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Abstract: Land use change (LUC) is a dynamic process that significantly affects the environment,
and various approaches have been proposed to analyze and model LUC for sustainable land use
management and decision making. Recurrent neural network (RNN) models are part of deep learning
(DL) approaches, which have the capability to capture spatial and temporal features from time-series
data and sequential data. The main objective of this study was to examine variants of the RNN models
by applying and comparing them when forecasting LUC in short time periods. Historical land use
data for the City of Surrey, British Columbia, Canada were used to implement the several variants
of the RNN models. The land use (LU) data for years 1996, 2001, 2006, and 2011 were used to train
the DL models to enable the short-term forecast for the year 2016. For the 2011 to 2016 period, only
4.5% of the land use in the study area had changed. The results indicate that an overall accuracy
of 86.9% was achieved, while actual changes in each LU type were forecasted with a relatively
lower accuracy. However, only 25% of changed raster cells correctly forecasted the land use change.
This research study demonstrates that RNN models provide a suite of valuable tools for short-term
LUC forecast that can inform and complement the traditional long-term planning process; however,
further additional geospatial data layers and considerations of driving factors of LUC need to be
incorporated for model improvements.

Keywords: recurrent neural networks; long-short term memory; land use change; spatio-temporal
modeling; deep learning; and short-term forecasting

1. Introduction

Land use change (LUC) arises from human-environmental interactions [1], and so far, about
39% of the Earth’s land has never been exploited or used for the benefits of humans [2]. Land use
change (LUC) with urban intensification has resulted in pressures to the natural environment that can
produce irreversible damages, if not adequately addressed. Better knowledge and understanding
of LUC process can help policymakers to make informed decisions for sustainable land management.
Sustainable land management practices promote the activities that increase the benefit of utilization
and development of land resources for individual, social, and economic purposes. LUC analysis and
modeling methods can assist in the projection of possible future LU patterns, thus helping and guiding
the management of land towards sustainable urban development.

The LUC phenomenon is typically studied through earth observations (EO), remote sensing (RS),
and field measurements [3], all of which provide the opportunity for monitoring and quantifying
changes of LU patterns at local, regional, and global levels. LUC is a complex phenomenon
occurring locally and with implications for global geographic scales. Decades ago, RS sensors
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provided data with lower resolution, and the availability of this data to the public was very limited.
Besides EO and RS techniques that require advanced satellite equipment and expert knowledge for data
interpretation, researchers have been using LUC modeling approaches for decades. LUC models
provide representations and strategies that can help analyze, understand and assist in the planning
and management of land and natural resources. Many LUC models are based on inductive approaches
which start with studying the observations and then developing explanations [4,5]. LUC models are
often based on a suite of explanatory variables that potentially drive the change process. However,
the main factors of LUC are directly related to human interactions and decision-making processes that
are often difficult to accurately model and predict.

Deep learning (DL) is a subset of machine learning (ML) approaches and can be considered as
deep machine learning. ML and DL both work by reducing the dimensionality and extracting features
of large datasets. Compared with traditional ML methods, DL models can simultaneously extract
and classify features with faster computation. Recent access to larger volumes of data from open
sources coupled with superior computational abilities has given DL models great potential to become
valuable tools that are capable of exploring and analyzing LUC phenomena. DL models include both
convolutional neural networks (CNN) [6] and recurrent neural networks (RNN) [7]. CNNs have
been used for image classification [8] and LUC classification and mapping [9], while RNNs have been
used for natural language processing (NLP) tasks [10,11]. Deep learning (DL) has been identified as
an intelligent modeling approach for advancing the field of LU modeling [12,13].

RNNs have the capability to capture information within sequential datasets such as in spatial and
temporal sequences [14]. Due to the spatio-temporal nature of LUC processes, the main objective of this
research study is to examine the capabilities of RNN-based models to model LUC from an integrated
space-time perspective and to perform short-term forecast of LU. Sequential land use data for the City
of Surrey, British Columbia, Canada were used to implement the selected RNN models and generate
the forecasted LUC.

1.1. Land Use Change Models

The usual approaches for monitoring urban growth and LUC detection are based on geographic
information systems (GIS) and RS [15] techniques and available geospatial datasets, which may
require intensive pre-processing and interpretation. Efforts have been made to model LUC with
the projection of possible future scenarios for spatial patterns of change to provide solutions and
assistance to land management. In the published research literature, various LUC modeling methods
have been reported such as Markov chains [16,17], cellular automata [18–22], neural networks [23–25],
logistic regression [26], multi-agent systems [27,28], and machine learning [29–32].

Markov chains is a stochastic model that can capture time dependency among sequential data
and is usually used to describe a sequence of possible events or states whose probabilities only depend
on previous events or states. Markov chains cannot preserve the information from the event that
is not within the neighborhood of a current event. There are some Markov chain-based models
for representing the dynamics of LU systems [17], which project the future LU by applying a transition
probability matrix on the primary matrix recording LU information. Markov chains model assume that
the transition probability between each pair of states is stationary over time; hence, these models can
forecast LUC from short to long-term. However, Markov chain models cannot consider socioeconomic
and human related factors that can potentially lead to changes in LU patterns.

Cellular automata (CA) is a discrete modeling approach that has been used for representing LUC
given its capability to capture both spatial and temporal dynamics of a phenomenon and consider
changes at a very local scale [33–35]. The CA consists of a regular grid of cells, where each cell has one
of many finite states, and the state of a cell changes in the next time iteration according to the function
of transition rules based on the state of the cell and in its spatial neighborhood. The structure of CA
models has a close affinity with raster-based GIS and RS datasets. However, Stevens and Dragićević [36]
proposed a LUC model using irregular CA cells, although this requires longer computation time.
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The integration of Markov chains and CA allows for the simulation of spatial and temporal LUC
processes [37]. Even though the fixed rules enable the various possibilities of transition, the forecast
of LUC is more precise when the system is stable over years and under the assumptions that the land
always changes with the same transition rules. The assumption of an ideal and stable environment
is not realistic as LU changes are governed by human decisions changing over time that are difficult
to predict. However, these types of models are more sensitive to spatial than temporal factors.

Machine learning (ML) methods depend on strong statistical learning theory where the size and
quality of the training datasets significantly influence the performance of ML methods. ML-based LUC
models can extract and learn from earlier LU observations the driving forces of LUC and their
impact. Otukei and Blaschke [31] evaluated several ML methods, such as artificial neural networks
(ANN), support vector machine (SVM), maximum likelihood, and decision trees, to investigate LUC
detection, and their study demonstrated better classification performance of SVM and ANN algorithms.
Samardzic-Petrovic et al. [38] compared the performance of some common ML methods for LUC
short-term forecasting. Urban LUC was also modeled using decision trees [39] and SVM [32]. However,
traditional ML methods have limited performance, when the data is highly dimensional and the number
of observations is large [40].

Post-classification comparison is the strategy of some ML-based LUC detection methods.
The change analysis of multi-temporal images generally employs two basic methods: raster-to-raster
comparison and post-classification comparison [41]. Other ML methods assume the independence
of data [42]; however, spatial data are often known for their dependency and spatial autocorrelations.
Therefore, using DL models compared to ML brings the advantage of automating the extraction
of representations (abstractions) from a larger amount of data. The success of DL models has started
to attract attention for studies of LUC classification using RS datasets with CNNs.

Recently, some studies have shown the effectiveness of RNN for analyzing LUC. Byeon et al. [43]
conducted LU scene classification with Long Short Term Memory (LSTM) networks instead of CNN
without pre-processing, the results of which were comparable to that of CNNs. This study indicates
that LSTM models can learn the spatial neighboring context information for every raster and capture
the global dataset dependency through the recurrent connections. Using sequence-to-sequence
processing of LSTM models, [44] classified land cover through learning from multi-temporal land
cover RS datasets. CNN, RNN and LSTM models were used to model vegetation from temporal RS
data, and LSTM outperformed CNN as temporal information was used in training [45]. Due to the
realistic dynamics of fast-developing urban areas, it is necessary to propose models that are more
efficient to capture the change and study the LUC from a spatio-temporal perspective. Bengio [46]
used CNN and RNN for learning long-term dependencies and functions from complex phenomenon.
RNN models can consider larger numbers of data layers and thus be more effective than traditional
ML methods such as SVM or decision tree (DT), to name a few. So far, RNN has recently been
used for land cover classification [47–49] and land cover change detection [50,51]. Du et al. [52]
used RNNs for spatio-temporal modeling of LUC and the overall accuracy results were close to 50%.
Therefore, there is a need to further explore the potential of RNNs to forecast LUC. In this research
study, previous geospatial LU datasets with 5-year intervals for the City of Surrey, British Columbia,
Canada were used to implement the concepts for RNN-based short-term forecasting of LUC.

1.2. RNN and its Variants

Artificial neural networks (ANN) are the collections of connected neurons (also called layers)
inspired by the human brain [53]. CNN and RNN are types of ANN. Unlike CNN, which contains
different types of layers that perform different functions (e.g., convolutional, pooling and nonlinear
layers), the basic RNN consists only of recurrent layers. Each layer in an RNN shares the same group
of functions and parameters, while the parameters are updated in each layer. As shown in Figure 1,
the connections between recurrent layers are cyclical when presented compactly [54], and for the
convenience of visualization, it can be unfolded like a chain-like structure.
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Figure 1. A recurrent neural network (RNN) [7] structure allowing information to loop in the layer, 
and it can be unfolded as a neural network indicated at the right side. 𝐗𝐭𝐢 is a temporal sequence 
input. 𝐡𝐭𝐢 is the hidden state. 

CNNs are often used for image classification tasks. The inputs and outputs of CNNs have fixed 
sizes and are processed independently from each other. By contrast, RNNs can deal with sequential 
inputs and have sequential outputs, while the inputs are considered dependent so that RNNs can 
capture their dependence. In reality, many datasets such as text, speech, audio, video, weather, and 
stock price are sequential and internally dependent. Some applications areas of RNN and its variants 
include for example music composition [55], handwriting recognition [56], speech synthesis [57], and 
video captioning [58], to name a few. LSTMs are often used for time-series problems such as 
predicting stock market price movement [59], weather [60], traffic flow [61], and passenger flow [62]. 

The traditional RNN has the limitation of short-term memory caused by a vanishing gradient 
problem [63]. Gradients are used to update the weights of networks, which shrink through time 
during backpropagation process and may become too small to contribute new significant weights 
based on Equation (1): 

New weights = old weights − (learning rate × gradients). (1) 

The problem of short-term memory of traditional RNNs can be solved by long-short term 
memory (LSTM) [64]. LSTM is one of the variants of RNN, which has unique internal mechanisms 
called gates that can regulate the flow of information compared with traditional RNN. The function 
of gates is to decide if the data in a sequence is important or not, then to keep or discard the 
information from that data. Through gates, the essential information can be preserved even if the 
sequential data is long. Gated recurrent unit (GRU), another variant of RNN, was first introduced by 
Cho [65]. GRUs have fewer gates and relatively shorter memory but have faster training processes 
than LSTMs. GRU has comparable performance to LSTM for music and speech modeling tasks [66]. 
Bidirectional LSTM (BiLSTM) [67] processes two sequential inputs with the opposite direction so that 
a current BiLSTM layer has two hidden states which accept past information and future information. 
Furthermore, the algorithms within BiLSTM layers are the same as that of unidirectional LSTM. 
BiLSTM is adapted with more complicated situations such as speech [68] and phoneme recognition 
[69], where the current inputs are influenced by previous and future inputs. 

The inputs to RNNs like LSTM and GRU are one-dimensional vectors, while a convolutional 
LSTM (ConvLSTM) network receives inputs as 3D vectors, which can encode both spatial and 
temporal information. ConvLSTM is an effective model for nowcasting short-term precipitation 
within a study area [70]. There also are ConvLSTM based models for short-term forecast of traffic 
accidents [71], video anomaly detection [72], and short-term forecast of traffic flow [73], and these 
phenomena have spatial patterns that can be captured by convolutional layers. When using LSTM, it 
is assumed that each cell is independent. Figure 2a and 2b present the structure of a ConvLSTM as a 
group of cells that are located in the same neighborhood. ConvLSTM can simultaneously incorporate 
the spatial neighborhood for each raster cell and the temporal LU information. The GRU model is 
very similar to LSTM, however, the difference of GRU is in the update gate and reset gate, where the 
update gate learns and decides how much of the past information to pass to the future and the reset 
gate decides how much of the past information to forget (Figure 2c). BiLSTM (Figure 2d) can be 
considered to have the inputs with the original order and reversed order respectively to feed into the 

Figure 1. A recurrent neural network (RNN) [7] structure allowing information to loop in the layer,
and it can be unfolded as a neural network indicated at the right side. Xti is a temporal sequence input.
hti is the hidden state.

CNNs are often used for image classification tasks. The inputs and outputs of CNNs have fixed
sizes and are processed independently from each other. By contrast, RNNs can deal with sequential
inputs and have sequential outputs, while the inputs are considered dependent so that RNNs can
capture their dependence. In reality, many datasets such as text, speech, audio, video, weather, and stock
price are sequential and internally dependent. Some applications areas of RNN and its variants include
for example music composition [55], handwriting recognition [56], speech synthesis [57], and video
captioning [58], to name a few. LSTMs are often used for time-series problems such as predicting stock
market price movement [59], weather [60], traffic flow [61], and passenger flow [62].

The traditional RNN has the limitation of short-term memory caused by a vanishing gradient
problem [63]. Gradients are used to update the weights of networks, which shrink through time
during backpropagation process and may become too small to contribute new significant weights
based on Equation (1):

New weights = old weights − (learning rate × gradients). (1)

The problem of short-term memory of traditional RNNs can be solved by long-short term memory
(LSTM) [64]. LSTM is one of the variants of RNN, which has unique internal mechanisms called gates
that can regulate the flow of information compared with traditional RNN. The function of gates is
to decide if the data in a sequence is important or not, then to keep or discard the information from
that data. Through gates, the essential information can be preserved even if the sequential data is long.
Gated recurrent unit (GRU), another variant of RNN, was first introduced by Cho [65]. GRUs have
fewer gates and relatively shorter memory but have faster training processes than LSTMs. GRU has
comparable performance to LSTM for music and speech modeling tasks [66]. Bidirectional LSTM
(BiLSTM) [67] processes two sequential inputs with the opposite direction so that a current BiLSTM
layer has two hidden states which accept past information and future information. Furthermore,
the algorithms within BiLSTM layers are the same as that of unidirectional LSTM. BiLSTM is adapted
with more complicated situations such as speech [68] and phoneme recognition [69], where the current
inputs are influenced by previous and future inputs.

The inputs to RNNs like LSTM and GRU are one-dimensional vectors, while a convolutional
LSTM (ConvLSTM) network receives inputs as 3D vectors, which can encode both spatial and temporal
information. ConvLSTM is an effective model for nowcasting short-term precipitation within a study
area [70]. There also are ConvLSTM based models for short-term forecast of traffic accidents [71],
video anomaly detection [72], and short-term forecast of traffic flow [73], and these phenomena have
spatial patterns that can be captured by convolutional layers. When using LSTM, it is assumed that each
cell is independent. Figure 2a,b present the structure of a ConvLSTM as a group of cells that are located
in the same neighborhood. ConvLSTM can simultaneously incorporate the spatial neighborhood
for each raster cell and the temporal LU information. The GRU model is very similar to LSTM, however,
the difference of GRU is in the update gate and reset gate, where the update gate learns and decides
how much of the past information to pass to the future and the reset gate decides how much of the
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past information to forget (Figure 2c). BiLSTM (Figure 2d) can be considered to have the inputs with
the original order and reversed order respectively to feed into the LSTM. RNNs and LSTMs can receive
complex sequential inputs or form a hybrid model with other layers or networks [74–76].
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(a) transforming 2D image into 3D tensor and (b) its inner structure and the structure of (c) the gated
recurrent unit (GRU) [77] and (d) bidirectional LTSM (BiLSTM) [78] models.

1.3. LSTM Algorithms

LSTM is more frequently used than traditional RNN due to its longer memory capabilities. The key
elements of LSTMs are the cell state, sigmoid activation, forget gate, input gate, and output gate
and tanh activation (Figure 3), which control the relevant information through the network. At each
processing step, the gates regulate the addition and removal of information to the cell state. Gates have
sigmoid activation, which multiplies values between 0 and 1 to derive the percentage of data that will
be kept or removed. If the input multiplies with 0, the information is forgotten; if the input multiplies
with “1”, the information is remembered. Tanh activation delivers values between −1 and 1. Hochreiter
and Schmidhuber [64] provided the Equations (2)–(7) to describe the algorithms of a typical LSTM
layer as follows:

it = σ (wi[ht−1, xt] + bi) (2)

ft = σ (wf[ht−1, xt] + bf (3)

ot = σ (wo[ht−1, xt] + bo]) (4)

gt = tan h
(
wg[ht−1, xt] + bg]

)
(5)

ct = ft∗ct−1 + it∗ gt (6)

ht =ot∗ tan h(ct) (7)

where xt, ct, ht represents the input, cell state, output at time step t, ft is forget gate, it is input gate,
ot is output gate, σ is sigmoid function, w and b are weight and bias respectively. gt is a vector of new
candidate value called cell activation, which adds with current cell state. ft is a value between 0 and 1,
which means the ratio of old information that will be passed to new cell state, and it decides the ratio
of each value in a sequence from gt that will be preserved.
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2. Methodology

2.1. Study Area

The City of Surrey, British Columbia, Canada is one of the fast-growing municipalities in the Metro
Vancouver Region. Significant population growth occurred between 2007 and 2017, and the population is
estimated to increase by over 262,000 inhabitants from 2018 to 2046 [80]. The increased population will
mean considerable challenges related to urban residential development, the management of the lands,
and the natural environment. The study area of the City of Surrey covers 316.4 km2 [81] (Figure 4).
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2.2. Data Preparation

The generalized LU data was obtained from the Metro Vancouver Open Data Catalogue [82]
for years 1996, 2001, 2006, and 2011. The road network data was obtained from the CanMap route
logistics datasets [83]. The LU classes and road networks were rasterized at 10m spatial resolution and
data processing was done within the ArcGIS desktop software [84].

The RNN models used in this study examined spatial and temporal features from 1996, 2001, 2006,
and 2011 LU datasets and forecasted the 2016 LU patterns. Due to the different classification schemes,
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the LU data of each year has a different total number of LU classes. For example, the year 1996, 2001,
2006, and 2011 LU data have respectively 13, 12, 15, and 22 LU classes, and specifically, 2011 has more
varieties of LU classes. In order to create uniform datasets with the same group of LU classes, the LU
data from 1996, 2006, and 2011 were reclassified and merged based on the LU classes in 2001 LU data,
and then similar types of residential classes (e.g., rural, single, townhouse, and high-rise) were merged
into one LU class as residential. A total of 9 LU classes were considered and these are: transportation,
communication, and utilities; recreation and protected natural areas; industrial; open and undeveloped
land; residential; lakes and water bodies; institutional; commercial; and agricultural. The 1996 and
2001 LU data contained no major road information and they were combined with rasterized road
networks for the same year obtained from DMTI Spatial Inc. [78].

RNNs usually process sequential inputs and can have multiple outputs. It has been proven
that even if the data is not in the form of sequences, it can be formatted as sequences and be used
to train RNN models [85]. Consider a study area V consists of m × n raster cells (m = 2437, n = 1952),
V = {c1,1, c1,2, c1,3, . . . ci,j, . . . cm,n,}, with associated LU label L = {l1,1, l1,2, l1,3, . . . li,j, . . . , lm,n,}, (i, j)
indicates the raster cell at row i and column j. Since the LU class of each cell is influenced by its
surrounding cell state, another two raster layers with the size of m × n were created. Each raster
cell in one layer stores the most frequently occurring LU class in its adjacent 7 × 7 cells as Moore
neighborhood, and each raster cell in another layer stores the second most frequently occurring LU class
in its adjacent 7 × 7 cells as Moore neighborhood, represented as Lmoore= {l11,1, l11,2, l11,3, . . . , l1i,j, . . . , l1m,n}

and Lmoore2= {l21,1, l21,2, l21,3, . . . , l2i,j, . . . , l2m,n}, respectively.

2.3. Training and Validation of RNNs

The training and validation of RNNs are similar to other neural networks. Through repeated
forward-propagation and back-propagation, parameters are updated until the cost function is
minimized. The validation process is part of training the model and updating the parameters,
which uses a small part of datasets to validate and update the model parameters after each training
epoch. When performing a classification task, categorical cross entropy loss is usually used as a cost
function. The key approach to ensure the model is learning from data correctly is minimizing cost
function during the training and validation process. Supposing K categories are expected from
the model. There is a certain sample x and its true label is represented as vector [ӯ1, ӯ2, . . . , ӯi, . . . , ӯk],
where ӯi can be represented as Equation (8):

ӯi=

{
1, if x belongs to the ith category

0, if x not belongs to the ith category
(8)

The output from the model y is a vector [y1, y2, . . . , yi, . . . , yK], where yi is the forecasted
probability of sample x being the ith category. Cross Entropy Loss is defined in Equation (9) [86]:

C(y, ӯ) = −
K∑

i=1

ӯi log
(
yi

)
(9)

The softmax layer (Equation (10)) is used to transform the outputs (i.e., K dimensional vector)
from last layer to vector ӯ with each value ranging between 0 and 1, which shows the probability
distribution of K categories [87,88].

σ(Z)j =
ezj∑K

k=1 ezk
(10)

The original set of raster cells from the study area were split by the ratio of 8:2 according to the
Pareto principle [89]. This is a common starting point for splitting training data sets, as there are
no strictly defined rules for dataset splitting. Further investigation of split ratio were conducted
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by Guyon [90]. Usually, when the total number of training dataset is more than 100,000, split ratio
such as 7:3 [91] or 9:1 will have a small impact on model accuracy. The ratio of 5:5 was not considered
because it is more suitable when a cross validation method is used. In this study, 80% of the raster
cells were used for training of the model so the parameters of the model were updated during each
training epoch to minimize cross-entropy loss. At the same time, the remaining 20% of the raster cells
were used to evaluate the models after each training epoch by measuring the validation accuracy.
The validation accuracy is the percentage of raster cells in the validation dataset that fit the model
after each training epoch; it is also calculated based on cross entropy (Equation (9)). If the validation
accuracy is low, the cross entropy will be fed back to the model in the next training epoch and adjust
the configuration of the model parameters.

2.4. LTSM Implementation

Figure 5 outlines the flowchart of the proposed LUC model for a short-term forecast based
on the LSTM model and spatio-temporal data available for the study area.

Sustainability 2019, 11, x FOR PEER REVIEW 8 of 18 

training epoch to minimize cross-entropy loss. At the same time, the remaining 20% of the raster cells 
were used to evaluate the models after each training epoch by measuring the validation accuracy. 
The validation accuracy is the percentage of raster cells in the validation dataset that fit the model 
after each training epoch; it is also calculated based on cross entropy (Equation (9)). If the validation 
accuracy is low, the cross entropy will be fed back to the model in the next training epoch and adjust 
the configuration of the model parameters.  

2.4. LTSM Implementation 

Figure 5 outlines the flowchart of the proposed LUC model for a short-term forecast based on 
the LSTM model and spatio-temporal data available for the study area.  

 
Figure 5. The flowchart of the proposed LSTM models for land use change (LUC) forecast, where LU 
data were considered for years t-5 = 1996, t = 2001, t + 5 = 2006 and t + 10 = 2011 for training and 
validation of the LSTM and then forecasted for t + 15 = 2016. 

In this study, four variants of RNN models were tested; specifically, the LSTM, GRU, BiLSTM, 
and ConvLSTM models. The LSTM, GRU, and BiLSTM models have similar training methods where 
all raster cells are considered independent. The inputs to the models were encoded as 3D vectors with 
the shape of [samples, time steps, features], where samples are equal to the number of raster cells for 
training and validation; time steps refers to years of 1996, 2001, and 2006; features refer to 
L,  L୫୭୭୰ୣ and L୫୭୭୰ୣଶ  of different Moore neighborhoods. Only a small part of all raster cells has 
changed their LU classes in the period from 1996 to 2011. In order to incorporate information 
regarding changed raster cells while training the RNN, two groups of datasets were used for every 
model for training and for validation. Group one sample set consisted of only raster cells that have 
changed from 1996 to 2011, and group two sample set contained all the raster cells. The inputs to the 
ConvLSTM layer had the shape of [samples, timesteps, rows, cols, features], where rows and columns 
represented the sample size for ConvLSTM. This means every rows x columns of raster cells are 
grouped as one sample for training and validation so that LU information of nearby raster cells were 
considered.  

2.5. Testing the Forecasted Results 

In order to check the accuracy of the forecasted LUC for the City of Surrey, orthophoto images 
for the year 2016 with 10 cm resolution obtained from the Surrey Open Data Catalog [92] were used 
for reference. The LU classes of about three million raster cells were forecasted; however, checking 
the correctness of every raster cell was time-consuming and complicated. Simple random sampling 
(SRS) method was used for sampling. There were two groups of validation samples. First, a total of 
604 sample points were randomly chosen from the orthophoto datatsets to reduce the computational 

Figure 5. The flowchart of the proposed LSTM models for land use change (LUC) forecast, where LU
data were considered for years t-5 = 1996, t = 2001, t + 5 = 2006 and t + 10 = 2011 for training
and validation of the LSTM and then forecasted for t + 15 = 2016.

In this study, four variants of RNN models were tested; specifically, the LSTM, GRU, BiLSTM,
and ConvLSTM models. The LSTM, GRU, and BiLSTM models have similar training methods where
all raster cells are considered independent. The inputs to the models were encoded as 3D vectors
with the shape of [samples, time steps, features], where samples are equal to the number of raster
cells for training and validation; time steps refers to years of 1996, 2001, and 2006; features refer
to L, Lmoore and Lmoore2 of different Moore neighborhoods. Only a small part of all raster cells has
changed their LU classes in the period from 1996 to 2011. In order to incorporate information regarding
changed raster cells while training the RNN, two groups of datasets were used for every model
for training and for validation. Group one sample set consisted of only raster cells that have changed
from 1996 to 2011, and group two sample set contained all the raster cells. The inputs to the ConvLSTM
layer had the shape of [samples, timesteps, rows, cols, features], where rows and columns represented
the sample size for ConvLSTM. This means every rows x columns of raster cells are grouped as one
sample for training and validation so that LU information of nearby raster cells were considered.

2.5. Testing the Forecasted Results

In order to check the accuracy of the forecasted LUC for the City of Surrey, orthophoto images
for the year 2016 with 10 cm resolution obtained from the Surrey Open Data Catalog [92] were used
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for reference. The LU classes of about three million raster cells were forecasted; however, checking
the correctness of every raster cell was time-consuming and complicated. Simple random sampling
(SRS) method was used for sampling. There were two groups of validation samples. First, a total
of 604 sample points were randomly chosen from the orthophoto datatsets to reduce the computational
workload but still achieve a high confidence level. The necessary sample size was decided based on
Z-score from Equation (11) [93]:

Necessary Sample Size = (Z− score)2
∗ StdDev ∗(1− StdDev)/(margin of error)2 (11)

where margin of error is 4%, StdDev is 0.5, Z-score is 1.96, and confidence level is 95%. Each point
i (i∈[1,2,3, . . . ,604]) has corresponding location Si on the orthophoto and those forecasted LUCs for the
year 2016, Ytrue(Si) represented the manually classified LU class of sample point i on the orthophoto,
and Ypred(Si) represented the forecasted LU class by LSTM of location Si. Therefore, the LU forecast
for the year 2016 was tested by comparing Ytrue(Si) and Ypred(Si) of 604 sample points, and if
Ytrue(Si) = Ypred(Si) the forecast accuracy is considered 1, otherwise it is 0.

Second, to evaluate the accuracy of forecasted LUC, additional 408 samples points were randomly
chosen from the study uniquely for the changed areas from the forecasted LU map. The number
of samples from each LU class was different according to the observable changes on the forecasted
map; however, the samples were evaluated using the same method as the previous group.

The total accuracy indicator was used for the evaluation of the performance of the LU forecast
model and calculated based on Cohen’s kappa coefficient [94]:

Total accuracy =
TurePositive + TrueNegative

TurePositive + TrueNegative + FalsePostive + FalseNegative
(12)

where true positive (TP) = correctly forecasted, false positive (FP) = incorrectly forecasted, true negative
(TN) = correctly rejected, and false negative (FN) = incorrectly rejected raster cells. Two groups
of sample points were used for calculating the kappa coefficient. A confusion matrix [95,96] is typically
used for describing the performance measurement for classification models and from which the kappa
coefficient can be calculated.

The implementation of the proposed methodology and RNN models was performed using
the MATLAB software [97] for data preprocessing. The Python programming language [98] was used
for implementing and training RNNs, and the Keras API [99] was used for constructing the RNN
models. ArcGIS [84] software was used to create LU output maps.

3. Results

Table 1 provides the obtained values for model accuracy for six different scenarios. Most of the
scenarios of RNN models provided accuracies above 0.86, except for LSTM1, where the accuracy was
only 0.62. The total number of raster cells were split into a training set and validation set in an 8:2 proportion.
As indicated in Table 1, scenario 1 and 2 both used the LSTM model with the same configuration. Scenario 1
(LSTM 1) used only raster cells whose LU classes had changed during 1996 and 2011 for training and
validation, while scenario 2 (LSTM 2) used all raster cells from the study area for training and validation.
Scenario 3 used the GRU model, and scenario 4 used the BiLSTM model. Scenario 4 and 5 used ConvLSTM,
whereby ConvLSTM 1 received input data with a shape of 10 × 10 raster cells and ConvLSTM 2 received
input data with a shape of 5 × 5 raster cells. Scenarios (2–6) used all raster cells from the study area
for training and validation. When only the changed raster cells were used for LSTM training (scenarios 1),
the overall accuracy is lower than the LSTM trained by all raster cells both changed and unchanged
(scenarios 2). Scenarios 2–4 used the LSTM, GRU, and BiLSTM models respectively and obtained
comparative accuracy when using the training data containing all the raster cells from the study area.
In the cases of the ConvLSTM models from scenarios 5 and 6, there is no obvious difference in accuracy
when the sample size is different. Training accuracy represents how accurate the model fits the training
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data, its value is percentage of total training set that forecasted the LU label equal to the actual LU label.
Validation accuracy represents how accurate the model fits the validation data after each epoch of training,
its value is percentage of total validation set that forecasted the LU label equal to the actual LU label.

Table 1. The training and validation accuracy of different RNN models and scenarios.

Scenarios RNN Variants The Ratio of Changed Raster
Cells in Training Set Training Accuracy Validation Accuracy

(1) LSTM 1 100% 0.62 0.62
(2) LSTM 2 47% 0.87 0.87
(3) GRU 47% 0.86 0.87
(4) BiLSTM 47% 0.87 0.87
(5) ConvLSTM 1, 10 × 10 47% 0.88 0.88
(6) ConvLSTM 2, 5 × 5 47% 0.88 0.88

Figure 6 shows the obtained LU for the City of Surrey for the year 2016, generated by short-term
forecast using LSTM 2, which was trained by using all raster cells from the study area. The percentages
of each LU class as forecasted are: 10.71% transportation, communication, and utilities, 9.25% recreation
and protected natural areas, 2.87% industrial, 2.13% open and undeveloped, 22.99% residential, 0.02%
lakes and water bodies, 0.92% institutional, 0.99% commercial, and 16.01% agricultural. As forecasted,
only 4.5% of raster cells changed their LU classes compared with the 2011 LU. Figure 7 shows
the changed raster cells in 2011 and 2016; it can be seen that some industrial land in the northwest
part of the study area became transportation, and some open areas become industrial (Figure 7a).
Some of the natural and protected areas were predicted as transportation LU class (Figure 7b),
while some of the agricultural areas were forecasted as residential (Figure 7c). Based on the prediction,
the increased LU classes during 2011 and 2016 were transportation and residential, while the other
LUs decreased. Specifically, 28.1% of changed raster cells changed from recreational and protected
natural LUs to transportation LUs, 11.9% of changed cells with agricultural LUs turned into residential
LUs, 18.6% undeveloped and open LUs became residential LUs, and 6.1% of commercial LUs became
industrial LUs.
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detailed subsections (a–c) as examples.

Figure 8 presents the confusion matrix for the first group of 604 sample points; it was calculated
based on Ytrue(Si) and Ypred(Si). The rows indicated the target LU classes Ytrue(Si) that were manually
classified from sample location (Si) on the 2016 orthophoto. The columns indicated the predicted
LU classes Ypred(Si) at corresponding sample locations (Si) (i = 1,2,3 . . . 604) from the forecasted
model outputs. Moreover, the confusion matrix value of cell (i,j) (i,j = 1,2,3 . . . 9), where 1–9 indicate
number of LU classes, represents the percentage of LU class j that was forecasted as class i. The total
accuracy of LU forecast is 87%, while the TN, TP, FN, and FP of LU forecast in each LU class differs.
Especially, the true negative from LU classes such as “open and undeveloped land” and “lakes and
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water bodies”, and “commercial” are low, close to 50%. The percentage of “water bodies” decreased,
while the percentage of “residential” and “agricultural” increased, as indicated in confusion matrix.
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An additional 408 randomly selected sampling points from the orthophoto image for the year 2016
were selected to correspond only to the changed raster cells from the 2011 actual and 2016 forecasted
LUC. Each sample point on the orthophoto image was manually classified and considered as actual LU
class of the year 2016. Then, they were compared with the forecasted LU class at corresponding raster
cells. The obtained overall accuracy for changed raster cells is 25%. The residential and institutional
LU classes were correctly forecasted with 45% and 40% accuracy respectively, while the other LU
classes were forecasted with very low accuracy, ranging from 5% to 15%. According to the obtained
results, the overall amount of changed raster cells were overestimated; however, the residential and
institutional LUs were steadily increasing, as open and undeveloped LU. The results still correspond
to the situation of the increasing population in the City of Surrey, thus increasing urban development.

4. Discussion and Conclusions

LUC is a spatiotemporal phenomenon and it can be correlated with various factors. Consequently,
forecasting LUC is a challenging topic and extensive efforts have been dedicated to modeling LUC,
while only a few studies have explored the potential of DL models on this topic. While RNN has
been shown as an efficient approach to solve time-series data, the objective of this study was to test
the feasibility of RNN based models for short-term LUC forecasting.

This study successfully tested several RNN based models to examine the LUC of the City of Surrey.
The LSTM, GRU, BiLSTM, and ConvLSTM were trained by changed raster cells and persistent raster
cells. Then, the LU for the year 2016 was forecasted using LSTM, which was trained first by LU data
for years 1996, 2001, 2006, and 2011 at 10-meter spatial and 5-year temporal resolutions.

The RNNs were successfully trained by LU data, as well as being able to forecast the 2016 LU.
The training data have layers of most frequent LU in the Moore neighborhood to account for the
impact from local surrounding raster cells. The model accuracy turns out to be similar at 86% while
trained by both changed and persistent raster cells. Model accuracy was lower at 62% when trained by
only changed cells, which indicates the variants of RNN did not differ much when using the same LU
datasets. The forecasted results indicate that only 4.5% of the land in Surrey City had changed. Overall,
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the forecasted changes mainly occurred among industrial, natural and recreational, transportation,
open and undeveloped, agricultural, and residential LU classes. However, among the changed
raster cells, only 25% of the LUC was forecasted correctly when evaluating sample points only from
the changed raster cells. The results indicate that the land was not overdeveloped between 2011 and
2016 while the City of Surrey experienced an increase in population, and some unpredictable factors
may have influenced the LUC. The obtained overall low accuracy of the changed raster cells can be
related to the lack of a larger number of geospatial datasets that span across multiple years, which could
make DL methods more inefficient; the absence of actual LU data for the forecasted year, as manual
classification of orthophoto could contain errors; and, finally, the difficulty for these type of models
to capture human interventions such as decision making for land management.

Due to the limitation of availability of classified LU data for 2016, in this study the forecasted
LUC for the year 2016 was not fully validated. Instead, it was compared with the actual 2011 LU
data and the locations with LU changes were analyzed. The LSTM can estimate how each LU will
change based on “transition rules”, which were learned from the 1996 to 2011 LU data. In addition,
manually classified 2016 orthophoto data were used to verify the obtained forecasted LUC. The Kappa
statistic [96] is often used as an assessment indicator to compare the similarity between observed and
predicted results [45,100]. Given that the majority of the raster cells remain unchanged, simple random
sampling (SRS) is not sufficient to evaluate the overall predication performance of the RNN models
since the overall accuracy will be increased by the unchanged raster cells. Instead, other sampling
methods [101,102] could potentially be used to evaluate the obtained forecasted LUC. However,
if the appropriate LU data were available for the year 2016, the evaluation of the accuracy of the
obtained short-term forecasted LUC could be performed with a variety of exiting methods for map
comparisons [95,103,104].

RNNs are efficient methods capable of performing feature extraction and classification. So far,
few studies have exploited RNNs for LUC forecasting. This research study has demonstrated that RNNs
have this potential, although the performance of LU forecasting still needs appropriate geospatial data
so that strict validation can be performed. RNNs are data-driven models, the quality and quantity of the
training data are important factors determining the accuracy of the forecasting results. Thus, training the
models represents a challenge when such models are used. Incorporating proximate physical, local,
demographic, socioeconomic, and climatic factors into the training process, the RNNs can better learn
the transition rules and improve the forecast accuracy. However, not every type of data is available and
open to the public.

In summary, in this study RNNs facilitated the full automation of the LU modeling process
from available geospatial datasets due to the learning abilities of RNNs. Expert knowledge is not
required to initialize the models and interpret the results. RNNs have the potential to capture
the spatio-temporal patterns of LUC and provide consistent short-term forecasts. The RNNs could
become a suitable approach for LUC modeling, thus also be a useful tool to study LUC and to further
inform decision-makers in their land use management process.
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