradiation series is the one proposed by Mora-Sidrach. Based on this method, the authors have
adapted it to the data of the locality under study and a method to generate solar irradiation series at
the 10-min scale is proposed. Figure 1 shows a flowchart of the proposed method.
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Figure 1. Flowchart of the proposed method to generate data of solar irradiation.

• Step 1: One should start from knowing 12 values of the index of clarity for the locality, in particular
of the twelve monthly average daily values of said index.
The expression for this first variable is given by:

Ktm =
Gdm
Bodm

(1)

where:
Ktm: monthly average daily clarity index
Gdm: monthly average global solar irradiation per month
Bodm: monthly average extraterrestrial solar irradiation
Table 2 shows the values of Ktm from the typical meteorological year of Jaén.
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Table 2. Values of Ktm from the typical meteorological year, location of Jaén.

Month Ktm

January 0.481
February 0.562

March 0.567
April 0.575
May 0.577
June 0.661
July 0.676

August 0.657
September 0.581

October 0.577
November 0.519
December 0.474

• Step 2: Determination of the ARMA type model.

Mora and Sidrach proposed several ARMA models, in the sense that, for each model, there are
different coefficient for the Residual Variance (RV), Autoregressive coefficient (AR), and Moving
Average coefficient (MA). Following similar criterion, but adapted at the Jaén solar irradiation data,
five types of ARMA model have been obtained and are included in Table 3. The procedure to determine
which type of model has to be applied in each case is as follows. Firstly, the Ktm value of the month is
used where it included the day where the synthetic series of solar irradiation is going to be generated.
The Ktm value can be seen in Table 2. With this value Table 3 is consulted to determine the ARMA type
model that should be used. In Table 3, there are three variables, G1, G2, and G3, which indicate the
group of the month where the calculation of the series is taking place. The corresponding month of
each group are:

G1: January–February–November–December
G2: June–July–August–September
G3: March–April–May–October

The value of Ktm nearest of the values of the columns in Table 3 will indicate the ARMA type model.

Table 3. Values of Ktm for each month to determine the AutoRegressive Moving Average (ARMA)
type model.

Model G1 (group1)January–February–
November–December

G2 (group2)June–July–
August–September

G3 (group3)March–
April–May–October

Type 1 0.583 0.633 0.637
Type 2 0.564 0.614 0.618
Type 3 0.545 0.594 0.598
Type 4 0.514 0.563 0.567
Type 5 0.480 0.530 0.534

Once the ARMA type model is determined, the AutoRegressive coefficient (AR), the Moving
Average coefficient (MA), and the Residual Variance coefficient (RV) are indicated in Table 4.

• Step 3: Generation of the series Yt. The variable Yt is defined as:

Yt = Xt −Xt−s (2)



Sustainability 2019, 11, 5233 8 of 15

The value t indicates a fixed hour, and s is some time before.
For obtaining Yt the ARMA model is applied in this way:

Yt = AR ·Yt−1 −MA · at−1 + at (3)

where at and at−s are Gaussian white noise.
• Step 4: Obtaining the series Xt.

In this step, the series Xt is obtained from the previous equation in this way:

Xt = Yt + Xt−s (4)

• Step 5: Obtaining the series Gt.
Gt is calculated as follows:

Gt = Xt ·Gh,max (5)

with Gt = Xt ·Gh,max = 1100 · (sin(γ))1.05 and γ is the solar altitude.

Table 4. Values of the three main coefficient: Residual Variance (RV), AutoRegressive coefficient (AR),
and Moving Average coefficient (MA) for each type of model.

Model RV AR MA

Type 1 0.008 0.720 0.845
Type 2 0.012 0.745 0.845
Type 3 0.018 0.745 0.845
Type 4 0.025 0.762 0.845
Type 5 0.036 0.728 0.862

3. Results

This section shows the results of the proposed method, mainly via some graphics that underline
the synthetical days generated. For instance, in Figures 2–4, three typical days of the three groups (G1,
G2, and G3) have been included. Figure 2 shows a typical day from group G1 (in this case January).
As it can be observed, a real day had a similar evolution as a day synthetically generated from our
method, with the difference that the method includes a more pronounced influence of the random
component, as usually the days were cloudy in January.
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Similarly, in Figure 3, the global solar irradiation evolution on typical April days, one real day and
one synthetic days were compared. In this case, in the location in study, April days had values higher
than in January, but there were days with some intervals of clouds, which can be seen in Figure 3.

Finally, real days versus synthetic days for July are shown in Figure 4. In this case, it can be
observed that this typical days were very sunny (clear days), so the values of the solar irradiation were
the highest of the year.
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In order to compare qualitatively the data in Figures 2–4, A parameter called relative mean
variance (RMV) is used:

RMV =

∑(
Gh−real −Gh−synth

)2∑
(Gh−real −Gh−mean)

2 (6)

where:
Gh−real: Solar global irradiation real 10 min values
Gh−synth: Solar global irradiation synthetic 10 min values
Gh−mean: Solar global irradiation mean value (from real values)
The results of RMV for Figures 2–4 are shown in Table 5.

Table 5. RMV for each representative day analyzed.

Example Day RMV (%)

January 1.79
April 0.61
July 0.07

Table 5 underlines the differences between the two series, the one obtained synthetical and the
real data for the three days.

More examples of the evolution of global irradiation are shown in Figures 5–7, where ten days for
the three types of groups were generated. In this case, the same months have been chosen, i.e., January,
April, and July.Sustainability 2019, 11, x FOR PEER REVIEW 11 of 16 
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Figure 7. Global solar irradiation evolution on the first ten days of a typical month of July.

It can be observed that the evolution of the global solar irradiation had a random component that
was more influenced on January or April (more cloudy days) than in July (clear days).

Finally, the variable RMV for the whole year generated synthetical and compared with a real year
is shown in Table 6.
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Table 6. RMV for a representative month of each group (G1, G2, and G3).

Example Day RMV (%)

January (G1) 2.37
April (G3) 1.13
July (G2) 0.16

The RMV value for the whole year was 4.15%.

4. Discussion

After analyzing the results in the previous section, the graphs of the days that were generated in a
synthetic way, as well as the tables with the errors observed between the real data and the synthetic
data, the proposed method is very useful for obtaining solar irradiation data at a minor time scale of
an hour.

It has to be said that, when the day is sunny, the method is highly effective. The differences
between the days of solar irradiation generated synthetically, as compared to the days of real solar
irradiation are indistinguishable. However, for cloudy days, the differences between the types of
days are greater. This is totally logical and justifiable, since the random component that is associated
with the evolution of solar irradiation, due mainly the influence of clouds, is higher for cloudy days.
This leads to a method in this case somewhat less effective. On the contrary, for clear days, as indicated
and can be seen in the results, the method works correctly.

In any case, it should be noted that, for the locations with climates similar to the locality in the
study, where the clear days predominate, the method works correctly.

As for the errors, we conclude that, for days of the group G2, the error is less than 1%, for Groups
G1 and G3, the error is less than 3%, and the error for a complete synthetical year is less than 5%.

5. Conclusions

As final conclusions, it would be interesting to highlight the following. Firstly, it is necessary to
emphasize that this work has begun carrying out an exhaustive work of bibliographical search on
methods that serve to generate solar irradiation at minor time scale of an hour. It was found that
there is not much literature on the subject, although it is a very interesting field of study for future
applications that may be in the PV field.

Secondly, it can be concluded that a very reliable method has been presented to generate sequences
of solar irradiation in a synthetic way. From the results that were obtained, it works correctly. In the
operation of the developed method, it is necessary to clearly distinguish between cloudy days and
clear days, among which there is a difference in the operation of the method used.

Hence, for clear days, it is observed that the method works properly, as can be observed from the
results obtained. In these cases, the errors are less than 0.1%, and it can be said that the days artificially
generated by the proposed method and the real days used to compare are practically indistinguishable.
However, for cloudy days, there are somewhat greater differences between artificial and real days.
As a future investigation, we would like to improve the generation of cloudy days.

Another conclusion is that this type of study is only applicable in this case for locations with
climates that are similar to the locality under study. The authors cannot categorically claim that it
can be extrapolated to other locations. We think that, in this sense, the extension of this methodology
to other places will require the adjustment of the fundamental ARMA parameters, with which this
situation could be considered as a possible future line of study. Therefore, this work is only a first step
towards obtaining a method that is universal for other locations, although the methodology could be
reproducible in different places, simply by making a preliminary study of the solar irradiation available
in order to adjust the mentioned parameters.
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